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Multi-objective modularity in Natural Language Processing
The Natural Language Processing (NLP) field has seen rapid advancements in
recent years through the continuous scaling of deep neural networks (DNNs). As
a result, the emergence of Foundation Models significantly changed the landscape
of NLP, where Pre-trained Language Models and Large Language Models (LLMs)
demonstrate exceptional performance across numerous NLP tasks.

The ongoing DNNs scaling has led to increased popularity of Modular Deep
Learning (MDL). The MDL methods present a cheaper alternative to full fine-tuning,
offering parameter-efficient fine-tuning, which reduces the computational require-
ments of modifying a model. In particular, with flagship LLMs exceeding 100 billion
parameters, even the inference of the state-of-the-art models requires substantial
infrastructure, to say nothing of training costs. Moreover, the MDL modules can
enhance Foundation Models with diverse capabilities, offering an opportunity to
involve multiple modules simultaneously and combine them for specific downstream
objectives.

This thesis focuses on Modular Deep Learning and studies multi-objective aspects
of modular methods as a series of four publications. In the first three publications,
we state research questions that examine a distinct problem in the existing as-
pects: multi-task, multi-domain and multilinguality. These works focus on one
multi-objective at a time, making the rest of the variables constant (e.g. while explor-
ing multi-task setup, we keep domain and language(s) unchanged). Each publication
introduces a new system or method to address a shortcoming of the current methods
in the corresponding aspect. Finally, in the last work, we formulate a new aspect,
which we call multi-model. Here, we examine existing modular methods under new
conditions and showcase the limitations of the current modular methods.

Keywords: Modular Deep Learning, Parameter-efficient fine-tuning, Natural Lan-
guage Processing
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Wielokryterialna modularność w przetwarzaniu języka
naturalnego

Dziedzina przetwarzania języka naturalnego (NLP) odnotowała w ostatnich latach
błyskawiczny postęp dzięki ciągłemu skalowaniu głębokich sieci neuronowych (DNN).
W rezultacie, pojawienie się modeli podstawowych znacząco zmieniło krajobraz NLP,
gdzie wstępnie wytrenowane modele językowe i duże modele językowe (LLM) osiągają
wyjątkowe rezultaty w licznych zadaniach.

Trwający proces skalowania głębokich sieci neuronowych doprowadził do wzrostu
popularności modularnego uczenia głębokiego (MDL). Metody MDL prezentują
tańszą alternatywę do całkowitego dostrajania modeli poprzez parametrycznie efek-
tywny odpowiednik, który redukuje wymagania obliczeniowe modyfikacji modelu.
W szczególności, w przypadku sztandarowych modeli LLM, które swoim rozmia-
rem przekraczają 100 miliardów parametrów, nawet predykcja wymaga znacznej
infrastruktury sprzętowej, pomijając całkowicie koszty treningu takiego modelu.
Co więcej, moduły MDL mogą wzbogacać modele podstawowe dodając im różne
umiejętności, często wykorzystując jednocześnie wiele z nich i łącząc je w zależności
od potrzeb zadania docelowego.

Niniejsza praca skupia się na modularnym uczeniu głębokim i bada wielokryte-
rialne aspekty metod modularnych w formie serii czterech publikacji. W pierwszych
trzech z nich stawiane jest pytanie badawcze, które rozważa konkretny problem
w istniejących aspektach: wielozadaniowości, wielodomenowości i wielojęzyczności.
Owe prace skupiają się na jednym, konkretnym przypadku wielokryteriowości na
raz, bez modyfikacji pozostałych (np. podczas eksploracji konfiguracji zadań wielo-
zadaniowych zachowujemy niezmienioną domenę i język(i)). Każda z pierwszych
trzech publikacji przedstawia nowy system lub metodę, która ma na celu usunięcie
ograniczeń obecnych rozwiązań w danym aspekcie. W ostatniej, czwartej publikacji,
został sformułowany nowy aspekt, nazwany wielomodelowym. Praca testuje istnie-
jące metody modularne w nowych warunkach i ukazuje ograniczenia obecnych metod
modularnych.

Słowa kluczowe: Modularne uczenie głębokie, Parametrycznie efektywne dostraja-
nie, Przetwarzania języka naturalnego
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1. Introduction

The Natural Language Processing (NLP) field has seen rapid advancements
in recent years. The continuous scaling of deep neural networks has led to the
emergence of Foundation Models [71], significantly shaping the landscape of NLP.
Recent advancements have introduced new architectures, such as the Attention
mechanism [14] and Transformer [179], alongside semi-supervised training objec-
tives like masked language modelling and next token prediction [48, 147]. These
innovations, combined with unseen until this point scaling, have led to the creation
of Pre-trained Language Models (PLMs) [130, 48, 108] and Large Language Models
(LLMs) [148, 176, 30] that demonstrate exceptional performance across numerous
tasks that include, among other, machine translation [44, 5], semantic analysis [80],
and summarisation [200].

Considering the increasing model sizes, the cost of adapting such a Foundation
Model to a new objective, whether for a different domain, task or language, plays a
critical role. While the PLMs and LLMs offer exceptional zero-shot performance,
some scenarios require the development of domain-specific models, such as those for
medical, financial, or legal applications [151, 32, 192, 41]. Moreover, even regular
fine-tuning to a specific task or language can become prohibitively expensive. With
Large Language Models exceeding 100 billion parameters [160, 52, 1], even the
inference of the state-of-the-art models requires substantial infrastructure, to say
nothing of training costs.

Due to the ongoing scaling of deep neural networks, Modular Deep Learning
(MDL) [134] has been gaining increasing attention. The MDL methods offer a
cheaper, in terms of computational cost, alternative to full fine-tuning. The MDL’s
parameter-efficient fine-tuning (PEFT) techniques lower the cost by either modifying
a subset of existing parameters [67, 23, 9] or training a new, but relatively small, set
of parameters [83, 84, 107]. Therefore, thanks to PEFT, the Foundation Models can
still serve as a base, general-purpose building block for downstream applications
with relatively low modification costs.

The ongoing scaling, a prime force driving MDL’s expansion, represents just
one aspect of modularity’s appeal. Modularity, at its core, seeks to encapsulate a
specific responsibility into a dedicated module [83, 84]. Due to their clearly defined
responsibilities (whether task-specific, language-specific, or domain-specific), the
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modules can be independently evaluated and analysed based on their downstream
application. Through their specialised compute function, modules can enhance
Foundation Models with diverse capabilities, additionally offering an opportunity
to involve multiple modules simultaneously and combine them (e.g. multi-domain
setup) to address a specific downstream objective [141, 31, 122].

In the thesis, we investigate various challenges that modularity can address;
rather than concentrating on an isolated problem such as a singular task, we examine
configurations involving concurrent multiple objectives, specifically:

• multi-task
• multi-domain
• multilinguality
• multi-model.
Each listed aspect has specific use cases and features. The first aspect targets

multi-task setups where an NLP system aims to solve multiple different tasks. Exam-
ples include models that extract jointly entities and relations [54, 55] or hierarchical
models that handle tagging, parsing, relatedness, and entailment tasks at the same
time [74]. The following multi-domain objective deals with cases where data comes
from different domains (while keeping the task constant). For example, in machine
translation, a source sentence might belong to medical, legal, or news categories (or
any other), and we want to build systems that can be robust to a change of domain
or perform well on a specified set of domains [49]. The multilingual aspect applies
modularity to problems with fixed tasks and domains, but where the language is
the changing factor. This objective, by definition, appears in Multilingual PLMs
[42, 78, 199, 26] and LLMs [160, 118, 116, 64], but also in multilingual models
for machine translation [44] or Named Entity Recognition [172]. At last, we chal-
lenge modularity against a case where the Foundation Model is a changing factor,
formulating and evaluating the aspect [90] as one of the contributions of this thesis.

1.1. Research Questions

In the thesis, we focus on the multi-objective aspects of modularity, tackling four
main research questions (RQs):

1. How can we build a multi-task NLP system where the end user can select
relevant downstream tasks?

2. Can a routing function benefit from an external multi-domain teacher model?
3. Can we leverage knowledge of multiple language-specific modules without in-

creasing the inference cost?
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4. Can we reuse the pre-trained modules from different Foundation Models? What
are the limitations of current modular methods when transferring between
models?

In the following chapters, we address the outlined research questions, which
are divided into four distinct multi-objective modularity aspects. Each research
question explores an open research problem of a specific aspect and focuses on its
multi-objective while keeping the rest constant, as presented in Table 1.1.1.

Table 1.1.1. The constant (C) and changing (X) modularity objectives in the research
questions and corresponding publications.

Modularity objective Task Domain Language Foundation Model
RQ 1 [P1] X C C C
RQ 2 [P2] C X C C
RQ 3 [P3] C C X C
RQ 4 [P4] C C C X

1.2. Thesis Contribution

The thesis structure is as follows. Chapter 2 introduces the Modular Deep Learn-
ing background and relevant literature, positioning our work within the broader
contexts of Natural Language Processing and Modular Deep Learning. Chapters 3-6
contain the core contribution of this thesis, presented as a series of four publications
described below.

1.2.1. An NLP system with user-defined modularity for a multi-task setup.

Publication [P1]:
Mateusz Klimaszewski, Alina Wróblewska.
COMBO: State-of-the-Art Morphosyntactic Analysis.
The 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP
2021, System Demonstrations).
MNiSW list: 140 pts
Contribution: 60%
Description of the contribution: design, implementation, training & evaluation of
the models, running experiments, results analysis, manuscript co-writing.
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Figure 1.2.1. High-level view of the COMBO architecture. The modules marked in the solid
line are required elements of the system, while the dashed lines present optional modules
that the user can add or remove.

The first core contribution of the thesis [94], presented in Chapter 3, focuses on mod-
ularity that relates to the software engineering terminology (before the MDL term
was forged) [174] and modularity that follows a multi-task learning paradigm [156].
The work creates an NLP system named COMBO for part-of-speech tagging, mor-
phological analysis, lemmatisation and (enhanced) dependency parsing. The system
is released as a standalone Python library with over 40 pre-trained models and a
live demo.1

COMBO design presented in Figure 1.2.1 allows the end-user to define modularity
on the input feature and prediction levels. Depending on available training data
and its features, the user can enhance the raw text with, e.g. part-of-speech tags
and train a COMBO model leveraging multiple inputs. On the other hand, when it
comes to prediction, if the user is interested exclusively in dependency parsing, they
can limit task-specific prediction modules to those responsible for the parsing task,
reducing other prediction heads and system complexity and, therefore, improving
efficiency.

The initial modular architecture was successfully extended, proving its design in
our work [93] that built a new Enhanced Dependency Parsing Module ranked 4th at
the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies [28].
Moreover, the CLARIN project2 [140] extended COMBO with yet another module for

1 http://combo-demo.nlp.ipipan.waw.pl/
2 https://clarin-pl.eu/
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the Named Entity Recognition (NER) task (work done without the PhD Candidate’s
participation).

The PhD Candidate, as the first author of this publication, played a crucial role in
developing the proposed system. Specifically, the PhD Candidate took responsibility
for designing and implementing the system, training and evaluating the models and
conducting the experiments. Working collaboratively with the co-author, the PhD
Candidate analysed the results and prepared the manuscript for publication.

1.2.2. Knowledge sharing between domain-specific Adapters

Publication [P2]:
Mateusz Klimaszewski, Zeno Belligoli, Satendra Kumar, Emmanouil Stergiadis.
Gated Adapters for Multi-Domain Neural Machine Translation.
26th European Conference on Artificial Intelligence (ECAI 2023).
MNiSW list: 140 pts
Contribution: 65%
Description of the contribution: conceptualisation, implementation, training &
evaluation of the method, results analysis, manuscript co-writing.

In the second work [92], presented in Chapter 4, we shift towards a multi-domain
aspect, where the objective is to manage data coming from different domains under
the same task in our study - machine translation. In particular, we focus on knowl-
edge sharing between independently trained PEFT modules - adapters [83]. Given
domain-specific adapters, we propose a mixture of expert-based architecture [162],
dubbed Gated Adapters. We visualise the method in Figure 1.2.2.

Our method uses a router distilled from an external Pre-trained Language Model.
The router, during inference, predicts soft labels for each domain and combines
multiple adapters’ outputs for each data sample instead of assigning a single adapter
per sample. We base our research question in this study on the findings of Aharoni
and Goldberg [4], who showcase that simply hard-labelling domains (i.e. choosing a
single one out of many), given the source of origin, can be a limiting factor.

We evaluate the quality of the proposed architectures on two language pairs,
English-Polish and English-Greek, with six domains each and measure quality using
statistical and neural metrics. In particular, we show an improvement of over 5
COMET [153] points in the case of misclassified samples (i.e., ambiguous examples
regarding their source domain). Moreover, we observe that the quality of the router
distillation holds even during out-of-domain evaluation, i.e. when a new, unseen
domain is taken into consideration.
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Source: "Law act related to the usage of artificial intelligence..."
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Figure 1.2.2. The proposed Gated Adapters overview. In the example sentence, the gates’
weights lean towards law and IT Adapters and discard the medical one, as the source text
concerns an AI-related law act.

As the first author, the PhD Candidate was responsible for conceptualising,
implementing and evaluating the proposed method and also played a leading role in
analysing the results. Working with co-authors, the PhD Candidate prepared the
manuscript for publication. At last, the PhD Candidate had the honour of presenting
the results of this work at the ECAI 2023 conference.

1.2.3. Model merging in a multilingual space

Publication [P3]:
Mateusz Klimaszewski, Piotr Andruszkiewicz, Alexandra Birch.
No Train but Gain: Language Arithmetic for training-free Language Adapters en-
hancement.
The 31st International Conference on Computational Linguistics (COLING 2025).
MNiSW list: 140 pts
Contribution: 70%
Description of the contribution: implementation, training & evaluation of the method,
results analysis, manuscript co-writing

The third publication [91], Chapter 5, moves towards multilinguality and the land-
scape of model merging. The study investigates whether task arithmetic works
under the challenge of the language beyond single-language tasks. Once again, we
work with the Adapters as a PEFT method; however, in a more complex setup, i.e.
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using a MAD-X [135] setup where modules are stacked, i.e. they process data via
two consecutive modules: language- and task-specific.

Our findings show that model merging improves over MAD-X [136] results via
merging two language Adapters, an operation we name language arithmetic (pre-
sented in Figure 1.2.3). Language arithmetic can improve existing Adapters, allowing
the forging of a new module to obtain better zero-shot performance.

Feed forward

Self attention

LAes(en, fr)

NER

LAes(en, fr)

EN

FR

+

=
Feed forward

Self attention

FR

Feed forward

Self attention

EN

Training language adapters Language arithmetic

Figure 1.2.3. We propose language arithmetic – a method that combines pre-trained
language adapters. The example presents a zero-shot setup where a language adapter for a
target language (Spanish, es) was unavailable and is obtained by a model merging operation
between English and French adapters.

Last, our analysis indicates that the newer methods that build upon the task
arithmetic framework might not work for language arithmetic, as the internal
representation exhibits different characteristics.

This work was led by the PhD Candidate, who conceptualised, implemented,
trained and evaluated the proposed method. The PhD Candidate, working with
co-authors, prepared the manuscript for publication and presented the work at the
COLING 2025 conference. This study was supported by the Preludium grant from
the National Science Centre, Poland, where the PhD Candidate is the Principal
Investigator.

1.2.4. Modularity transfer between pre-trained models

Publication [P4]:
Mateusz Klimaszewski, Piotr Andruszkiewicz, Alexandra Birch.
Is Modularity Transferable? A Case Study through the Lens of Knowledge Distilla-
tion.
The 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024).
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MNiSW list: 140 pts
Contribution: 80%
Description of the contribution: conceptualisation, implementation, training &
evaluation of the method, results analysis, manuscript co-writing

In the final work [90], Chapter 6, we formulate a property that would showcase
the thorough modularity of the current MDL methods, i.e., the transferability of
modules between Foundation Models. This study defines the property and attempts
to unravel whether current MDL techniques support the property or can be easily
adapted to support the transfer.

We take a closer look at a specific scenario as we examine a knowledge distil-
lation setup [79] with PEFT presented in Figure 1.2.4. Our findings indicate that
transferability, in the current MDL methods, is possible under the assumption that
the teacher-student pair are a task-agnostic distillation of each other. In such a
case, the student can retain partially external (teacher) knowledge on a downstream
task. The evaluation was performed on two pairs of multilingual PLMs with three
downstream tasks covering jointly a set of over 20 languages.

1. Task-agnostic
distillation

2. PEFTTeacher

4. PEFTStudent

3. Modularity
Transfer

Fine-tuned
Teacher

Fine-tuned
Student

Figure 1.2.4. The schema of the transferable modularity experiment. We investigate setups
where the teacher-student pair results from task-agnostic distillation (marked as the optional
step 1) or are independently trained models.

This work was led by the PhD Candidate, who conceptualised, implemented,
trained and evaluated the proposed method. The PhD Candidate, working with
co-authors, prepared the manuscript for publication and presented the work at the
LREC-COLING 2024 conference. It is important to mention that the article was
prepared during the PhD Candidate’s research visit to the University of Edinburgh,
funded by the MOBILITY PW IX grant.
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1.3. Other scientific contributions and

achievements

The series of publications presented in the previous section is the core scientific
contribution of this thesis. However, the scientific work has resulted in additional
outcomes, i.e. research grants, open-sourced software, and other publications, which
we briefly document in the following sections.

1.3.1. Own research grants

• PRELUDIUM 22, National Science Center, Poland
Compositional modularity in Multilingual NMT
10/2024 – 10/2026
Budget: 139 031 PLN

• Mobility PW IX, Smart Education for Engineering Doctor NAWA STER, re-
search visit grant
Modularity in Neural Machine Translation
09/2023 – 12/2023
Budget: 39 000 PLN

• PlGrid ACK Cyfronet Helios computational grant
Compositional modularity in Multilingual NLP
04/2025 – 04/2026
Budget: 120 744 GPU hours

• PCSS (Poznań Supercomputing and Networking Center) computational grant
Knowledge Graphs application in Neural Machine Translation
02/2022 – 02/2024
Budget: 200 000 GPU hours

1.3.2. Participation in research grants

• HORIZON Research and Innovation Actions
Unified Transcription and Translation for Extended Reality
10/2022 – 09/2025

• INFOSTRATEG III, The National Centre for Research and Development,
Poland
Artificial Intelligence and Blockchain for product quality and safety control
system
08/2022 – 07/2023
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• EuroHPC Extreme Scale Access computational grant
European Large Language Model - EuroLLM
05/2024 – 04/2025

1.3.3. Repositories and software packages

• COMBO system repository
https://gitlab.clarin-pl.eu/syntactic-tools/combo

• COMBO PyPI package
https://pypi.clarin-pl.eu/simple/combo

• COMBO system demo
https://combo-demo.nlp.ipipan.waw.pl

• Gated adapters implementation
https://github.com/mklimasz/gated-adapters

• Language arithmetic implementation
https://github.com/mklimasz/language-arithmetic

• Transferable modularity implementation
https://github.com/mklimasz/transferable-modularity

1.3.4. Other research publications

• Mateusz Klimaszewski, Alina Wróblewska
COMBO: a new module for EUD parsing
IWPT 2021

• Adam Dobrowolski, Mateusz Klimaszewski, Adam Myśliwy, Marcin Szy-
mański, Jakub Kowalski, Kornelia Szypuła, Paweł Przewłocki, Paweł Przybysz
Samsung R&D Institute Poland Participation in WMT 2022
WMT 2022

• Mateusz Klimaszewski, Pinzhen Chen, Liane Guillou, Ioannis Papaioannou,
Barry Haddow, Alexandra Birch
AveniBench: Accessible and Versatile Evaluation of Finance Intelligence
FinNLP @ COLING 2025

• Pedro Henrique Martins, Patrick Fernandes, João Alves, Nuno M Guerreiro,
Ricardo Rei, Duarte M Alves, José Pombal, Amin Farajian, Manuel Faysse,
Mateusz Klimaszewski, Pierre Colombo, Barry Haddow, José GC de Souza,
Alexandra Birch, André FT Martins
EuroLLM: Multilingual Language Models for Europe
EuroHPC user day 2025
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• Laurie Burchell, Ona de Gibert, Nikolay Arefyev, Mikko Aulamo, Marta Bañón,
Mariia Fedorova, Liane Guillou, Barry Haddow, Jan Hajič, Erik Henriks-
son, Mateusz Klimaszewski, Ville Komulainen, Joona Kytöniemi, Veronika
Laippala, Petter Mæhlum, Farrokh Mehryary, Vladislav Mikhailov, Nikita
Moghe, Dayyán O’Brien, Stephan Oepen, Proyag Pal, Jousia Piha, Gema
Ramírez-Sánchez, David Samuel, Pavel Stepachev, Dušan Variš, Tereza Vojtě-
chová, Jaume Zaragoza-Bernabeu
An Expanded Massive Multilingual Dataset for High-Performance Language
Technologies
Accepted to ACL 2025

• Jacqueline Rowe, Mateusz Klimaszewski, Liane Guillou, Shannon Vallor,
Alexandra Birch
EuroGEST: Investigating gender stereotypes in multilingual language models
Pre-print (in-review)

• Pedro Henrique Martins, João Alves, Patrick Fernandes, Nuno M. Guerreiro,
Ricardo Rei, Amin Farajian, Mateusz Klimaszewski, Duarte M. Alves, José
Pombal, Manuel Faysse, Pierre Colombo, François Yvon, Barry Haddow, José
G. C. de Souza, Alexandra Birch, André F. T. Martins
EuroLLM-9B: Technical Report
Pre-print
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2. Background

2.1. The Rise of Modular Deep Learning

Transfer learning (TL) [124, 157], which can be seen as the Modular Deep Learn-
ing ancestor [134], is a learning framework that addresses a limitation of many
machine learning setups, where training and test examples are drawn from the
same distribution [124]. In a real-world scenario, we often face the problem of a
distribution shift [22] between training and test (also called inference or future) data
unless we put effort and resources into collecting and annotating data specifically
for our task or domain. The knowledge transfer between existing datasets or models,
reducing the cost of labelling, is the main appeal of transfer learning.

Modular Deep Learning [134] emerged from the success of TL, where one of the
core objectives of MDL is to prevent the TL limitation - negative transfer. Nega-
tive transfer [198], also known as negative interference, occurs when source data
negatively impacts the target objective. For example, in a multi-task setting, it
appears when a subset of tasks negatively impact each other and their training
signal contradicts. A similar phenomenon has been denoted in multilingual models
(termed the curse of multilinguality) [42]. As Pan and Yang (2012) [124] suggest,
although most of the work assumes that there exists a relation (of some sort) between
tasks, the assumption does not always hold; therefore, the methods might perform
worse than a baseline without any TL. Furthermore, the authors identify negative
transfer as the first of the challenges in their enumeration of open problems in TL
research.

The TL methods that emerged during the deep learning revolution [25] have
been a source of inspiration for the MDL methods. These architectural approaches
align, to varying extents, with MDL properties, which we define in the following
section. As an example of such architecture, in the multi-task learning paradigm, we
have seen soft- and hard-parameter sharing setups [156] (Figure 2.1.1), where one
takes advantage of a Foundation Model for multiple objectives, keeping task-specific
modules (usually classifiers) separated. The former, hard-parameter sharing, setup
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Figure 2.1.1. Example of modular transfer learning settings for a multi-task setup, where
task-specific layers, usually feed-forward classifiers, are detached from a shared backbone.
In the hard-sharing scenario, the task-specific modules are placed on a joint base and use
the same weights. These parameters could be trained from scratch with the task layers
or be a Foundation Model (e.g. a PLM or an LLM). In the soft-sharing scenario, there are
multiple instances of the backbone, but all of them are constrained, e.g. with L2 loss [53].
Adapted from Ruder (2017) [156].

could be seen as a fully fledged modular system due to having explicit modular
components.

It is important to mention that while the MDL can be seen as a direct successor of
TL, the modularity concept is an idea that has been a part of the software engineering
field [17, 27, 174] for a while. Additionally, recent findings showcase that “regular”
neural networks, on their own, exhibit internal modularity, e.g. multilingual models
contain language-specific subnetworks [58, 35].

The [P1] publication is an example of the pre-MDL era system. It combines the
modularity from the software engineering field (in the form of modules implemented
to handle user-defined sets of features/targets) and hard-parameter sharing from
the TL methods.

2.2. Modular Deep Learning

Modular Deep Learning proposes constructing neural networks with explicit
modular components that can be independently updated without affecting the rest of
the parameters. According to Pfeiffer et al. (2023) [134], MDL architecture comprises
three principal components:
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1. computation function,
2. routing function,
3. aggregation function.

The computation function determines how a module integrates into the existing
model architecture. We examine the predominant architectures in Section 2.2.1.
The routing and aggregation functions control information flow within the model
- the former determines which modules to activate (and which to bypass), while
the latter establishes how outputs from multiple modules are combined. In Figure
2.2.1, we revise Figure 1.2.2 from the [P2] publication , annotating the mentioned
components.

Source: "Law act related to the usage of artificial intelligence..."

Self attention

Feed forward

MED LAW

Gating
module

IT

+

x 0.1x 0.0 x 0.9

Aggregation
function

Routing
function

Computation
function

Figure 2.2.1. Annotated the three main functions of the Modular Deep Learning architecture
on the example of Gated Adapters [92].

The proposed MDL functions bring distinct benefits. The computation functions
are usually1 isolated from a base model and specialised towards a specific objective.
This separation mitigates negative interference, addressing one of TL’s principal
limitations. Furthermore, compute functions generally constitute only a small
fraction of the model’s total parameters [19], enhancing computational efficiency. Ad-
ditionally, their specialisation toward specific objectives facilitates their combination
(via routing and aggregation functions) to access novel capabilities [141, 31, 122].
Consequently, MDL is characterised by three fundamental properties [134]:

• positive transfer – to counteract TL’s negative interference,
• parameter efficiency – allowing to modify even Foundation Models,

1 We denote the outliers in Section 2.2.1.
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• compositionality – to use modules as building blocks that enhance existing or
new capabilities.

In the following sections, we provide additional background for two specific groups
of MDL methods that relate to the core contributions of this thesis.

2.2.1. Parameter-efficient fine-tuning

The ongoing scaling of deep learning models increased the computational cost of
fine-tuning (also called full fine-tuning) a model. Particularly with Large Language
Models exceeding 100 billion parameters, training necessitates not merely multi-
ple GPUs but distributed computing across multiple nodes. Moreover, the size of
models increases the storage expenses. Considering multiple downstream tasks,
maintaining separate fine-tuned versions for each task generates substantial costs.
Parameter-efficient fine-tuning (PEFT) [133, 145, 73] emerged as a response to these
mounting costs, offering a balanced compromise between computational expense
and performance quality, and has played a foundational role in MDL.

Adapters, also referred to as bottleneck adapters, were introduced by Houlsby
et al. (2019)2 [83] and represent the earliest approach in the parameter-efficient
fine-tuning family. Adapters are compact, small neural network layers strategically
inserted within pre-trained models. They typically consist of down-projection and
up-projection layers with a non-linearity in between. While the original model
parameters remain frozen, only these lightweight adapter parameters are updated
during training, significantly reducing the computational burden. Although several
variants have been proposed that differ in the positioning within a Transfer layer
and information flow (i.e. points of connection to the modified model) [83, 19, 132,
201, 76], the core concept remains unchanged. The downside of adapters is the
increased computational overhead during inference – the modules are injected
between existing layers, increasing the processing time of the adapted model. To
avoid that limitation, Low Rank Adaptation (LoRA) [84] was proposed that yields a
similar architecture as bottleneck adapter while (i) replacing sequential computation
with parallel processing, (ii) removing non-linearity and approximating a single
layer (i.e. a single weights’ matrix rather than a complex layer as a Transformer
layer). These modifications allow the LoRA’s weights to be merged into the existing
model during inference, and overall computational inference complexity, pre- and
post-fine-tuning, stays the same. We present and compare these two techniques in
Figure 2.2.2.

2 We denote Rebuffi et al.’s (2017) [152] work that introduced the adapter concept and can be
seen as the base inspiration for current bottleneck adapters.
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Pre-trained
weights

Pre-trained
layer

Figure 2.2.2. Schemas of flagship PEFT methods: bottleneck adapters (sequential, left)
and LoRA (parallel, right). For clarity we omit residual connection. Although the methods
increase complexity by roughly the same cost during training, LoRA’s weight can be added
to the approximated pre-trained weights after training [84], reducing the final cost of using
the model. In contrast, bottleneck adapters must be applied (after the pre-trained layer)
during inference.

Other methods that also represent the PEFT category are: subnetwork fine-tuning,
e.g. bias weights fine-tuning - BitFit [23, 101] or sparse fine-tuning [8, 9], prefix
tuning [104], prompt tuning [103] and few-shot learning (IA3) [107]. As mentioned in
the previous section, most of these methods are isolated from the base model except
for subnetwork fine-tuning. Subnetwork fine-tuning, while conceptually isolated
(as a mask), in practice, disallows or makes it more complex [8] to use routing and
aggregation functions as it trains a subset of existing parameters.

Our works [P2], [P3] and [P4] take advantage of outlined compute functions and
apply them to the multi-domain, multilingual and multi-model cases. We train
every single module to encode a distinct capability that depends on a downstream
objective, e.g. in the multi-domain case [P2], each adapter represents a domain
(law or IT or religion, etc.) for the machine translation system. Particularly, in the
publications [P2] and [P3], we use bottleneck adapters to propose aggregation and
routing functions, while in the [P4] work, we evaluate the proposed multi-model
aspect using both adapter and LoRA modules.
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2.2.2. Model merging

Model merging [191] is a set of techniques that allow combining or merging
several existing models to obtain a new one with either novel / improved abilities
or removed unwanted ones. Conceptually, these methods find their predecessors
in model ensembling, e.g. averaging a few last training checkpoints of a model
[179]. Task arithmetic [86] has been one of the foundational works in this field, and
following Ilharco et al. (2023) [86] taxonomy, we distinguish three main applications
of model merging:

• forgetting via negation,
• learning via addition,
• task analogies.

As in our work, [P3], we focus on the second application, learning via addition; we
limit the introduction exclusively to this use case.

Given a pre-trained model (e.g. a Foundation Model) and its initial weights
denoted as θpre, and a fine-tuned version of the model on a task t, θt

f t, we can obtain
a so-called task vector τ, which is a parameter-wise difference between these two
models:

τt = θt
f t −θpre (2.1)

Learning via addition allows one to take advantage of multiple task vectors and
add multiple tasks to the initial model, creating a multi-task model (with a scaling
parameter λ ∈ [0,1]) without training for this specific joint objective.

θmulti−task = θpre +λτt1 + (1−λ)τt2 (2.2)

Task arithmetic allows us to forge a multi-task model from a separate, task-specific
set of fine-tuned models, preserving high accuracy (although a shared pre-trained
starting point is required, e.g. the same Large Language Model). While the naive
method presented in Equation 2.2 performs a linear combination of the weights, many
works have improved upon this baseline, considering, for example, parameter-sign
interference [190] or singular value decomposition [62, 111]. These approaches have
been especially successful in federated learning [33, 34], where we cannot access
data to train a multi-task model jointly from scratch, and in continual learning
[112, 113], where the data batches come sequentially and we, once again, cannot
revisit the previous samples.

From the MDL perspective, model merging can be seen as a specific version of
routing and aggregation functions where routing is done as a prior operation (i.e.
the merging and its hyperparameters) while aggregation is an identity function
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(after merging, the model is operating within its initial architecture; therefore,
no aggregation is required). While the initial model merging works applied the
techniques to fully fine-tuned models, Zhang et al. (2023) [197] evaluated the
techniques under PEFT conditions, showing the same benefits.

In the publication [P3], we extend the typical use-case of the multi-task setup and
explore the learning via addition capabilities of task arithmetic when it comes to
the multilingual aspect – forging a new term: language arithmetic. We evaluate
our approach as an extension to the MAD-X framework that leverages bottleneck
adapters (details in Chapter 5).

2.3. Summary

This Chapter provides a background on the modular methods used in this thesis.
We focus on a chosen subset of methods, positioning our work within the MDL field.
For a more in-depth and complete overview of TL, MDL, PEFT and model merging, we
refer the reader to existing surveys that summarise these fields well beyond Natural
Language Processing [124, 134, 73, 191]. In the following Chapters, we present
the core contributions of this thesis, each of which includes a contribution-oriented
overview of related work.
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Abstract

We introduce COMBO – a fully neural NLP system for accurate part-of-speech
tagging, morphological analysis, lemmatisation, and (enhanced) dependency pars-
ing. It predicts categorical morphosyntactic features whilst also exposes their
vector representations, extracted from hidden layers. COMBO is an easy to in-
stall Python package with automatically downloadable pre-trained models for over
40 languages. It maintains a balance between efficiency and quality. As it is
an end-to-end system and its modules are jointly trained, its training is com-
petitively fast. As its models are optimised for accuracy, they achieve often bet-
ter prediction quality than SOTA. The COMBO library is available at: https:

//gitlab.clarin-pl.eu/syntactic-tools/combo.

3.1. Introduction

Natural language processing (NLP) has long recognised morphosyntactic features
as necessary for solving advanced natural language understanding (NLU) tasks.
An enormous impact of contextual language models on presumably all NLP tasks has
slightly weakened the importance of morphosyntactic analysis. As morphosytnactic
features are encoded to some extent in contextual word embeddings [e.g. 173, 105],
doubts arise as to whether explicit morphosyntactic knowledge is still needed. For
example, Glavaš and Vulić (2021) [63] have recently investigated an intermedi-
ate fine-tuning contextual language models on the dependency parsing task and
suggested that this step does not significantly contribute to advance NLU models.
Conversely, Warstadt et al. (2019) [186] reveal the powerlessness of contextual
language models in encoding linguistic phenomena like negation. This is in line
with our intuition about representing negation in Polish sentences (see Figure
3.1.1). It does not seem trivial to differentiate between the contradicting meanings
of these sentences using contextual language models, as the word context is similar.
The morphosyntactic features, e.g. parts of speech PART vs. INTJ, and dependency
labels advmod:neg vs. discourse:intj, could be beneficial in determining correct
reading.

In order to verify the influence of explicit morphosyntactic knowledge on NLU
tasks, it is necessary to design a technique for injecting this knowledge into models
or to build morphosyntax-aware representations. The first research direction was
initiated by Glavaš and Vulić (2021) [63]. Our objective is to provide a tool for
predicting high-quality morphosyntactic features and exposing their embeddings.
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(1) Nie śpię
part verb

(I) don’t sleep

advmod:neg
root

(2) Nie , nie śpię
intj punct part verb
No , (I) don’t sleep

advmod:neg
root

punct
discourse:intj

(3) Nie , śpię
intj punct verb
No , (I) sleep

root
punct

discourse:intj

Figure 3.1.1. UD trees of Polish sentences: (1) and (2) mean a non-sleeping situation and
(3) means sleeping.

These vectors can be directly combined with contextual word embeddings to build
morphosyntactically informed word representations.

The emergence of publicly available NLP datasets, e.g. Universal Dependencies
[196], stimulates the development of NLP systems. Some of them are optimised for
efficiency, e.g. spaCy [82], and other for accuracy, e.g. UDPipe [167], the Stanford
system [50], Stanza [146]. In this paper, we introduce COMBO, an open-source fully
neural NLP system which is optimised for both training efficiency and prediction
quality. Due to its end-to-end architecture, which is an innovation within morphosyn-
tactic analysers, COMBO is faster in training than the SOTA pipeline-based systems,
e.g. Stanza. As a result of applying modern NLP solutions (e.g. contextualised word
embeddings), it qualitatively outperforms other systems.

COMBO analyses tokenised sentences and predicts morphosyntactic features
of tokens (i.e. parts of speech, morphological features, and lemmata) and syntactic
structures of sentences (i.e. dependency trees and enhanced dependency graphs).
At the same time, its module, COMBO-vectoriser, extracts vector representations of
the predicted features from hidden layers of individual predictors. COMBO user
guide is in §3.4 and a live demo is available on the website http://combo-demo.nlp.

ipipan.waw.pl.

Contributions 1) We implement COMBO (§3.2), a fully neural NLP system for
part-of-speech tagging, morphological analysis, lemmatisation, and (enhanced) de-
pendency parsing, together with COMBO-vectoriser for revealing vector representa-
tions of predicted categorical features. COMBO is implemented as a Python package
which is easy to install and to integrate into a Python code. 2) We pre-train models
for over 40 languages that can be automatically downloaded and directly used to
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process new texts. 3) We evaluate COMBO and compare its performance with two
state-of-the-art systems, spaCy and Stanza (§3.3).

3.2. COMBO Architecture

COMBO’s architecture (see Figure 3.2.1) is based on the forerunner [158] imple-
mented in the Keras framework. Apart from a new implementation in the PyTorch
library [128], the novelties are the BERT-based encoder, the EUD prediction module,
and COMBO-vectoriser extracting embeddings of UPOS and DEPREL from the last
hidden layers of COMBO’s tagging and dependency parsing module, respectively.
This section provides an overview of COMBO’s modules. Implementation details
are in Appendix 3.6.1.

WORDLEMMACHARUPOSUFEATS

HEAD DEPREL

UPOS UFEATS
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Figure 3.2.1. COMBO architecture. Explanations:
CNN  FC System-trained biLSTM optional required

Local Feature Extractors Local feature extractors (see Figure 3.2.1) encode
categorical features (i.e. words, parts of speech, morphological features, lemmata)
into vectors. The feature bundle is configurable and limited by the requirements
set for COMBO. For instance, if we train only a dependency parser, the following
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features can be input to COMBO: internal character-based word embeddings (char),
pre-trained word embeddings (word), and embeddings of lemmata (lemma), parts of
speech (upos) and morphological features (ufeats). If we train a morphosyntactic
analyser (i.e. tagger, lemmatiser and parser), internal word embeddings (char) and
pre-trained word embeddings (word), if available, are input to COMBO.

Words and lemmata are always encoded using character-based word embeddings
(char and lemma) estimated during system training with a dilated convolutional
neural network (CNN) encoder [194, 168].

Additionally, words can be represented using pre-trained word embeddings
(word), e.g. fastText [65], or BERT [48]. The use of pre-trained embeddings is
an optional functionality of the system configuration. COMBO freezes pre-trained
embeddings (i.e. no fine-tuning) and uses their transformations, i.e. embeddings
are transformed by a single fully connected (FC) layer.

Part-of-speech and morphological embeddings (upos and ufeats) are estimated
during system training. Since more than one morphological feature can attribute
a word, embeddings of all possible features are estimated and averaged to build
a final morphological representation.

Global Feature Encoder The encoder uses concatenations of local feature em-
beddings. A sequence of these vectors representing all the words in a sentence
is processed by a bidirectional LSTM [81, 66]. The network learns the context of
each word and encodes its global (contextualised) features (see Figure 3.2.2). Global
feature embeddings are input to the prediction modules.

ROOT The car is red

Figure 3.2.2. Estimation of global feature vectors.
biLSTM GLOBAL
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Tagging Module The tagger takes global feature vectors as input and predicts
a universal part of speech (upos), a language-specific tag (xpos), and morphological
features (ufeats) for each word. The tagger consists of two linear layers followed by
a softmax. Morphological features build a disordered set of category-value pairs (e.g.
Number=Plur). Morphological feature prediction is thus implemented as several
classification problems. The value of each morphological category is predicted with
a FC network. Different parts of speech are assigned different sets of morphological
categories (e.g. a noun can be attributed with grammatical gender, but not with
grammatical tense). The set of possible values is thus extended with the NA (not
applicable) symbol. It allows the model to learn that a particular category is not a
property of a word.

Lemmatisation Module The lemmatiser uses an approach similar to character-based
word embedding estimation. A character embedding is concatenated with the global
feature vector and transformed by a linear layer. The lemmatiser takes a sequence of
such character representations and transforms it using a dilated CNN. The softmax
function over the result produces the sequence of probabilities over a character
vocabulary to form a lemma.
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Figure 3.2.3. Prediction of dependency arcs.

Parsing Module Two single FC layers transform global feature vectors into head
and dependent embeddings (see Figure 3.2.3). Based on these representations,
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a dependency graph is defined as an adjacency matrix with columns and rows cor-
responding to heads and dependents, respectively. The adjacency matrix elements
are dot products of all pairs of the head and dependent embeddings (the dot product
determines the certainty of the edge between two words). The softmax function
applied to each row of the matrix predicts the adjacent head-dependent pairs. This
approach, however, does not guarantee that the resulting adjacency matrix is a prop-
erly built dependency tree. The Chu-Liu-Edmonds algorithm [39, 56] is thus applied
in the last prediction step.

ROOT

car
is
red

The

HEAD

ADJACENCY
MATRIX

. =

ROOT

car
is
red

The

DEPENDENT

root
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Figure 3.2.4. Prediction of grammatical functions.

The procedure of predicting words’ grammatical functions (aka dependency labels)
is shown in Figure 3.2.4. A dependent and its head are represented as vectors by
two single FC layers. The dependent embedding is concatenated with the weighted
average of (hypothetical) head embeddings. The weights are the values from the
corresponding row of the adjacency matrix, estimated by the arc prediction module.
Concatenated vector representations are then fed to a FC layer with the softmax
activation function to predict dependency labels.

EUD Parsing Module Enhanced Universal Dependencies (EUD) are predicted
similarly to dependency trees. The EUD parsing module is described in details in
Klimaszewski and Wróblewska (2021) [93].
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Table 3.2.1. Processing quality (F1 scores) of spaCy, Stanza and COMBO on the selected
UD treebanks (the language types are given in parentheses). The highest scores are marked
in bold.

System UPOS XPOS UFeat Lemma UAS LAS CLAS MLAS BLEX
English EWT (isolating)

spaCy 93.79 93.10 94.89 NA 83.38 79.76 75.74 68.91 NA
Stanza 96.36 96.15 97.01 98.18 89.64 86.89 83.84 79.44 82.03
COMBO 95.60 95.21 96.60 97.43 88.56 85.58 82.35 76.56 79.78
COMBObert 96.57 96.44 97.24 97.86 91.76 89.28 86.83 81.71 84.38

Arabic PADT (fusional)
spaCy 90.27 82.15 82.70 NA 74.24 67.28 63.28 50.48 NA
Stanza 96.98 93.97 94.08 95.26 87.96 83.74 80.57 74.96 76.80
COMBO 96.71 93.72 93.83 93.54 87.06 82.70 79.46 73.25 73.64
COMBObert 97.04 94.83 95.05 93.95 89.21 85.09 82.36 76.82 76.67

Polish PDB (fusional)
spaCy 96.14 86.94 87.41 NA 86.73 82.06 79.00 65.42 NA
Stanza 98.47 94.20 94.42 97.43 93.15 90.84 88.73 81.98 85.75
COMBO 98.24 94.26 94.53 97.47 92.87 90.45 88.07 81.31 85.53
COMBObert 98.97 96.54 96.80 98.06 95.60 93.93 92.34 87.59 89.91

Finnish TDT (agglutinative)
spaCy 92.15 93.34 87.89 NA 80.06 74.75 71.52 61.95 NA
Stanza 97.24 97.96 95.58 95.24 89.57 87.14 85.52 80.52 81.05
COMBO 96.72 98.02 94.04 88.73 89.73 86.70 84.56 77.63 72.42
COMBObert 98.29 99.00 97.30 89.48 94.11 92.52 91.34 87.18 77.84

Korean Kaist (agglutinative)
spaCy 85.21 72.33 NA NA 76.15 68.13 61.98 57.52 NA
Stanza 95.45 86.31 NA 93.02 88.42 86.39 83.97 80.64 77.59
COMBO 94.46 81.66 NA 89.16 87.31 85.12 82.70 78.38 72.79
COMBObert 95.89 85.16 NA 89.95 89.77 87.83 85.96 82.66 75.89

Turkish IMST (agglutinative)
spaCy 87.66 86.18 82.26 NA 60.43 51.32 47.74 37.28 NA
Stanza 95.98 95.18 93.77 96.73 74.14 67.52 64.03 58.13 61.91
COMBO 93.60 92.36 88.88 96.47 72.00 64.48 60.48 49.88 58.75
COMBObert 95.14 94.27 93.56 97.54 78.53 72.03 68.88 60.55 67.13

Basque BDT (agglutinative with fusional verb morphology)
spaCy 91.96 NA 86.67 NA 76.11 70.28 66.96 54.46 NA
Stanza 96.23 NA 93.09 96.52 86.19 82.76 81.30 73.56 78.27
COMBO 94.28 NA 90.44 95.47 84.64 80.44 78.82 67.33 74.95
COMBObert 96.26 NA 93.84 96.38 88.73 85.80 84.93 75.96 81.25

Average scores
spaCy 91.03 85.67 86.97 NA 76.73 70.51 66.60 56.57 NA
Stanza 96.67 93.96 94.66 96.05 87.01 83.61 81.14 75.60 77.63
COMBO 95.66 92.54 93.05 94.04 86.02 82.21 79.49 72.05 73.98
COMBObert 96.88 94.37 95.63 94.75 89.67 86.64 84.66 78.92 79.01

3.3. COMBO Performance

Data COMBO is evaluated on treebanks from the Universal Dependencies repos-
itory [196], preserving the original splits into training, validation, and test sets.
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The treebanks representing distinctive language types are summarised in Table
3.6.1 in Appendix 3.6.2.

By default, pre-trained 300-dimensional fastText embeddings [65] are used. We
also test encoding data with pre-trained contextual word embeddings (the tested
BERT models are listed in Table 3.6.2 in Appendix 3.6.2). The UD datasets provide
gold-standard tokenisation. If BERT intra-tokeniser splits a word into sub-words,
the last layer embeddings are averaged to obtain a single vector representation of
this word.

Qualitative Evaluation Table 3.2.1 shows COMBO results of processing the se-
lected UD treebanks.1 COMBO is compared with Stanza [146] and spaCy.2 The sys-
tems are evaluated with the standard metrics [195] F1, uas (unlabelled attach-
ment score), las (labelled attachment score), mlas (morphology-aware las) and blex
(bi-lexical dependency score).3

COMBO and Stanza undeniably outrun spaCy models. COMBO using non-
contextualised word embeddings is outperformed by Stanza in many language
scenarios. However, COMBO supported with BERT-like word embeddings beats all
other solutions and is currently the SOTA system for morphosyntactic analysis.

Regarding lemmatisation, Stanza has an advantage over COMBO in most tested
languages. This is probably due to the fact that Stanza lemmatiser is enhanced with
a key-value dictionary, whilst COMBO lemmatiser is fully neural. It is not surprising
that a dictionary helps in lemmatisation of isolating languages (English). However,
the dictionary approach is also helpful for agglutinative languages (Finnish, Korean,
Basque) and for Arabic, but not for Polish (fusional languages). Comparing COMBO
models estimated with and without BERT embeddings, we note that BERT boost
only slightly increases the quality of lemma prediction in the tested fusional and
agglutinative languages.

Table 3.3.1. Training time of spaCy, Stanza and COMBO.

Treebank spaCy Stanza COMBO
Tagger Lemmatiser Parser Total fastText BERT

English EWT 00:22:34 02:08:51 02:12:17 02:29:13 06:50:21 01:26:55 1:54:11
Polish PDB 01:07:55 04:36:51 03:19:04 05:08:41 13:04:36 02:39:44 3:31:41

1 Check the prediction quality for other languages at: https://gitlab.clarin-pl.eu/
syntactic-tools/combo/-/blob/master/docs/performance.md.

2 https://spacy.io We use the project template https://github.com/explosion/projects/
tree/v3/pipelines/tagger_parser_ud. The lemmatiser is implemented as a standalone pipeline
component in spaCy v3 and we do not test it.

3 http://universaldependencies.org/conll18/conll18_ud_eval.py (CoNLL 2018 evaluation
script).
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For a complete insight into the prediction quality, we evaluate individual upos
and udeprel predictions in English (the isolating language), Korean (agglutinative)
and Polish (fusional). Result visualisations are in Appendix 3.6.3.

COMBO took part in IWPT 2021 Shared Task on Parsing into Enhanced Univer-
sal Dependencies [28], where it ranked 4th.4 In addition to elas and eulas metrics,
the third evaluation metric was las. COMBO ranked 2nd, achieving the average las
of 87.84%. The score is even higher than the average las of 86.64% in Table 3.2.1,
which is a kind of confirmation that our evaluation is representative, reliable, and
fair.

Downstream Evaluation According to the results in Table 3.2.1, COMBO predicts
high-quality dependency trees and parts of speech. We therefore conduct a prelimi-
nary evaluation of morphosyntactically informed word embeddings in the textual
entailment task (aka natural language inference, NLI) in English [24] and Polish
[189]. We compare the quality of entailment classifiers with two FC layers trained
on max/mean-pooled BERT embeddings and sentence representations estimated
by a network with two transformer layers which is given morphosyntactically in-
formed word embeddings (i.e. BERT-based word embeddings concatenated with upos
embeddings, deprel embeddings, and BERT-based embeddings of the head word).
The morphosyntactically informed English NLI classifier achieves an accuracy of
78.84% and outperforms the max/mean-pooled classifiers by 20.77 pp and 5.44 pp,
respectively. The Polish syntax-aware NLI classifier achieves an accuracy of 91.60%
and outperforms the max/mean-pooled classifiers by 17.2 pp and 7.7 pp, respectively.

Efficiency Evaluation We also compare spaCy, Stanza and COMBO in terms of
their efficiency, i.e. training and prediction speed.5 According to the results (see
Tables 3.3.1 and 3.3.2), spaCy is the SOTA system, and the other two are not even
close to its processing time. Considering COMBO and Stanza, whose prediction
quality is significantly better than spaCy, COMBO is 1.5 times slower (2 times
slower with BERT) than Stanza in predicting, but it is definitely faster in training.
The reason for large discrepancies in training times is the different architecture of
these two systems. Stanza is a pipeline-based system, i.e. its modules are trained
one after the other. COMBO is an end-to-end system, i.e. its modules are jointly
trained and the training process is therefore faster.

4 https://universaldependencies.org/iwpt21/results.html
5 A single NVIDIA V100 card is used in all tests.
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Table 3.3.2. Prediction time of Stanza and COMBO relative to spaCy (1×) on English and
Polish test data.

Treebank Stanza COMBO COMBObert
English EWT 4.7× 6.8× 10.8×
Polish PDB 4.1× 5.8× 10.6×

3.4. Getting Started with COMBO

Prediction COMBO provides two main prediction modes: a Python library and
a command-line interface (CLI). The Python package mode supports automated
model download. The code snippet demonstrates downloading a pre-trained Polish
model and processing a sentence:

from combo.predict import COMBO

nlp = COMBO.from_pretrained("polish")
sentence = nlp("Ala ma kota.")
print(sentence.tokens)

To download a model for another language, select its name from the list of pre-trained
models.6 The Python mode also supports acquisition of deprel or upos embeddings,
for example:

sentence = nlp("Ala ma kota.")
chosen_token = sentence.tokens[1]
print(chosen_token.embeddings["upostag"])

In CLI mode, COMBO processes sentences using either a downloaded model or
a model trained by yourself. CLI works on raw texts and on the CoNLL-U files (i.e.
with tokenised sentences and even morphologically annotated tokens):

combo --mode predict \
--model_path model.tar.gz \
--input_file input.conllu \
--output_file output.conllu

6 The list of the pretrained COMBO models: https://gitlab.clarin-pl.eu/syntactic-tools/
combo/-/blob/master/docs/models.md#pre-trained-models
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Model Training COMBO CLI allows to train new models for any language. The only
requirement is a training dataset in the CoNLL-U/CoNLL-X format. In the default
setup, tokenised sentences are input and all possible predictors are trained:

combo --mode train \
--training_data training.conllu \
--validation_data valid.conllu

If we only train a dependency parser, the default setup should be changed with
configuration flags: --features with a list of input features and --targets with
a list of prediction targets.

3.5. Conclusion

We have presented COMBO, the SOTA system for morphosyntacic analysis, i.e.
part-of-speech tagging, morphological analysis, lemmatisation, and (enhanced) de-
pendency parsing. COMBO is a language-agnostic and format-independent system
(i.e. it supports the CoNLL-U and CoNLL-X formats). Its implementation as a
Python package allows effortless installation, and incorporation into any Python
code or usage in the CLI mode. In the Python mode, COMBO supports automated
download of pre-trained models for multiple languages and outputs not only cat-
egorical morphosyntactic features, but also their embeddings. In the CLI mode,
pre-trained models can be manually downloaded or trained from scratch. The system
training is fully configurable in respect of the range of input features and output
predictions, and the method of encoding input data.
Last but not least, COMBO maintains a balance between efficiency and quality.
Admittedly, it is not as fast as spaCy, but it is much more efficient than Stanza
considering the training time. Tested on the selected UD treebanks, COMBO
morphosyntactic models enhanced with BERT embeddings outperform spaCy and
Stanza models.

3.6. Appendix

3.6.1. COMBO Implementation

COMBO is a Python package that uses the PyTorch [128] and AllenNLP [61]
libraries. The COMBO models used in the evaluation presented in Section 3.3 are
trained with the empirically set default parameters specified below. The training
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parameters can be easily configured and adjusted to the specifics of an individual
model.

Network Hyperparameters

Embeddings An internal character-based word embedding is calculated with three
convolutional layers with 512, 256 and 64 filters with dilation rates equal to 1, 2
and 4. All filters have the kernel size of 3. The internal word embedding has a size
of 64 dimensions. All external word embeddings are reduced to 100-dimensional
vectors by a single FC layer. As only words are used as input features in the system
evaluation, the local feature embedding is a concatenation of the 64-dimensional
internal and 100-dimensional external word embedding. The global feature vectors
are computed by two biLSTM layers with 512 hidden units.

Prediction modules The tagger uses a FC network with a hidden layer of the size
64 to predict upos and FC networks with 128-dimensional hidden layers to predict
xpos and ufeats.
The lemmatiser uses three convolutional layers with 256 filters and dilation rates
equal to 1, 2 and 4. All filters have the kernel size of 3. The fourth convolutional layer
with the number of filters equal to the number of character instances in training
data is used to predict the probability of each character. The final layer filters
have the kernel size of 1. The 256-dimensional embeddings of input characters are
concatenated with the global feature vectors reduced to 32 dimensions with a single
FC layer.
The arc prediction module uses 512-dimensional head, and dependent embeddings
and the labelling module uses 128-dimensional vectors.

COMBO-vectoriser currently outputs 64-dimensional upos and 128-dimensional
deprel embeddings.

Activation function FC and CNN layers use hyperbolic tangent and rectified
linear unit [119] activation functions, respectively.

Regularisation

Dropout technique for Variational RNNs [60] with 0.33 rate is applied to the local
feature embeddings and on top of the stacked biLSTM estimating global feature
embeddings. The same dropout, for output and recurrent values, is used in the
context of each biLSTM layer. The FC layers use the standard dropout [164] with
0.25 rate. Moreover, the biLSTM and convolutional layers use L2 regularisation with
the rate of 1×10−6, and the trainable embeddings use L2 with the rate of 1×10−5.
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Training

The cross-entropy loss is used for all parts of the system. The final loss is
the weighted sum of losses with the following weights for each task:

• 0.05 for predicting upos and lemma,
• 0.2 for predicting ufeats and (enh)head,
• 0.8 for predicting (enh)deprel.

The whole system is optimised with Adam [89] with the learning rate of 0.002 and
β1 =β2 = 0.9. The model is trained for a maximum of 400 epochs, and the learning
rate is reduced twice by the factor of two when the validation score reaches a plateau.

3.6.2. External Data Summary

Tables 3.6.1 and 3.6.2 list the UD dependency treebanks and BERT models used
in the evaluation experiments presented in Section 3.3.

Table 3.6.1. The UD treebanks used in the evaluation experiments.

Language Language Type UD Treebank #Words #Trees Reference
English isolating English-EWT 254,856 16,622 [163]
Arabic fusional Arabic-PADT 282,384 7,664 [72]
Polish fusional Polish-PDB 350,036 22,152 [188]
Finnish agglutinative Finnish-TDT 202,453 15,136 [75]
Korean agglutinative Korean-Kaist 350,090 27,363 [40]
Turkish agglutinative Turkish-IMST 57,859 5,635 [169]
Basque agglutinative (fusional Basque-BDT 121,443 8,993 [11]

verb morphology)

Table 3.6.2. The BERT models used in the evaluation experiments.

Language BERT model Reference
Arabic bert-base-arabertv2 [10]
Basque berteus-base-cased [2]
English bert-base-cased [48]
Finnish bert-base-finnish-cased-v1 [180]
Korean bert-kor-base [87]
Polish herbert-base-cased [117]
Turkish bert-base-turkish-cased [161]

3.6.3. Evaluation of upos and udeprel

The comparison of the universal parts of speech predicted by the tested systems
in English, Korean and Polish data is shown in the charts in Figures 3.6.1, 3.6.2
and 3.6.3, respectively. The comparison of the quality of the predicted universal
dependency types in English, Korean and Polish data is presented in Figures 3.6.4,
3.6.5 and 3.6.6, respectively.
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Figure 3.6.1. Evaluation of predicted universal parts of speech (upos) in the English test
set (F-1-scores).
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Figure 3.6.2. Evaluation of predicted universal parts of speech (upos) in the Korean test
set (F-1-scores).
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Figure 3.6.3. Evaluation of predicted universal parts of speech (upos) in the Polish test set
(F-1-scores).
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Figure 3.6.4. Evaluation of predicted grammatical functions (udeprel) in the English test
set (F-1-scores).
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Figure 3.6.5. Evaluation of predicted grammatical functions (udeprel) in the Korean test
set (F-1-scores).
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Figure 3.6.6. Evaluation of predicted grammatical functions (udeprel) in the Polish test
set (F-1-scores).
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Abstract

The Adapter framework introduces lightweight modules that reduce the com-
plexity of Multi-Domain Machine Translation systems. Compared to fine-tuned
models, Adapters train faster, do not overfit, have smaller memory requirements,
and maintain the base model intact. However, just like fine-tuned models, they need
prior information about the domain of the sentence. Otherwise, their performance
decreases for out-of-domain and unknown-domain samples. In this work, we propose
a solution that does not require the information and can decide on the sample’s
origin on-the-fly without compromising quality or latency. We introduce a built-in
gating mechanism utilising a knowledge distillation framework to activate a subset
of softly-gated, domain-specific Adapters that are relevant to the sentence. The
effectiveness of the proposed solution is demonstrated through our experiments on
two language pairs, using both in-domain and out-of-domain datasets. Our analysis
reveals that Gated Adapters provide significant benefits, particularly in the case of
ambiguous, misclassified samples, resulting in an improvement of over +5 COMET
points.

4.1. Introduction

Neural Machine Translation (NMT) emerged as a go-to solution for Machine
Translation, providing state-of-the-art results, especially in high-resource scenarios
[14, 179, 142]. NMT models are usually trained using large, general-purpose parallel
corpora. Therefore, to limit one of the known shortcomings of NMT – out-of-domain
translation [98], there is a need to perform domain adaptation and improve the
quality in the unknown domain, which might not be well represented in the parallel
corpora.

Multi-Domain Machine Translation (MDMT) is a technique aimed at addressing
the shortcomings of a general-purpose NMT model in translating text that falls
outside its scope from various domains. According to Koehn and Knowles [98], a
domain is characterized by a corpus from a particular source and may differ in
terms of topic, genre, style, level of formality, among other things. This complexity
underscores the challenge of MDMT. While fine-tuning one model for each domain
is a straightforward approach that has been proven to be effective [59], it becomes
challenging to implement in real-world scenarios where the number of domains and
language pairs is substantial.

Recently, the Adapter framework [83] has been introduced as an alternative to
regular fine-tuning. Adapters are lightweight modules injected into a pre-trained
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model and fine-tuned to a specific task. This method requires training only newly in-
troduced parameters, keeping the base model frozen. In a multi-domain setting, one
Adapter per domain must be trained. However, unlike fine-tuned models, Adapters
can be deployed together when they share the same base model. On the downside,
the domain of each sentence must be known at inference time to activate the right
Adapter. When the origin of the sentence is unknown or out-of-domain (we refer
to both cases as an unannotated domain), a classifier is typically used to predict a
likely domain [95]. This solution has two drawbacks: (i) it comes with a latency cost,
as a pipeline approach increases the overall complexity, and (ii) it requires extra
computation resources (i.e. additional GPU unit) to perform on-the-fly classification.

In this work, we propose a built-in gating mechanism, named Gated Adapters
(GAD), to handle unannotated domains without compromising quality or latency.
Gated Adapters extend the Adapter framework with the gates learnt via knowledge
distillation [79]. The gates perform a fusion between sample-relevant Adapter
modules. In contrast to the Adapters, GAD performs a soft-gating, i.e. multiple
Adapters might be triggered, rather than a hard-gating when only one Adapter is
used. Soft-gating in Adapter modules allows them to share relevant, cross-domain
knowledge with each other (i.e. enhancing positive transfer learning). This is unlike
the standard Adapters, which isolate a medical Adapter from a law one, for example.
Additionally, the proposed method does not require an external classifier during
inference and performs the domain prediction on-the-fly.

We evaluate the Gated Adapters on in- and out-of-domain translation, showing
that the performance is on-par or better than the previous work. Moreover, our
analysis reveals that in the case of ambiguous, misclassified examples (i.e. samples
where the external classifier would assign an incorrect label), GAD outperforms other
MDMT systems. To summarise, our contributions are as follows:

• We propose Gated Adapters as an extension to Adapters in the MDMT setting
that does not require an external classifier at inference when the origin of the
sentence to translate is unknown.

• We present an extensive evaluation of two language pairs: English to Polish
and English to Greek, with six domains per pair.

4.2. Method

4.2.1. Adapters

Adapters [83] are lightweight modules injected into a pre-trained model and
trained on new data while keeping the pre-trained model frozen. This means that
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Adapters train only a fraction of the parameters of the initial model. Furthermore,
because Adapters do not alter the base model, unlike conventional fine-tuning, there
is no need to maintain a separate model for each task (e.g. domain).

In the standard NMT setup [19], an Adapter (AD) processes a transformer hidden
state x at a layer i and consists of a residual connection [77], a layer norm LN [13]
and two linear layers: down-project D and up-project U, creating a bottleneck with
an activation function ReLU [119].

ADi(xi)=U(ReLU(D(LN(xi))))+ xi (4.1)

4.2.2. Gated Adapters

This work extends the Adapter framework by introducing a gating mechanism
that allows the system to handle sentences from any domain and decide on its
domain on the fly. The module provides probability-based soft gating that, given
a set of domain-specific Adapters, multiplies each Adapter’s output by a factor
proportional to the probability of the sentence belonging to the Adapter’s domain.
This approach follows the mixture-of-experts (MoE) technique [162]; however, in
contrast to regular MoEs, the experts in our proposed model have a pre-defined role
– they are domain-specific modules.

In the following subsections, we describe (i) the gating mechanism and (ii) the
knowledge distillation framework used to train the gates. The overview of our method
is presented in Figures 4.2.1 and 4.2.2.

Gating mechanism

The gating mechanism is injected at each transformer layer i and acts as a
weighted average over the output of each Adapter at that layer:

xout =
D∑
d

gnormd ADd(xin) (4.2)

where xin ∈ Rhidden_dim is the Adapter’s input, and gnorm is computed as:

gnorm = norm(Wg ×agg(xinT )) (4.3)

Here Wg ∈ R|D|×hidden_dim is a matrix of learnable weights, norm is a general normali-
sation function, and agg is a general aggregation function over all the time steps
T xinT = x1:T for the encoder layers, and over all the steps up to the current one
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Figure 4.2.1. The schema illustrates a single Gated Adapter module, where the Adapter’s
output is multiplied by the probability value provided by the external gating module (gd).
This probability value indicates the degree to which a sentence belongs to the domain
represented by the Adapter.

Source: "Law act related to the usage of artificial intelligence..."
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Translation: "Ustawa prawna dotycząca wykorzystania sztucznej inteligencji..."
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Figure 4.2.2. Overview of Gated Adapters. Given a sentence, the gating module predicts
the probability of the sentence belonging to each domain. The probabilities behave as a
weighting factor for the corresponding domain-specific Adapters. In the example sentence,
the gates lean towards law and IT Adapters and discard the medical one, as the text concerns
an AI-related law act.
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xinT = x1:t for the decoder layers (xinT ∈ Rhidden_dim×|T|). In this work, we set norm to a
softmax with a temperature parameter β and agg to a standard average operation.

Knowledge distillation

A standard NMT model is trained using a cross-entropy loss (LCE) with label
smoothing [171]. We extend this setup and apply the knowledge distillation frame-
work [79] to learn the values of the gates. Given a source sentence s, we estimate a
probability distribution over domains conditioned on the sentence. As the actual
distribution is unknown, we provide it as an estimation from an external classifier
(Pclf = Pθ(d|s), implementation details in Section 4.3.2). The additional objective,
Kullback–Leibler divergence (LKL), teaches the gates to mimic the teacher model.

We train the model jointly, in the same manner as Adapters, freezing everything
but the parameters of Adapters and gates. The hyperparameter α weights the impact
of the additional loss function, and τ is a softmax temperature used to estimate
the probabilities Pg (obtained as a softmax function over the gates values g from
Equation 4.3).

LKL = τ2DKL(Pclfτ ||Pgτ) (4.4)

L=LCE +αLKL (4.5)

4.3. Experiments

4.3.1. Data

Our experimental setup involves two language pairs: English to Polish and
English to Greek. We initiated the experiments by training a general-purpose
machine translation model using ParaCrawl [18] as a baseline (BASE). To ensure the
effectiveness of our approach, we selected a diverse set of domains from OPUS [175],
including medical, legal, and IT domains, which vary significantly in terms of style,
level of formality, and domain-specific terminology. By incorporating these domains,
we aimed to demonstrate the robustness of our approach in handling various domain
adaptation scenarios. The chosen six domains are listed below:

• LAW: legal documents from JRC Acquis
• IT: combination of KDE4 (only EN→PL), PHP, GNOME and Ubuntu localisation

files
• SUB: a subset of OpenSubtitles 20181

1 http://www.opensubtitles.org
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Table 4.3.1. Statistics of the training corpora as the number of parallel sentences. The
table does not include 2000 parallel sentences per domain for validation and test purposes.

English→Polish English→Greek
BASE 33M 20,1M
LAW 838k 1244k
IT 96k 89k
SUB 1854k 1780k
TALK 206k 257k
MED 229k 257k
REL 108k 59k
SUM 3331k 3686k

• TALK: TED Talks transcripts [154]
• MED: medical documents from European Medicines Agency (EMEA)
• REL: Bible (EN→EL) [36] and Koran (EN→PL)

The statistics of the training data after pre-processing (including punctuation normal-
isation, ratio, language [109], length and dictionary-based filtering) are presented
in Table 4.3.1. We held 2000 examples per domain for evaluation purposes (1000 for
validation and 1000 as a test set).

Our analysis of the data involved utilising an SVM classifier2 with averaged
BERT [48] embeddings as features to measure the A-Proxy [22] distance between
the domains. The A-Proxy distance is a measure that falls within the range of 0 to
2, where 0 indicates a perfect domain match and 2 represents complete separability.
As shown in Figure 4.3.1, the domains were correctly separated, with SUB and TALK

demonstrating the closest relationship and LAW exhibiting the greatest distance from
the others.

4.3.2. Systems

We employed the Transformer Base [179] architecture implemented in fairseq3

[123] for all our models. It consists of six encoder and six decoder layers, with an
embedding dimension of 512, an FFN of 2048, and eight attention heads. The source
and target embeddings are shared and tied with the output layer. We tokenised the
data using a unigram SentencePiece model [99, 100] with a size of 32k. Table 4.3.2
presents the parameters of all the systems described in the following sections.

2 As implemented in scikit-learn [129]
3 fairseq architecture: transformer_wmt_en_de
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LAW 1.91 1.97 1.94 1.87 1.99

IT 1.91 1.91 1.85 1.96

SUB 1.19 1.96 1.83

TALK 1.94 1.82

MED

IT SUB TALK MED

1.98
REL

Figure 4.3.1. The A-Proxy distance between the domains.

Table 4.3.2. The rounded number of overall and trainable parameters of the evaluated
models. In square brackets, we denoted the relative difference to the BASE model.

Model Parameters Trainable
BASE 79M 79M
FT 6×79M [+5×79M] 6×79M
MIX 79M 79M
TAG 79M [+3k] 79M
AD 98M [+19M] 19M
GAD 98M [+19M] 19M
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Baselines

The experiments begin with training a general-purpose model, labelled as BASE,
using large-scale data from ParaCrawl (refer to Table 1). This model is evaluated
on all domains to establish a lower bound for all MDMT systems and is used as
a pre-trained Machine Translation model (i.e. MDMT systems build upon the
model rather than starting from scratch). Additionally, we employ this model for
fine-tuning (FT) to create a set of domain-specific models, each for a different domain.
This strategy is an upper bound for MDMT systems; however, it has limitations
when scaling the solution across various language pairs and domains as it produces
a separate model per domain. The training details of these and the following models
are described in the Appendix.

We employ two MDMT, non-adapter baselines: (i) MIX, which is straightforward
training the model on a concatenation of domain corpora, (ii) TAG, which adds a
domain-control mechanism in the form of domain-specific tag included into each
source sentence and enables the model to differentiate between the domains [95, 165].
Both methods use BASE as a starting checkpoint.

Adapter-based systems

To assess the effectiveness of the Adapter-based systems, we examine the stan-
dard Adapters (AD) and compare their performance with the newly proposed Gated
Adapters (GAD). Compared to other MDMT systems, Adapter-based systems train a
fraction of parameters (refer to Table 4.3.2) as these methods freeze the NMT model
and train only the Adapter modules. For AD and GAD, we rely on MIX as a starting
checkpoint [138] and use Adapter modules with a bottleneck of 2 (i.e. reducing the
dimensionality via the down-project layer D by 2). The rest of the training procedure
is consistent with the other MDMT systems.

Gated Adapters use RoBERTa4 [108] as a base model for an external classifier
required for knowledge distillation (see Eq. 4.4). We train two classifiers, one per
language pair, using the English side of the parallel corpora as the datasets are not
equivalent, e.g. EN→EL uses Bible and EN→PL Koran. To prevent data leakage,
only the training parallel corpora are used to train and validate the models. The
evaluation of the classifiers is presented in Table 4.3.3. The classifiers serve not only
as a teacher model for GAD (i.e. required only during training) but also as a means of
predicting the domain for the TAG and AD baselines during inference. In the results
section, we denote the systems that rely on the classifier during inference with an
index CLF. Those baselines are constructed as a pipeline solution, i.e. first, the

4 roberta-large [187]
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Table 4.3.3. Quality of the RoBERTa-based classifiers in terms micro-averaged F1 score.

Model F1
EN → PL 95.65
EN → EL 94.83

classifier predicts a domain, and then the MDMT model translates a sentence. For
clarity, we present the ORACLE version as an upper bound of those systems, which
always utilises the ground truth domain.

Furthermore, we up-sampled all the domains to the one with the highest sentence
count. This step prevents high-resource domains from overshadowing other domains’
weights. Otherwise, we noticed in preliminary experiments that a high-resource
domain could harm a similar (in terms of domain closeness) lower-resource domain
(i.e. TALK in SUB–TALK pair).

4.3.3. Metrics

Following the study and recommendation of Kocmi et al. (2021) [96], we use
COMET5 [153] as main evaluation metric. In addition, we provide chrF [143] and
BLEU [125] scores using SacreBLEU6,7 [144]. Due to computational and time con-
straints, we compute three independent runs exclusively for Adapter-based systems
(AD and GAD) and report an average score with standard deviation for them.

4.3.4. Results

Table 4.3.4 presents the evaluation results. We report both per-domain scores
and aggregated metrics - unweighted and weighted averages AVG, wAVG. The AVG

metric should be treated as the primary metric determining the quality of an MDMT
system in the case of balanced test distribution; the wAVG in the case of the test
distribution matching the training one. The weights for the latter metric are derived
from the ratio of domain-specific data based on the number of sentences (see Table
4.3.1).

Gated Adapters perform the best out of all MDMT systems based on aggregated
metrics in both language pairs. Overall, Gated Adapters are on-par or better than
not only methods that require a classifier but also their oracle version (e.g. Adapters
with ground truth domain tag) while simultaneously providing the possibility of

5 We use wmt20-comet-da COMET model and multiply results by 100
6 chrF2|#:1|c:mixed|e:yes|nc:6|nw:0|s:no|v:2.2.0
7 BLEU|#:1|c:mixed|e:no|tok:13a|s:exp|v:2.2.0
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Table 4.3.4. Translation performance measured using COMET. For each system, we
aggregate scores using an unweighted and weighted average, where the weights come from
the ratio of domain-specific training data based on the number of sentences. We report
average scores over three runs with a standard deviation for AD and GAD.

LAW IT SUB TALK MED REL AVG wAVG

English – Polish
BASE 84.58 39.18 30.74 46.24 54.79 11.21 44.46 46.50
FT 97.30 66.73 48.93 53.26 86.29 105.36 76.31 66.28
TAGORACLE 95.76 61.20 47.22 53.03 82.78 89.12 71.52 64.00
ADORACLE 96.11±0.27 63.47±1.90 46.98±0.53 53.36±0.80 83.26±0.38 98.83±1.25 73.67±0.36 64.38±0.31

MIX 95.79 61.93 47.50 52.42 82.56 86.88 71.18 64.05
TAGCLF 95.73 61.30 45.90 52.41 82.12 88.86 71.05 63.16
ADCLF 95.81±0.21 63.37±1.73 46.31±0.36 52.81±0.66 82.71±0.40 98.04±1.21 73.17±0.31 63.84±0.23

GAD 95.47±0.13 64.78±0.87 46.97±0.35 53.57±0.22 83.55±0.67 103.67±0.23 74.67±0.30 64.44±0.18

English – Greek
BASE 80.74 24.31 38.53 66.89 35.38 10.67 42.75 53.74
FT 87.55 73.09 53.28 77.02 74.68 78.31 73.99 68.87
TAGORACLE 88.34 62.70 51.30 75.19 72.36 46.03 65.99 67.13
ADORACLE 88.07±0.10 68.75±2.65 51.91±0.47 75.71±0.54 74.21±0.61 51.23±0.46 68.31±0.51 67.72±0.31

MIX 87.79 66.51 51.51 73.74 73.30 45.64 66.42 67.09
TAGCLF 88.19 61.97 50.05 73.58 72.08 45.85 65.29 66.32
ADCLF 88.04±0.08 68.60±2.54 50.91±0.41 73.97±0.26 73.79±0.62 50.91±0.41 67.70±0.45 67.07±0.26

GAD 87.69±0.10 69.34±0.35 52.29±0.25 74.67±0.59 73.83±0.29 70.23±1.22 71.34±0.40 68.00±0.14

handling unannotated domains. Especially in the case of the AVG metric, the
GAD outperforms ADCLF with +1.5 and +3.5 COMET point gain in English to Polish
and English to Greek language pairs correspondingly. We report other automatic
evaluation metrics: chrF and BLEU, in the Appendix.

4.4. Method analysis

This section dissects the Gated Adapters to examine the method’s advantages
and explain its performance beyond the main, in-domain results. We analyse the
cross-domain and out-of-domain capabilities in Sections 4.1 and 4.3, measure the
efficiency in Section 4.2 and perform an ablation study in 4.4.

4.4.1. Knowledge sharing

The preliminary analysis revealed that the SUB and TALK domains are the most
related in terms of A-Proxy distance. This observation is consistent with the achieved
results. In Table 4.3.4, the CLF versions of TAG and AD models have the most decrease
in quality compared to the ORACLE counterpart in these two domains. Additionally,
the confusion matrix of the classifier presented in Figure 4.4.1 demonstrates that
those two domains were the most difficult to distinguish in the EN→PL dataset.
While the other domains are classified with high accuracy, rarely making any mis-
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Table 4.4.1. Translation evaluation of the misclassified sentences from the test dataset
using COMET. Gated Adapters outperform both methods that require a classifier at inference
whenever the classifier fails to predict a correct domain label.

EN→PL EN→EL
TAGCLF 31.98 45.46
ADCLF 42.59 55.33
GAD 48.33 64.01

LAW 982 4 0 5 7 0

IT 7 985 2 1 5 0

SUB 1 3 906 93 1 8

TALK 3 2 78 893 1 5

MED 7 6 5 2 986 0

REL 0
LAW

0
IT

9
SUB

6
TALK

0
MED

987
REL

Pr
ed
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te

d
cl

as
s

True class
Figure 4.4.1. Confusion matrix for the classifier in the EN→PL language pair. Albeit its
overall high quality, the model makes almost exclusively mistakes between the SUB–TALK
domain pair.

takes, the pair of SUB and TALK is the most troublesome to both classifiers (the same
phenomenon appears in EN→EL, see Appendix).

The GAD model can handle ambiguous, cross-domain examples (i.e. examples for
which two or more domains are probable according to the classifier) because it has
learnt a soft gating mechanism that allows knowledge sharing among outputs of
different Adapters (see Equation 4.2). Considering just misclassified (i.e. with a
predicted non-ground truth domain label) examples from the test dataset, the GAD

outperforms its counterpart in both language pairs by over 5 and 8 COMET points.
Table 4.4.1 presents the results of the evaluation. The quality of the methods that
require a classifier during inference (TAG, AD) drops significantly compared to GAD.
While the Gated Adapters use the same classifier during training (the classifier
makes the same mistakes), GAD is aware of the uncertainty (i.e. soft-gating instead
of hard-gating) and learns to handle such cases during knowledge distillation. Table
4.4.2 presents the translation examples with the impact of misclassification, showing
that a wrong domain label may lead to a meaningless translation in extreme cases.
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Table 4.4.2. Misclassified examples from the EN→PL test dataset. AD generates
higher-quality translation when we manually provide the right domain during inference
(i.e. by changing from CLF to ORACLE). At the same time, GAD does not rely on an external
classifier and therefore does not suffer from the aforementioned issue. Misclassification
can lead to meaningless translation, as in the second example, where the model produces a
relevant translation only after providing the correct label, i.e. changing from TALK to REL
(“trunk” given the context is incorrectly translated to “bagażnik” instead of “pień”).

Source These events are often transitory.
Reference Zaburzenia te są często przemijające.
ADCLF=TALK Zdarzenia te są często przejściowe.
ADORACLE=MED Zdarzenia te są często przemijające.
GAD Zdarzenia te są często przemijające.
Source The birth pangs brought her to the trunk of a date palm.
Reference I doprowadziły ją bóle porodowe do pnia drzewa palmowego.
ADCLF=TALK Pangi narodzin przywiozły ją do bagażnika palmy randkowej.
ADORACLE=REL I przyniosły ją bóle porodowe do pnia drzewa palmowego.
GAD I doprowadziły ją bóle porodowe do pnia palmy daktylowej.

4.4.2. Efficiency

In order to evaluate the efficiency of our proposed model, we conducted experi-
ments to compare inference time. We calculated the number of generated tokens and
translation duration per domain and aggregated the values to report the number of
processed sentences and tokens per second. We performed the inference per domain
because each domain differs in its characteristics, such as average sentence length.
All experiments were run on a single NVIDIA V100 GPU, with a batch size of 64

and with greedy decoding.
Our method introduces two additional drawbacks that affect efficiency: (i) the

gating module and (ii) the requirement of using all the Adapters to perform the
aggregation. To limit the impact of the latter drawback, we implemented a parallel
approach instead of a sequential one. In the sequential approach, domain-specific
Adapters are processed one at a time, whereas in the parallel approach, all steps are
processed simultaneously, except for layer norms, via multi-channel linear layers
(i.e. the down-project D and up-project U layer with the non-linear function ReLU)
instead of iterating over domains.

We present the comparison between the Adapters + classifier (ADCLF) pipeline ver-
sus Gated Adapters in Table 4.4.3. For reference, we also include the raw Adapters,
which assume a scenario where the right domain is known. The Gated Adapters
outperform the pipeline scenario of Adapters preceded by a classifier. While GAD

adds an overhead over the Adapters setup, it does not require an additional classifier.
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Table 4.4.3. Efficiency comparison in terms of processed sentences per second and tokens
per second between the classifier and Adapters pipeline (ADCLF) and Gated Adapters (GAD).
For reference, we include the standalone Adapters (ADORACLE) values, that assumes prior
domain knowledge for each sentence.

sentences/s tokens/s
ADORACLE 88.11 2091.77
ADCLF 51.64 1225.90
GAD 58.65 1392.12

The Gated Adapters can use just one device (i.e., GPU) at a time, whereas the
pipeline requires two devices to avoid the overhead of checkpoint loading for online
translation. Additionally, compared to the Adapters without a classifier, GAD does
not need information about the origin of a sample.

4.4.3. Out-of-domain evaluation

In Sections 4.3.4 and 4.4.1, we demonstrated the in-domain and cross-domain
capabilities of the Gated Adapters. However, as the gates are merely a distilled
version of an external classifier, the out-of-domain capabilities remain in question.
Therefore, we performed an additional, out-of-domain evaluation to verify the gat-
ing mechanism’s robustness. This step checks whether the GAD’s quality does not
decrease for out-of-domain samples and persists quality of the classifier as in ADCLF.
Both MDMT systems attempt to use an external classifier (RoBERTa in ADCLF) or an
internal one (gates in GAD) to map out-of-domain samples into one of the pre-defined
domains.

We evaluate the models on two out-of-domain datasets: Flores-200 devtest [44]
and WMT’20 News test [20] dataset (the latter available only for EN→PL). We
report the results in Table 4.4.4. Although the gates match around 0.03% size of the
classifier in terms of the number of parameters (the gates introduce less than 40k
new parameters), they retain similar performance and generalizability. On both
datasets, GAD presents on-par results with ADCLF while using a distilled version of
the classifier embedded into the model and making domain prediction on-the-fly,
verifying the gating mechanism’s robustness.

4.4.4. Knowledge distillation ablation

We conducted an ablation study to examine the effect of treating gates as a regular
classifier and using cross-entropy loss instead of knowledge distillation, which is in
line with the method used in previous works by Britz et al. (2017) [29] and Pham et

60



Table 4.4.4. COMET scores for an out-of-domain evaluation on the Flores-200 devtest and
News WMT’20 test dataset. We report average of three runs with the standard deviation.

EN → PL EN → EL
Flores

ADCLF 57.61±0.24 67.00±0.46

GAD 57.63±0.24 66.90±0.32

News
ADCLF 46.44±0.71 –
GAD 46.65±0.46 –

Table 4.4.5. Ablation on the EN→PL validation dataset comparing training the gates as a
classifier (CE) against the knowledge distillation (KD) framework. We report AVG and wAVG for
COMET score

AVG wAVG

CE 72.02 61.51
KD 73.62 62.73

al. (2020) [137]. The validation dataset was used to present the ablation results in
Table 4.4.5. The outcomes demonstrate the advantages of the proposed approach,
as it enables Gated Adapters to match and even surpass the quality of Adapters.

4.5. Related work

The mixture-of-experts models are gaining more traction in the Machine Trans-
lation field [162]. Recently, Dua et al. (2022) [51] propose a temperature heating
mechanism and dense pre-training for easing the convergence of MoE MT models.
The NLLB Team [44] presented a multilingual MoE model on a larger scale, breaking
the 200 languages barrier.

Adapters, as a specific version of a MoE, were lately also used for the task of
domain adaptation. The work of Vu et al. (2022) [181] focuses on the domain
generalisation task via Adapter leave one-out strategy. In the similar, regularisation
focused way, (and additionally improving overall complexity), Rücklé et al. (2021)
[155] proposed AdapterDrop technique to drop out Adapter layers, similarly to
removing Transformer layers [57]. The presented works can be applied to any
Adapter-based MDMT system and could be applied with the GAD model.

Pfeiffer et al. (2021) [132] introduce the AdapterFusion technique, which, as
our work, shares the knowledge between multiple Adapter modules. However, their
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method requires additional, separate training as they extend the regular Adapter
setup with a fusion layer on top of the multiple Adapters and train the new parame-
ters with the base model and Adapter modules frozen. Moreover, they focus on the
multi-task setup rather than the multi-domain one. Pham et al. (2020) [137] propose
to extend a highway version of residual Adapters with domain classifiers on top of
an encoder and decoder and decide on a domain on a word-per-word basis. They
evaluate the solution in the MDMT setting. As in the work of Pfeiffer et al. (2021)
[132], they use an additional training procedure that requires separate training of
the classifiers.

4.6. Conclusions

In this work, we present an extension to the Adapters framework in the MDMT set-
ting called Gated Adapters, which perform soft-gating over multiple domain-specific
Adapters. We evaluate the validity of the proposed solution on two language pairs
and across six domains.

We show that GAD not only improves upon regular Adapters but also demonstrates
resistance to domain misclassification and provides high-quality translation, even
when the sentences are ambiguous in terms of their domain. Moreover, the proposed
solution does not require an external classifier at the inference time, making the use
more efficient – it requires less computational resources than a pipeline solution of
a classifier with an MDMT model (e.g. Adapters AD).

4.7. Limitations

The main limitation of our technique is the data requirements. We test our
method on high-resource language pairs and domains that fall within the mid-to-high
resource range. There is not enough evidence that the technique would work for
(extremely) low-resource domains, considering the up-sampling required by Gated
Adapters. Future work could investigate if this is a shortcoming of the proposed
method. Furthermore, we rely on a classifier that is built upon a pre-trained language
model [108], which may not be sufficiently robust to attain the desired level of
accuracy in low-resource languages or may not be accessible at all.
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Table 4.8.1. Translation performance measured using chrF. For each system, we aggregate
scores using an unweighted and weighted average, where the weights come from the ratio of
domain-specific training data based on the number of sentences. We report average scores
over three runs with a standard deviation for AD and GAD.

LAW IT SUB TALK MED REL AVG wAVG

English – Polish
BASE 63.25 52.07 44.20 48.24 52.27 36.64 49.44 49.78
FT 71.03 61.42 48.42 48.33 72.44 90.79 65.41 57.51
TAGORACLE 69.93 58.66 48.16 48.57 66.40 80.51 62.04 56.27
ADORACLE 70.31±0.06 59.08±0.71 47.97±0.23 48.40±0.14 67.21±0.32 86.52±0.64 63.25±0.14 56.51±0.14

MIX 70.18 58.69 47.91 48.20 67.13 80.02 62.02 56.20
TAGCLF 69.92 58.65 47.91 48.44 66.33 80.39 61.94 56.11
ADCLF 70.30±0.06 59.06±0.69 47.83±0.13 48.27±0.19 67.17±0.29 86.24±0.62 63.14±0.12 56.41±0.08

GAD 70.16±0.08 60.59±0.11 47.78±0.34 48.46±0.06 67.73±0.23 89.71±0.08 64.07±0.05 56.55±0.18

English – Greek
BASE 60.20 54.60 46.00 58.65 55.66 42.90 53.00 52.50
FT 63.02 72.42 50.19 61.26 75.01 85.33 67.87 58.12
TAGORACLE 63.37 68.30 50.24 60.75 69.87 68.43 63.49 57.50
ADORACLE 63.15±0.05 69.51±1.18 50.26±0.22 60.93±0.25 71.20±0.36 71.24±0.28 64.38±0.21 57.62±0.12

MIX 63.16 67.84 50.16 60.27 70.27 68.09 63.30 57.37
TAGCLF 63.30 68.11 49.64 60.41 69.81 68.33 63.27 57.16
ADCLF 63.09±0.04 69.39±1.09 49.43±0.17 60.59±0.20 71.17±0.36 71.14±0.29 64.13±0.21 57.17±0.11

GAD 63.05±0.12 71.10±0.14 49.56±0.08 60.73±0.20 71.03±0.16 81.45±0.63 66.15±0.16 57.43±0.04

4.8. Appendix

4.8.1. Experiment Details

In this section, we describe the hyperparameters used during training. We use
Adam optimiser [89] with betas set to 0.9 and 0.98 and a learning rate of 0.0005.
The training has a warm-up phase set to 4000 steps and an inverse square root
scheduling. The dropout rate is set to 0.3. We use beam search with a beam of size
five during inference [170]. For Adapter-based models, we use the bottleneck of 2 (i.e.
reducing the dimensionality via D to 256). For Gated Adapters, we introduced three
additional hyperparameters. Those values were chosen on the EN→PL validation
dataset, and we used the same values for EN→EL. The impact of the LKL was set
arbitrary to 0.5. For normalisation temperature β and LKL temperature τ, we used
the values of 2.0 and 0.1. The former was picked from {0.1,0.5,1.0,2.0,2.5}, the latter:
{0.1,0.5,1.0,2.0}. We trained all our models using 4 NVIDIA V100 GPUs, except the
BASE model, which used 8 NVIDIA V100 GPUs.

4.8.2. Evaluation

Tables 4.8.1 and 4.8.2 present the evaluation results measured using chrF and
BLEU.
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Table 4.8.2. Translation performance measured using BLEU. For each system, we aggregate
scores using an unweighted and weighted average, where the weights come from the ratio of
domain-specific training data based on the number of sentences. We report average scores
over three runs with a standard deviation for AD and GAD.

LAW IT SUB TALK MED REL AVG wAVG

English – Polish
BASE 41.36 29.36 20.20 19.31 24.91 12.09 24.54 25.79
FT 52.54 41.23 26.87 21.33 55.97 87.38 47.55 37.37
TAGORACLE 50.97 37.43 26.44 21.14 46.14 72.41 42.42 35.45
ADORACLE 51.37±0.03 37.91±0.87 26.29±0.24 21.36±0.19 47.32±0.46 81.06±0.81 44.22±0.23 35.85±0.19

MIX 51.28 37.36 26.42 21.20 47.10 71.65 42.50 35.56
TAGCLF 50.96 37.46 26.21 21.03 46.07 72.23 42.33 35.30
ADCLF 51.36±0.04 37.87±0.86 26.21±0.13 21.27±0.29 47.27±0.42 80.70±0.76 44.11±0.20 35.79±0.11

GAD 51.28±0.12 40.11±0.11 26.41±0.26 21.24±0.08 48.31±0.20 85.89±1.17 45.54±0.03 36.18±0.13

English – Greek
BASE 34.41 31.45 21.37 31.11 28.99 14.88 27.04 27.12
FT 39.01 55.83 28.14 36.16 61.74 75.29 49.36 36.14
TAGORACLE 39.38 49.32 27.98 35.15 52.36 46.58 41.80 34.84
ADORACLE 39.09±0.08 51.37±1.92 27.87±0.07 35.60±0.24 54.34±0.39 50.83±0.57 43.18±0.37 34.98±0.06

MIX 39.12 48.84 27.56 34.82 52.98 46.33 41.61 34.56
TAGCLF 39.29 48.95 27.32 34.89 52.30 46.52 41.54 34.46
ADCLF 39.01±0.05 51.15±1.77 26.73±0.11 35.36±0.23 54.30±0.40 50.75±0.57 42.88±0.37 34.38±0.10

GAD 39.05±0.18 54.25±0.07 26.77±0.24 35.38±0.18 54.13±0.24 68.17±1.34 46.29±0.27 34.76±0.13

4.8.3. Confusion matrix

Figure 4.8.1 presents the classifier quality for the EN→EL dataset.
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Figure 4.8.1. Confusion matrix for the classifier in the EN→EL language pair. Albeit its
overall high quality, the model makes almost exclusively mistakes between the SUB–TALK
domain pair.
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Abstract

Modular deep learning is the state-of-the-art solution for lifting the curse of multi-
linguality, preventing the impact of negative interference and enabling cross-lingual
performance in Multilingual Pre-trained Language Models. However, a trade-off
of this approach is the reduction in positive transfer learning from closely related
languages. In response, we introduce a novel method called language arithmetic,
which enables training-free post-processing to address this limitation. Extending
the task arithmetic framework, we apply learning via addition to the language
adapters, transitioning the framework from a multi-task to a multilingual setup.
The effectiveness of the proposed solution is demonstrated on three downstream
tasks in a MAD-X-based set of cross-lingual schemes, acting as a post-processing
procedure. Language arithmetic consistently improves the baselines with significant
gains, especially in the most challenging case of zero-shot application. Our code and
models are available at https://github.com/mklimasz/language-arithmetic.

5.1. Introduction

The recent progress of large language models has raised the question of how
well they perform not just in English but across multiple languages which has
spurred interest in Multilingual Pre-trained Language Models (MLLMs) [42, 160, 5].
These models serve as general-purpose solutions that can be adapted and applied to
various Natural Language Processing tasks. Notably, MLLMs demonstrate zero-shot
cross-lingual capabilities, allowing them to generalise effectively to downstream
tasks even when pre-trained in a language different from the target language.

The positive transfer of abilities from both related languages and high-quality
training data from unrelated languages has meant that MLLMs have reported
state-of-the-art performance in low-resourced languages [118]. However, this benefit
does not always extend to high-resourced languages [97]. In such cases, the quality
of MLLMs tends to decrease compared to their monolingual counterparts [121, 114,
among others] due to negative interference phenomena [185]. Additionally, the
curse of multilinguality [42] reveals the existence of a trade-off between language
coverage and model capacity. Consequently, MLLMs must carefully limit the number
of languages included during the pre-training phase.

Modular deep learning (MDL) [134] methods help to avoid negative interference
and limited model capacity , enabling the extension of MLLMs to support any number
of languages [19, 177, 139, 135, 131]. MDL methods adapt the model to arbitrary
tasks and languages by isolating components from each other (and the backbone
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MLLM) via parameter-efficient extensions. Examples of parameter-efficient modules
are adapters [152, 83], which are low-budget (in terms of parameters) bottleneck
layers that increase an MLLM size by just a fraction. Language adapters [135] allow
the modularisation of language-specific knowledge by training on a raw, unlabelled
corpus for specific languages.

The limitation of the MDL and language adapters is their isolation. While they
lift the curse of multinguality and prevent negative interference, at the same time,
language adapters limit the possible impact of positive transfer. Previous attempts
to address these challenges — such as training bilingual [126] or language-family
[38] adapters — do not scale effectively. In our work, we tackle this limitation
as a post-processing step. Leveraging recent insights from task arithmetic [86],
specifically learning via addition, we augment language adapters with missing
related language knowledge – a concept we term language arithmetic. Remarkably,
this training-free approach can enhance not only existing language adapters but
also offer zero-shot performance.

To summarise, our contributions are as follows:
• A novel training-free post-processing method named language arithmetic that

enhances language adapters.
• We conduct a cross-lingual evaluation on three downstream tasks (NER, NLI

and QA) and two Multilingual Pre-trained Language Models (XLM-R, mBERT)
with test cases that include zero-shot and low-resource setups in a diverse
group of 13 languages.

• We provide an analysis of language arithmetic internal components (including
a comparison with task arithmetic) and show improvement up to 3 F1 points
without any additional training involved.

5.2. Background

Our research builds upon the task arithmetic contributions of Ilharco et al. (2023)
[86] and Zhang et al. (2023) [197]. The following Section provides the background
and serves as a gentle introduction to the concept of task vectors and task arithmetic.

5.2.1. Task vectors & Task arithmetic

Let us assume that we have access to a pre-trained model with its weights denoted
θpre ∈ Rd and a fine-tuned version of the same model on a task t represented by
θt

f t ∈ Rd. The task vector τt ∈ Rd is an element-wise difference between models’
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weights.
τt = θt

f t −θpre (5.1)

The task vectors can be part of multiple arithmetic operations, e.g. learning via
addition. This operation is an addition operation between two task vectors and
the base model, i.e. we add two differences between the fine-tuned models and the
pre-trained version with weights controlling the impact.

θmulti−task = θpre +λ1τt1 +λ2τt2 (5.2)

The lambdas can be further normalised to sum to one, i.e. λ2 = 1−λ1 and simplifying
notation with just λ.

θmulti−task = θpre +λτt1 + (1−λ)τt2 (5.3)

While we define learning via addition for two tasks, the same procedure can be
applied to multiple tasks.

Task arithmetic allows us to forge a multi-task model from a separate, task-specific
set of fine-tuned models, preserving high accuracy (although a shared pre-trained
starting point is required, e.g. the same Language Model). Moreover, vectors from
different tasks are typically close to orthogonal, and Ilharco et al. (2023) [86] spec-
ulate that this enables the combination of task vectors via addition with minimal
interference.

In our work, we focus on parameter-efficient fine-tuning (PEFT) and use language
adapters. Therefore, we reduce the task vector and underlying model weights
represented by θ to newly introduced parameters (i.e. we exclude the backbone
MLLM, which is frozen across all the models, following the work of Zhang et al.
(2023) [197]).

5.3. Method

We propose language arithmetic that transitions the task arithmetic concept
from a multi-task to a multilingual setup. In this Section, we describe the language
arithmetic alongside its application as a training-free, post-processing step to a
MAD-X cross-lingual framework [135].

5.3.1. Language arithmetic

We formulate a language arithmetic (LA) concept by substituting the task in
task vectors and arithmetic with a language. This approach means that instead
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of merging downstream tasks, we target a problem of cross-lingual performance.
We propose to apply learning via addition to languages, and in Appendix 5.9.5, we
demonstrate the discrepancies when comparing language and task vectors. Our
study focuses specifically on the language adapters [139, 135]. Due to overlapping
abbreviations, we use the LA exclusively as the former, i.e. language arithmetic. In
the learning via addition, we limit the parameters to language adapters and simplify
the notation that θ represents the adapters’ weights and τ is referred to as a language
vector. As we operate in a language space instead of a task, the t is replaced with a
language, i.e. its language code in the notation. The example equation describes a
language arithmetic operation between an English and a Spanish adapter.

θLA = θpre +λτen + (1−λ)τes (5.4)

Throughout the paper, the equation above is abbreviated as a function: LA(en, es)

with lambda as a default parameter. Additionally, for clarity reasons, we denote
target language in a subscript to distinguish different use-cases. For example,
LA f r(en, es) means that language arithmetic between English and Spanish is applied
to a different language - in this case French (zero-shot application), or LAes(en, es)

meaning that the target is Spanish (non-zero-shot use-case, due to Spanish being a
part of the LA equation).

Language arithmetic is a training-free method, taking advantage of already
pre-trained modules. The sole requirement is a validation dataset on which the λ

parameter can be established. While in our work, we use a pretty fine-grained step
(0.05) to determine the λ value (i.e. we run evaluations for λ ∈ [0,1] with a provided
step), our analysis showcased that it is possible to increase the value and limit the
computation burden even more (details in Section 5.5.1).

5.3.2. Application

We evaluate our post-processing method as an extension of the MAD-X framework
[135] to challenge our solution in a cross-lingual manner. The overview of the schema
is presented in Figure 5.3.1.

The MAD-X consists of the following steps:
1. Training language adapter(s)
2. Training task adapter
3. Cross-lingual inference

In our work, we introduce an additional step:
4. Post-processing via language arithmetic
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Figure 5.3.1. Language arithmetic as an extension of the MAD-X framework. Given
language and task adapters (left), language arithmetic (right) enables post-processing,
training-free improvement in two use-cases: (i) zero-shot where a language adapter for a
target language was not trained (presented in the figure as Spanish, which was not part of
existing language adapters pool, LAes(en, f r)) or (ii) to improve existing language adapters
via arithmetic with either related language or a language on which task adapter was trained
(e.g. LA f r(en, f r)).

In the following Sections 5.3.2-5.3.2, we present the framework and our proposed
post-processing via language arithmetic extension, exploring two use cases: (i) a
zero-shot case, where a target language adapter does not exist and (ii) an enhance-
ment case, where we prove existing language adapters (in high- and low-resourced
languages).

Training language adapter(s)

In the first step, the MAD-X framework trains language adapters. These adapters
are trained on raw corpora using masked language modelling loss in a self-supervised
manner. The MLLM is frozen during this step, and we only optimise the newly
introduced adapter. The training must be done for languages corresponding to the
downstream tasks (e.g. if we have an English NER dataset, we need an English
language adapter, apart from other desired target languages). Additionally, the
adapters form a pool that is leveraged during cross-lingual inference.

Training task adapters

The following step freezes a backbone MLLM and a language adapter and trains
a task adapter on a downstream task dataset. Given a set of tasks or if a new task
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appears, we can repeat this step as long as the required language adapter exists in
the available pool, i.e. a language adapter that matches the task’s language.

Cross-lingual inference

Having trained a task adapter, we can leverage a pool of pre-trained language
adapters and obtain a cross-lingual performance by connecting any existing language
adapter with a newly trained task adapter (i.e. routing first via language adapter
and then task adapter). The growing pool of pre-trained adapters can be accessed at
public repositories like AdapterHub [133] and reused for further use cases.

Post-processing via language arithmetic

Our method builds upon the MAD-X framework in two enhancement scenarios.
First, we assume a situation where the pool of language adapters does not contain

a desired target language, i.e. a zero-shot scenario. In contrast to the previous works
that try to improve existing adapters, this use-case is an alternative to routing via
either a related language or a task language (here, by task language, we understand
the language on which the task adapter was trained, in contrast to a target language
- on which we want to evaluate). Instead of choosing the better-performing proxy,
language arithmetic proposes to combine these two (with better results, as shown in
Section 5.4.2).

In the second language adapter enhancement scenario, we apply language arith-
metic as a more common goal, trying to improve existing language adapters; however,
our method does that without any training. Here, we combine the existing target
language adapter with either a related language (we define related languages in
Section 5.4.1) or, once again, a task language.

5.4. Experiments

5.4.1. Experimental setup

Datasets

Downstream evaluation is performed on three tasks: Named Entity Recognition
(NER), Natural Language Inference (NLI) and Question Answering (QA), covering
jointly 13 languages,1 while the training - to perform cross-lingual evaluation - is
performed on the English data. For the NER task, we use the WikiANN [149]
dataset and for NLI - XNLI [43]. The QA evaluation is done on XQuAD [12] (we

1 ar, bg, de, el, es, fr, hi, ru, sw, tr, ur, vi, zh; XQuAD does not cover 4 languages (bg, fr, sw, ur)
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split data 50/50 into valid/test datasets), and the training uses SQuAD 1.1 [150].
Additionally, to evaluate a low-resource scenario for a language not covered during
MLLM pre-training, we leverage the Assamese subset from IndicXNLI [3].

Related languages To automatically establish a related language needed for
language arithmetic, we query URIEL and lang2vec library [106, 110]. During the
related language query, we limited the options to 13 downstream task languages
for which we had already pre-computed language adapters. This limitation means
that for some languages, we would be able to find a stronger performing pairing
and that the ceiling for our method is higher than the presented (we denote that
the performance of hypothetical paring would also depend on data availability, i.e. a
paired language must be not only related but also have representative corpora; based
on this we show analysis and improved performance in Section 5.5.2). However,
considering the limitations of the lang2vec, we decided to keep this simplification.
At last, a language can have a set of equally good related languages. Therefore, in
practical terms, it is not feasible for our study to train all possible options for each
language - our simplification stands as a reasonable, real-world proxy. We provide
the list of related languages in the Appendix 5.9.1.

Implementation & training

In our work, we focus on two of the most popular multilingual PLMs:2 mBERT3

[48] and XLM-R4 [42]. We implement our method using the AdapterHub library
[133]. For language adapters, we train on the Wikipedia corpora5 for 250k steps
with a learning rate of 1e-4, an effective batch size of 64 using a single GPUand
the same initialisation. For task-specific training, we train for 100 epochs with
the same learning rate and a batch size set to 16. We choose the final checkpoint
based on validation dataset performance (for language adapters, we evaluate on
a held-out subset of Wikipedia). In our main experiments, we report the scores
as an average over three independent runs with different seeds (for both language
and task adapters). Additionally, to improve efficiency and reduce GPU memory
utilisation, we adopt a half-precision (FP16) setting.

2 According to downloads from Huggingface hf.co/models?language=multilingual&sort=
downloads

3 bert-base-multilingual-cased
4 xlm-roberta-base
5 20331101.xx checkpoint hf.co/datasets/wikimedia/wikipedia
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5.4.2. Zero-shot evaluation

The zero-shot evaluation assumes a scenario where the language adapter pool
does not contain a desired target language (e.g. lack of Spanish in Figure 5.3.1).
The baselines are based on routing, i.e. we proxy either by an English adapter
(proxy via a task language, as the task adapter was trained using English data) or a
related language (e.g. French for Spanish). Language arithmetic serves a solution
that, instead of choosing a better proxy, combines the adapter’s tuple: LAt(en, rel),
where rel symbolises a related language and t stands for a target language (e.g.
LAes(en, f r)).

Figures 5.4.1 and 5.9.1 present the results of the zero-shot experiment. Language
arithmetic consistently outperforms the proxy baselines for all the setups, reaching
over 3.1 F1 points improvement in the NER task and 1.1 F1 for QA (XLM-R). These
results indicate that language arithmetic is a feasible, low-cost method that one can
apply in the lack of an existing target language adapter.

Additionally, we investigate how the λ parameter impacts the downstream evalu-
ation. The goal was to understand how much weight is given to English vs related
language. We looked at the validation performance over different λ thresholds.
While most cases set the value to over 0.5 (i.e. preferring the English side, given
LAt(en, rel)), the preferred values did not showcase any consistency and pattern. We
analyse this further in Section 5.5.1.

5.4.3. Improving existing language adapters

This evaluation assumes that a target language adapter exists in the adapter pool.
We test two cases, i.e. LAt(en, t) and LAt(rel, t), where rel is once again a related
language and t is the target language. Additionally, we provide a combination of
these two approaches (referred to as LAt(en/rel, t)), where for each language, we
choose a better pairing (so either en or rel). This solution resembles a practical
compromise between cost and performance and serves as a proxy for the ceiling of
our method (discussed in Section 5.4.1).

The results are presented in Figures 5.4.2 and 5.9.2. Compared to the baseline
direct application of a target language adapter (i.e., the MAD-X method), the gains
are not as significant as in the case of the zero-shot scenario. Moreover, in contrast
to the previous Section’s study, MLLMs showcase a different behaviour, as language
arithmetic provides less benefit for XLM-R than for the mBERT model (e.g. +0.38

XLM-R vs +2.41 mBERT in F1, QA).
The drop in performance of language arithmetic compared to the zero-shot use

case is not surprising. Given that a target language adapter is trained on a sig-
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Figure 5.4.1. Zero-shot XLM-R language arithmetic evaluation, where one side of the
arithmetic is an English adapter, and the other is related to the target language adapter
(e.g. French for Spanish - LAes(en, f r)). The values above bars present a relative difference
to a better proxy. See Figure 5.9.1 for the mBERT model.
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nificant corpus, it gives less room for improvement (this is not the case in the
low-resource regimes, as shown in the following Section). This is also a potential
explanation of a different behaviour between the evaluated MLLMs, considering the
overall more robust performance of XLM-R over mBERT. However, considering the
cost-to-performance ratio and the minimal fatigue that our post-processing method
enforces on existing MAD-X pipelines, we can see a constant gain on average across
all the experiments and training runs.

5.4.4. Low resource evaluation

Training a language adapter might be troublesome for high-resourced languages
due to massive corpora requiring significant computational resources.6 On the
other hand, in most languages, we lack data to train a strong language adapter,
i.e. language-specific corpora might be either too small or unavailable [70]. We
investigate whether LA can help in such cases. We test our solution in three cases
and define three (actual and simulated) evaluation scenarios:

• Assamese (as) - low resource language, additionally not used in the pre-training
of a base MLLM,

• Swahili (sw) - low resource language, used in the pre-training,
• French (fr) - high resource, used in the pre-training. We simulate cases from

low to high resources.
We train a series of language adapters with different token budgets for each language,
from 10k to 10M (or 1B for French; we limit this particular study to the XLM-R
model). Afterwards, we compare the usage of such adapters directly against language
arithmetic with three adapters (we use LAt(t, en), where t ∈ {as, sw, f r}).

Figure 5.4.3 presents the results of the evaluation performed on the downstream
tasks. The most gain is visible in the most challenging scenario, during the evalua-
tion on the Assamese dataset. In this case, the backbone MLLMs did not encounter
the language during the pre-training phase. Although the difference becomes less
pronounced in the NER task as we approach the limits of available data, there
remains a significant margin for NLI - the difference can be explained by the overlap
in the corpora (Wikipedia) between NER and language adapter training tasks,
following the findings of Gururangan et al. (2020) [68]. For Swahili, where the
language is part of the pre-training, the flattening effect begins earlier and affects
both tasks. Nevertheless, leveraging language arithmetic still yields improvements.

6 Although in our experimental setup, we train each adapter for the same number of steps and
choose the best checkpoint based on the validation performance, for low-resourced languages, one
could apply an early stopping mechanism in a production-level pipeline.
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Figure 5.4.2. Variants of language arithmetic compared to the MAD-X method in the
use-case to improve an existing target language adapter. The values above bars present a
difference between a better LA setup and the MAD-X framework for the XLM-R model (see
Figure 5.9.2 for mBERT).
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(a) NER (b) NLI

Figure 5.4.3. NER and NLI evaluation of a set of adapters trained on a Wikipedia subset
showcases that language arithmetic LAt(t, en) (green, dotted line) provides significant gains
when compared against direct usage of the adapter (violet, solid line), especially in a very
low-resource regime. The x-axis represents the token budget of each trained language
adapter.

The simulated case of French showcases that even with a relatively weak lan-
guage adapter (trained on 10k tokens), the language arithmetic can restore existing
knowledge and results in high performance for the language. Moreover, comparing
the adapters trained with a different token budget, the results remain similar,
without significant fluctuations. We believe that this phenomenon happens because
the MLLM has seen a much higher amount of French in the pre-training procedure
than Swahili (over 35 times more tokens in XLM-R pre-training; moreover, French is
in the top 15 represented languages). Therefore, even undertrained French adapters
have a relatively easy task once they are merged with a robust English adapter.
In practical terms, this finding allows us to prototype new languages quicker by
estimating the possible end product quality or might serve as an intermediate
solution (until the full-corpora adapter is trained).

5.5. Analysis

5.5.1. Lambda impact

Our study estimates the λ parameter with a small step (0.05). This analysis
investigates how sensitive this parameter is in the language arithmetic. Depending
on multiple variables that include model and evaluation dataset sizes or a num-
ber of languages, running 20 evaluations might be costly (especially when using
neural-based metrics, e.g. COMET [153]). Therefore, we analysed the potential
impact of choosing a suboptimal lambda with a decrease in evaluation count. The
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Figure 5.5.1. Interpolation of λ values for the zero-shot XLM-R scenario (NER, for NLI and
QA see Appendix 5.9.4) on the validation dataset. The horizontal dashed lines represent the
baseline scores for both languages used in language arithmetic.

breakdown includes a subset of languages on both tasks (using the XLM-R as a base
model). We chose the zero-shot scenario where we performed LA between English
and related language adapters.

In Figures 5.5.1 and 5.9.3, we plot the validation scores with the corresponding
baselines, that is, the scores of using directly the adapters. The dotted lines are based
on λ= 0 or λ= 1 for clarity, meaning we exclusively use the arithmetic equation’s left
or right side (i.e., a specific language). In most cases, a subset of valid λ values would
improve over the baselines. Moreover, the analysis reveals that a coarser evaluation
(e.g., with a step of 0.1 or 0.2) would be sufficient, reducing the required number of
performed tests up to four times while maintaining most of the improvement. At
last, setting the default λ= 0.5 would be near optimum for the analysed subset.

5.5.2. Language relatedness

Relatedness of languages is a difficult-to-define concept. At times, in our proposed
framework, we might face a choice of multiple, seemingly equally related languages
to use for the arithmetic operation. In this analysis, we decided to look at this aspect
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Table 5.5.1. Impact of language relatedness on the language arithmetic. We compare
different Romance languages as a right side of LA equation, i.e. l2 (both tasks use XLM-R
model). We report an average over three runs.

LAl1(l1 ↓, l2 →) ca es fr it pt ro
Ev

al
la

ng
ua

ge NER
es 73.82 - 75.06 74.61 74.90 73.68
fr 75.74 75.76 - 75.82 75.59 75,79

NLI
es 78.23 - 78.04 77.96 77.94 78,02
fr 77.95 77,65 - 77.70 77,47 77,60

via a glance at Romance languages. We trained an additional subset of language
adapters and formed a pool of 6 languages: Catalan, French, Italian, Portuguese,
Romanian and Spanish. Afterwards, we evaluated languages shared in our NER and
NLI tasks (Spanish and French) by arithmetic with the entire Romance languages
pool.

The results are presented in Table 5.5.1 and show that given a different related
language (in this case, defined as coming from the same language family), there are
minor scores fluctuation. The relative difference between the best and the worst
language reaches around 1 F1 score in the NER task and around 0.3 in terms of
accuracy points for the NLI task. This experiment indicates that a more sophisticated
or hand-crafted language choice would improve the downstream results presented
in Figure 5. However, it also shows that there is no free lunch, and results depend
on a downstream task. For example, for Spanish evaluation, a French adapter is
trained on the largest out of the listed languages raw corpora; therefore, for the NER
task, it can leverage a bigger pool of seen during training Named Entities (at times
language-independent or similar across languages) and perform the best given more
data, even when there are closer related languages (according to methodology from
Section 5.4.1 and Indo-European languages family tree).

5.6. Related Work

Knowledge composition from multiple, independently trained adapters has been
widely discussed in the literature. However, unlike our work, the solutions re-
quire substantial changes to the vanilla adapter setup. The previous work either
requires additional parameters to learn a parameterised composition function/a
gating module to combine/steer the flow through the suitable adapter(s), or needs a
specific training procedure that increases the complexity of the overall solution or, in
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most cases, both [137, 132, 102, 126, 38, 92, 182]. Moreover, to prevent specifically
negative interference, hyper-adapters [21] were proposed using hyper-networks [69],
and Ansell et al. (2022) [8] applied sparse fine-tuning to compose task and language
masks. Unlike the prior studies mentioned earlier, our attempt is training-free
and does not modify the base architecture. The most conceptually similar work is
proposed by Chronopoulou et al. (2023) [37]; however, they operate on the notion
of sample similarity to a subset of domains in a domain adaptation regime. Addi-
tionally, concurrent to our work, Parović et al. (2019) [127] show intial potential of
task arithemtic in cross-lingual transfer based on a full fine-tuning setup. However,
in our work we focus on PEFT methods with additional, in-depth analysis. At last,
we denote the rise of task arithmetic use cases, e.g. vision tasks or cross-task
generalisation [166, 85].

5.7. Conclusion

We have proposed language arithmetic, which enhances language adapters based
on task arithmetic learning via addition. It is a training-free method and functions
as a post-processing technique for MAD-X. Our experiments have shown that LA
is particularly beneficial in a zero-shot scenario, where we do not have access to a
target language adapter. At last, we highlight the differences between language and
task arithmetic.

In our future work, we plan to extend language arithmetic by incorporating
more components into the sum. Additionally, we aim to adapt other elements of
the task arithmetic framework, i.e. task analogies and forgetting via negation, to
a multilingual setup with an analysis of the differences between multi-task and
multilingual arithmetic context. Furthermore, we will evaluate LA’s performance
on various non-classification tasks.

5.8. Limitations

Our work was tested on English-centric task training and could be extended to
different languages with more PEFT methods. Moreover, applying multi-source
training based on the work of Ansell et al. (2023) [7] could provide better robustness
of the task adapters and a more thorough analysis.
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Table 5.9.1. Languages used in the experiments with corresponding related languages.
Details are provided in Section 5.4.1.

Lang. ar bg de el es fr hi
Related sw ru fr es fr es ur
Lang. ru sw tr ur vi zh
Related bg ar bg hi ru ar

5.9. Appendix

5.9.1. Related languages

We present the list of related languages used in our experiments in Table 5.9.1
(details in Section 5.4.1).

5.9.2. Zero-shot evaluation

Figure 5.9.1 presents the results of the experiments described in Section 5.4.2
for the mBERT model.

5.9.3. Improving existing language adapters

Figure 5.9.2 presents the results of the experiments described in Section 5.4.3
for the mBERT model.

5.9.4. Lambda impact - NLI and QA

Figure 5.9.3 presents the analysis of lambda impact for NLI and QA tasks. For
details, refer to Section 5.5.1.

5.9.5. Language vs task vectors

Task vectors exhibit high sparsity and orthogonality, as (author?) [86] observed.
While the former characteristic can be denoted in language vectors (Figure 5.9.4),
the latter displays different properties, in contrast to task vectors. In Figure 5.9.5,
we visualise the cosine similarity between evaluated language vectors of language
adapters. Notably, the minimal cosine similarity (0.19) surpasses the maximum
(0.18) reported by previous research in the task space [86]. Interestingly, most
pairs in the task space oscillate within the range of 0.01 to 0.03. At the same time,
language vectors surpass 0.2 in almost each case, indicating that the orthogonality
aspect is an inherent property of task adapters.
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Figure 5.9.1. Zero-shot mBERT language arithmetic evaluation, where one side of the
arithmetic is an English adapter, and the other is related to the target language adapter
(e.g. French for Spanish - LAes(en, f r)). The values above bars present a relative difference
to a better proxy.
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Figure 5.9.2. Variants of language arithmetic compared to the MAD-X method in the
use-case to improve an existing target language adapter. The values above bars present a
difference between a better LA setup and the MAD-X framework for the mBERT model.
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Figure 5.9.3. Interpolation of λ values for the zero-shot NLI and QA XLM-R scenario on
the validation dataset. The horizontal dashed lines represent the baseline scores for both
languages used in language arithmetic.
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Table 5.9.2. Ties-Merging evaluation in the zero-shot setup on the NER task (XLM-R
version, averaged over three runs and all evaluated languages). In the case of language
arithmetic, where the language vectors have a higher overlap (i.e. higher cosine similarity),
removing parameter interference decreases the overall performance.

Method AVG F1 score
LA 60.54
Ties-Merging (Top-K% 20) 52.94
Ties-Merging (Top-K% 80) 57.57

Figure 5.9.4. Language vectors, similar to task vectors, are extremely sparse. The kernel
density estimate plot presents the weights of a Spanish mBERT adapter. The behaviour is
consistent across sampled layers and languages.
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Figure 5.9.5. Cosine similarity between language vectors of language adapters.
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Based on the cosine similarity observation, we investigated one of the recent
task arithmetic extensions, Ties-Merging [190]. This work introduces a three-step
algorithm that prevents different parameter interferences, improving upon task
arithmetic. The algorithm decreases the cosine similarity via a pruning step and
alignment of parameter signs to perform arithmetic only on relevant parameters
to the merged tasks. On the experimental details note, as Ties-Merging operates
on averaging, not addition, we utilise a different lambda range during validation
(as suggested by Yadav et al. (2023) [190]), λ ∈ [0.8,1.8]), and we set Top-K% to the
default value of 20 and additionally to 80.

We report the comparison in the zero-shot setting on the NER task (XLM-R ver-
sion) in Table 5.9.2. The Ties-Merging decreases the results significantly compared
to the default language arithmetic. Moreover, we note that the pruning operation
has the reverse effect; higher pruning (i.e. keeping Top-K% lower) decreases the
performance (in contrast to task vectors) by making language vectors more sparse
and, hence, closer to orthogonal.

One interpretation of the phenomena can be the different goals of the arithmetic:
in the multi-task setup, we try to include multiple, often disconnected, tasks into a
single task vector. In contrast, the language vectors’ goal is to include the knowledge
of the closely related language rather than remove the harmful artefacts. Our
findings indicate that language arithmetic has different characteristics than task
arithmetic, and the follow-up works that improve upon task arithmetic might not be
suited for the multilingual context.
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Abstract

The rise of Modular Deep Learning showcases its potential in various Natural
Language Processing applications. Parameter-efficient fine-tuning (PEFT) modu-
larity has been shown to work for various use cases, from domain adaptation to
multilingual setups. However, all this work covers the case where the modular
components are trained and deployed within one single Pre-trained Language Model
(PLM). This model-specific setup is a substantial limitation on the very modularity
that modular architectures are trying to achieve. We ask whether current modu-
lar approaches are transferable between models and whether we can transfer the
modules from more robust and larger PLMs to smaller ones. In this work, we
aim to fill this gap via a lens of Knowledge Distillation, commonly used for model
compression, and present an extremely straightforward approach to transferring
pre-trained, task-specific PEFT modules between same-family PLMs. Moreover, we
propose a method that allows the transfer of modules between incompatible PLMs
without any change in the inference complexity. The experiments on Named Entity
Recognition, Natural Language Inference, and Paraphrase Identification tasks over
multiple languages and PEFT methods showcase the initial potential of transferable
modularity.

6.1. Introduction

Modular Deep Learning has recently garnered interest as a paradigm that builds
upon the idea that a model is a combination of modules with control of the information
flow. This paradigm allows for the transfer of learning from one task or language
to another, compositionality of the modules and parameter efficiency [134]. For
instance, modules allow for efficient (parameter-wise) fine-tuning of Large Language
Models [84], enhance task-level generalisation [141], improve multilingual models
[19], offer zero-shot capabilities [139] and enable cross-lingual [8] or cross-domain
[92] knowledge transfer. Furthermore, repositories that store pre-trained modules
like AdapterHub [133] promote the re-usability of previously trained components to
new use cases.

The current modular approaches primarily focus on transferring knowledge to
new languages, domains, or tasks. However, prior research assumes that the base
model remains constant and overlooks the concept of transferable modularity, which
entails the potential to transfer modules between different models. From a practical
perspective, the effective utilisation of the transferable modularity property can
reduce the computational burden, especially given the ongoing scaling of Large
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Figure 6.1.1. The most straightforward case of transferable modularity. The teacher model
is first trained on a task using PEFT, e.g. Adapters, and then the student PEFT modules,
prior to fine-tuning, are initialised with the teacher weights.

Language Models [30, 176], allowing for broader re-usability. Moreover, transferring
modules from larger to smaller models can significantly enhance knowledge transfer.
And finally, even the term “modularity” inherently implies the transfer property,
suggesting that modular approaches should not be limited to a specific base model.

In this work, we aim to initialise the research objective of transferable modularity.
We focus on a setup similar to Knowledge Distillation (KD) [79], i.e. where we have
two differently sized PLMs (through the paper, we adopt the KD nomenclature,
where the bigger model is called a teacher and the smaller - student). Unlike KD,
we do not want to use the teacher model’s output directly to train a student but use
exclusively its fine-tuned PEFT modules.

We show that given matching PLMs (e.g. BERT [48] and DistilBERT [159]), it is
possible to use pre-trained modules like Adapters [83, 132] or LoRA [84] as a better
starting point for parameter-efficient (PE) fine-tuning of a smaller student PLM (see
Figure 6.1.1). Moreover, we investigate a more challenging setup where the models
are incompatible, i.e., have different internal dimensionality, and adapt modules via
the proposed pruning and alignment method (without inference-time overhead).
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1. Task-agnostic
distillation

2. PEFTTeacher

4. PEFTStudent

3. Modularity
Transfer

Fine-tuned
Teacher

Fine-tuned
Student

Figure 6.2.1. The schema of transferable modularity experiment. We investigate setups
where the teacher-student pair result from task-agnostic distillation or are independently
trained models.

To summarise, our contributions are as follows:1

• We define the property of transferable modularity.
• We investigate transferable modularity in matching and incompatible PLMs,

proposing a pruning and alignment method for the latter.

6.2. Transferable Modularity

The high-level idea of our study is presented in Figure 6.2.1. Given a pair of
PLMs, a teacher and a student, we aim to transfer the parameter-efficient (PE)
modules from the teacher to the student. First, we use a PEFT technique to train
the teacher and its PE modules. Then, we “move” the modules from the teacher
and insert them into the student, followed by PEFT of the student. This approach
means that PE modules of the student have non-random prior initialisation during
training.

We consider two setups: (1) matching PLMs and (2) incompatible PLMs. The
former uses a shallow version of a teacher with task-agnostic distillation as a student
[88]. This case means that the models represent the same knowledge, have the same
hidden dimensionality, and the only difference is the depth of the model. The latter
represents a generalised version, where the models are differently parameterised
(in terms of latent space size) and they are independently trained. We propose a
parameter-free, sample-based pruning and alignment method to answer dimension-
ality mismatch.

1 Code available at https://github.com/mklimasz/transferable-modularity
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Figure 6.2.2. Toy example of adapting the PEFT modules in the case of mismatched
dimensionality. Based on the sampled embeddings (1.), correlation matrix C is calculated
(2.) and reduced via LSA to a binary matrix Z (3.). In the last step (4.), the pruning and
alignment mapping function (derived from Z) is applied to down/up projection matrices of
LoRA/Adapter modules and match dimensions.

6.2.1. Pruning and Alignment

In the case of incompatible PLMs, a dimensionality mismatch problem causes two
main issues for transferable modularity. First, the module expects different (higher)
dimensionality. Additionally, there exists an alignment discrepancy between the
latent spaces of the two models, i.e. if the models have learned the same features,
we do not have any guarantee of their placement in the latent space - their indices.

A crucial element of a successful Knowledge Distillation framework is the compu-
tational overhead; therefore, we propose an offline, parameter-free solution that does
not change the final student model. The method presented in Figure 6.2.2 consists
of four phases:

• sampling
• calculating correlation
• solving linear sum assignment (LSA) problem
• pruning & alignment
At first, we sample matching embeddings that would be an input to a PEFT

module (we denote the set of embeddings Xs for student and X t for teacher with
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xs ∈ Xs and xt ∈ X t). We store embeddings per layer l (for clarity, we omit the notation
of the layer).

In the next step, we establish a correlation matrix between latent spaces. We
calculate Pearson’s correlation coefficient matrix C. Ci j is a correlation between the
i dimension of a xs and the j dimension of a xt embedding.

Given the correlation matrix, we attempt to find the best possible alignment. We
define the problem as a linear sum assignment (LSA) [45] to establish the optimal
mapping. As LSA calculates the minimum cost assignment, we use −C as an input
to the LSA algorithm. The algorithm produces a binary matrix Z where Zi j = 1

means that the i index of Xs is mapped to j of X t.

min
∑

i

∑
j

(−Ci j)Zi j

Finally, using the calculated assignment indices, we remove not-mapped weights
from both down/up projection weights W of PEFT modules.

6.3. Experiments

6.3.1. Datasets

To evaluate our method, we benchmark it on three tasks: Named Entity Recogni-
tion (NER), Paraphrase Identification (PI) and Natural Language Inference (NLI)
using multilingual datasets: WikiNeural [172], PAWS-X [193] and XNLI [43] cover-
ing jointly a set of over 20 languages2.

6.3.2. Training Setup

We fine-tune multilingual models for each language/task pair using two PEFT
methods: Adapter (architecture of Pfeiffer et al. (2021) [132], bottleneck size of
96) and LoRA (rank 8). We provide the training setup details for each dataset in
Appendix 6.6.1.

For teacher-student pairs, we define two configurations:
• matching: multilingual BERT (mBERT3, teacher) – multilingual DistilBERT

(D’mBERT4, student)

2 Arabic, Bulgarian, Chinese, Dutch, English, French, German, Hindi, Italian, Japanese, Korean,
Greek, Polish, Portuguese, Russian, Spanish, Swahili, Thai, Turkish, Urdu, Vietnamese

3 bert-base-multilingual-cased
4 distilbert-base-multilingual-cased
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Table 6.3.1. Parameters, layer count and hidden dimension size of the evaluated models.

Model Params Layers Hidden dim
D’mBERT 135M 6 768
mBERT 178M 12 768
XLM-RBASE 278M 12 768
XLM-RLARGE 560M 24 1024

• incompatible: XLM-RoBERTa Large (XLM-RLARGE
5, teacher) – XLM-RoBERTa

Base (XLM-RBASE
6, student) [42]

We report the relevant hyper-parameters of the models in Table 6.3.1. As the models
have mismatched layer counts, we test two approaches: skip modules (denoted SKIP,
e.g., transfer every second module) or average them (denoted AVG, e.g., average the
first and second layer’s teacher module and transfer to the first module of a student).

6.3.3. Baselines and Metrics

For both matching and incompatible experiments, we define the following struc-
ture. As an upper bound of our evaluation, we provide the teacher results after PEFT
(Step 2 in Figure 6.2.1). The baseline is a parameter-efficient fine-tuned student
with default modules initialisation (i.e. omitting Step 3 in Figure 6.2.1).

We report F1 for NER and Accuracy for PI and NLI tasks with an average score
over all languages in Section 6.4. The detailed per-language results are provided in
Appendix 6.6.2.

6.4. Results and Discussion

6.4.1. Matching Models

Table 6.4.1 presents the results of the matching experiments. The prefix TM
denotes the transfer modularity experiments. The initialisation of the modules
transferred from the teacher PLM improved over a default initialisation on average
in all the evaluated tasks. Moreover, the SKIP method presents consistency; the
difference compared to the baseline was positive across most tasks and languages
(88,7% cases). While at times the improvement was marginal (+0.02 gain in Swahili
in NLI task), in most cases, as averages indicate, our approach significantly closes

5 xlm-roberta-large
6 xlm-roberta-base
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Table 6.4.1. Results of the matching PLMs experiment. We report an average score (F1 or
Accuracy) over all the datasets’ languages and a relative performance gap to the teacher
model.

NER (F1) PI (Acc) NLI (Acc)
AVG REL AVG REL AVG REL

Adapter
Teacher 95,35 82,60 67,98
Student 92,94 −2,41 71,32 −11,28 62,12 −5,86
TM-StudentAVG 93,02 −2,32 72,96 −9,64 62,33 −5,65
TM-StudentSKIP 93,45 −1,90 75,11 −7,49 63,01 −4,97

LoRA
Teacher 93,27 74,68 63,00
Student 90,09 −3,18 65,80 −8,88 60,56 −2,43
TM-StudentAVG 90,63 −2,64 68,52 −6,16 60,53 −2,47
TM-StudentSKIP 90,80 −2,47 70,69 −3,99 60,52 −2,47

Table 6.4.2. Results of the incompatible PLMs experiment.

NER (F1) PI (Acc)
AVG REL AVG REL

Adapter
Teacher 95,34 88,81
Student 93,30 −2,04 84,12 −4,69
TM-StudentSKIP 93,34 −2,00 84,27 −4,54

LoRA
Teacher 93,64 87,03
Student 90,83 −2,82 78,72 −8,31
TM-StudentSKIP 90,84 −2,80 78,64 −8,39
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the gap to the teacher model (e.g. +4 point improvement in Korean on PAWS-X
datasets using Adapter or over +2 in Spanish LoRA on XNLI). SKIP struggles to
outperform the baseline exclusively on XNLI when using LoRA. The results are on
par; however, even the teacher models struggle with the task, and the knowledge
that can be transferred is relatively limited.

The SKIP outperforms AVG across all the experiments. Considering the results
and the findings of van Aken et al. (2019) [178] indicating that the Transformer-based
models have internal modularity and each layer has its own defined task, we hy-
pothesise that the averaging might not reflect these phenomena. Therefore, in the
incompatible experiment, we evaluated just the SKIP method.

6.4.2. Incompatible Models

We present the results of the evaluation in Table 6.4.2. In the case of non-distilled
PLMs, the TM method does not significantly outperform the baseline. The changes
are uneven; while the transfer shows improvement up to almost +2 points in Korean
PAWS-X, it can also decrease the performance as in French PAWS-X, losing −1.05.

The disparity between matching and incompatible experiments can be attributed
to alignment challenges. Models subjected to distillation exhibit reliable alignment,
thanks to the inclusion of an auxiliary loss term such as the cosine embedding loss
[159] in the task-agnostic distillation process. In contrast, the correlation-based
method encounters difficulties when dealing with models of greater depth. Notably,
the LSA algorithm yields lower scores for deeper layers. Considering the different
representations required for each language and task pair, this outcome implies that
independently trained models require more robust alignment techniques to ensure
consistent modularity transfer across all encoded features.

6.5. Conclusions

In this work, we present a case study of transferable modularity property. We
evaluate current modular techniques in two scenarios: (1) matching, where a student
is a shallow, task-agnostic distillation of the teacher and (2) incompatible, where
a student is independently trained, a shallower model with mismatched internal
dimensionality.

The results show that the current modular approach can be transferable as the
modules from a matching teacher improve the PEFT of a student model. However,
when a student is not distilled from the teacher, the evaluated techniques are
inconsistent under the transfer condition, showing the limitation of the current
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modular methods. We hope this study will inspire future work on modular tech-
niques to consider the transferable modularity property under a more challenging
incompatible models scenario.

6.6. Appendix

6.6.1. Experimental Setup

We use the AdapterHub library [133] for all our experiments. We train all our
models using a single GPU with a batch size of 64 and a learning rate of 1e–5 for
10 epochs for NER & NLI tasks and 30 epochs for the PI task. We choose the final
checkpoint based on validation dataset performance.

For PEFT hyper-parameters, we set the bottleneck size to 96 for Adapter modules
and a rank of 8 for LoRA. We apply LoRA to the query and value self-attention
modules.

6.6.2. Per Language Results

In Tables 6.6.1, 6.6.2 and 6.6.3, we expand the results reported in Tables 6.4.1
and 6.4.2 and provide the scores for each evaluated language.
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Table 6.6.1. Named Entity Recognition results per language.

Model de en es fr it nl pl pt ru
Matching PLMs

Adapter
Teacher 97,57 92,79 98,08 95,49 94,85 97,74 95,54 95,91 90,15
Student 95,34 90,23 95,81 93,23 92,67 95,27 93,73 94,21 85,97
TM-StudentAVG 95,53 90,21 95,87 93,26 92,74 95,39 93,88 94,40 85,92
TM-StudentSKIP 95,88 90,65 96,24 93,77 93,13 95,87 94,20 94,72 86,57

Lora
Teacher 95,78 90,49 96,45 93,26 93,13 95,94 93,97 94,41 85,97
Student 92,45 87,25 93,55 90,06 89,95 92,85 91,55 92,15 80,96
TM-StudentAVG 92,92 87,74 93,94 90,57 90,75 93,24 91,97 92,52 82,03
TM-StudentSKIP 93,03 87,99 93,87 90,88 91,04 93,44 92,04 92,61 82,27

Incompatible PLMs
Adapter

Teacher 97,36 92,30 97,95 95,61 94,99 97,79 96,15 96,12 89,74
Student 95,20 89,92 96,19 93,34 93,06 96,29 94,14 94,56 86,99
TM-StudentSKIP 95,30 90,03 96,21 93,40 93,00 96,09 94,19 94,78 87,01

Lora
Teacher 94,68 89,94 96,19 92,35 92,85 95,67 93,82 94,11 85,09
Student 92,21 86,65 92,74 89,40 90,05 93,14 91,61 92,25 81,62
TM-StudentSKIP 92,10 86,65 93,00 89,61 90,01 93,01 91,51 92,32 81,69
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Table 6.6.2. Paraphrase Identification results per language.

Model de en es fr ja ko zh
Matching PLMs

Adapter
Teacher 83,60 91,60 85,20 86,90 76,05 75,95 78,90
Student 73,30 75,85 72,90 74,65 67,25 65,25 70,05
TM-StudentAVG 74,15 82,35 73,35 75,10 67,10 67,40 71,25
TM-StudentSKIP 74,50 85,05 77,85 78,15 69,10 69,25 71,85

Lora
Teacher 75,10 83,30 78,70 77,75 67,85 67,95 72,10
Student 70,20 63,45 67,30 70,10 62,80 61,85 64,90
TM-StudentAVG 71,95 69,35 69,95 71,85 64,75 64,05 67,75
TM-StudentSKIP 72,25 74,50 72,30 74,85 66,70 64,90 69,30

Incompatible PLMs
Adapter

Teacher 90,45 94,70 91,20 92,15 82,35 85,00 85,80
Student 85,75 92,55 87,25 89,25 77,10 75,65 81,30
TM-StudentSKIP 86,15 92,05 88,50 88,20 76,80 77,45 80,75

Lora
Teacher 89,40 93,80 89,90 89,65 80,95 81,45 84,05
Student 80,00 88,05 82,95 83,55 72,55 68,60 75,35
TM-StudentSKIP 80,95 88,05 82,10 82,70 71,65 69,80 75,20
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7. Future work and conclusions

7.1. Future work and open research problems

7.1.1. Multilingual Large Language Models

The natural extension of the work presented in the thesis, when it comes to
multilinguality, would be to expand the work beyond PLMs and apply it to multilin-
gual LLMs. With the recent rise of high-performing and open multilingual LLMs
that match the closed-sourced counterparts (e.g. EuroLLM [116, 115] – co-authored
by the PhD candidate or Salamandra [64]),1 such a study would be an appealing
future step. Furthermore, considering the costs and complexity of training such
LLMs, extending the model to support additional languages via model merging (i.e.
continual learning scenario [183]) sounds attractive. As the multilingual LLMs
support just a fraction of existing languages [70], cheaper extension procedures
would drastically reduce the computational burden.

7.1.2. Language arithmetic grounding

There have been numerous successful applications of model merging in different
areas. However, the grounding in the theory and understanding of all the whys
and hows have been a different story. Initial studies tried to unravel the mystery in
a multi-task setup [46]; however, our findings on the difference between task and
language arithmetic (Section 5.9.5) suggest that depending on the model merging
application, there may be a need for a deeper analysis of the phenomena.

7.1.3. Multimodal Language Models

While in this thesis, we focus on text-based approaches to NLP, there have
been rapid advancements on the border of Natural Language Processing and other
machine learning fields, i.e. Computer Vision and Speech Processing. Adaptation of

1 We want to denote the existence of BLOOM [160] and BLOOMZ [118]; despite subpar perfor-
mance compared to closed-source counterparts (due to the complexity and pioneering nature of these
projects), the models opened a door for future multilingual LLMs.
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LLMs to new modalities allowed the building of Visual LLMs and Speech LLMs, e.g.
Molmo [47], Qwen-VL [15, 184, 16], SpiRit-LM [120] or SPIRE [6]. Multimodality
could be another aspect evaluated by the modular approaches, combining information
signals from multiple sources: text, images, videos or speech.

7.2. Conclusions

This thesis presents our contribution to modular approaches for Natural Lan-
guage Processing tasks that target multiple objectives simultaneously. Through the
series of publications, we investigated existing aspects: multi-task, multi-domain and
multilingual setups. We developed a multi-task system COMBO for morphosyntactic
analysis tasks. The system allows the end-user to control the system objectives. For
the multi-domain scenario, we proposed Gated Adapters that offer knowledge trans-
fer between domain-specific adapter modules, evaluated via machine translation
task. Further, we introduce language arithmetic as an extension of model merging
for multilinguality. Finally, in the fourth contribution, we proposed and evaluated a
novel aspect: multi-model that stands as a new challenge for existing MDL methods.
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