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Streszczenie
Wydział Elektroniki i Technik Informacyjnych
Szkoła Doktorska Politechniki Warszawskiej

Rozprawa doktorska

Analiza zależności przyczynowo-skutkowych w złożonych wielo-pętlowych
systemach sterowania

mgr inż. Michał Falkowski

Właściwe, wstępne przetwarzanie i warunkowanie surowych danych procesowych
jest kluczowym elementem każdej analizy rzeczywistych, wielkoskalowych pro-
cesów przemysłowych. Uzyskiwane dane są zwykle niekompletne i obarczone licz-
nymi obserwacjami oraz nieznanymi szumami. Często zauważa się wpływ czyn-
nika ludzkiego. Powoduje to wiele nieścisłości, które mogą mieć wpływ nie tylko
na samą analizę, jak również interpretację uzyskanych wyników.

Powyższe ma szczególne znaczenie w znajdowaniu błędnych obserwacji, które
mogą łatwo rozprzestrzeniać się pomiędzy jednostkami procesowymi, ze względu
na wzajemne powiązania przepływu materiału lub informacji. Problem wykry-
wania i izolowania błędów dla tych procesów jest ściśle związane z analizą przy-
czynowo-skutkową.

Rozwiązaniem może być zastosowanie Analizy Przyczynowości. Metody te mają
na celu znalezienie związku przyczynowo–skutkowego między różnymi sygnałami
i ścieżkami błędu, przy użyciu wybranych zestawów danych i/lub informacji proce-
sowych. Ten rodzaj analizy jest używany w wielu aspektach inżynierskich i nieinży-
nierskich. W przypadku rozważanego obszaru inżynierskiego, analityka danych
może być z powodzeniem wykorzystywana do tworzenia złożonych modeli ukła-
dów przemysłowych, składających się z wielu pętli sterowania, uczestniczących
w kompleksowym zadaniu sterowania. Kluczowym elementem jest znalezienie
odpowiednich relacji między jego składowymi.

Kilka metod zapewnia skuteczne rozwiązanie tego problemu zakładając wys-
tępowanie zależności liniowych. Niestety, rzeczywiste procesy przemysłowe wyka-
zują właściwości nieliniowe. Znaczące i nieznane nieliniowości ograniczają możliwe
podejścia, gdyż niektóre z założeń mogą nie zostać spełnione. Rezygnacja z podejś-
cia opartego na modelu uniezależnia rezultat metody od możliwego błędu modelu,
co stawia badania po bezpiecznej stronie, stąd rozważane metody ograniczają się
do tych niewymagających modelu.

W pracy przedstawiono wyniki analizy przyczynowo-skutkowej propagacji błę-
dów regulacji z wykorzystaniem podejścia Transfer Entropy. Przygotowano kom-
pleksową metodologię, a także pomyślnie ją zweryfikowano przy pomocy symula-
cyjnych i rzeczywistych danych procesowych. Pierwszym wyborem do analizy jest
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podstawowa wersja Transfer Entropy. Wkład naukowy stanowi odejście od klasy-
cznej definicji omawianej metody poprzez nietypowe podejście do funkcji rozkładu
prawdopodobieństwa, będącej podstawą jej działania. Towarzyszy temu szeroko
pojęta analiza danych, obejmująca proces dekompozycji na różnych poziomach.

Słowa kluczowe: Transfer Entropy, propagacja błędów, wartości odstające, przy-
czynowość, wielkoskalowe systemy przemysłowe, dane procesowe, metody oparte
na danych
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Proper pre-processing and conditioning of raw process data is a key element in any
kind of analysis of real large-scale industrial processes. The acquired data is usu-
ally incomplete and affected by numerous observations and unknown noises. The
influence of the human factor is also often observed. This causes many inaccuracies
that may affect not only the analysis itself but also the interpretation of the obtained
results.

The above is of particular importance in finding faulty observations that can
easily propagate between process units due to the interconnections of material or
information flows. The problem of fault detection and isolation for these processes
is strictly related to the root cause analysis.

The solution may be found in the use of Causality Analysis. These methods aim
at finding a root-cause relationship between different signals and fault paths, us-
ing given datasets and/or process information. This kind of analysis is used within
many engineering and non-engineering contexts. In the case of the considered en-
gineering area, data analytics can be successfully used to create complex models of
industrial plants, consisting of many control loops participating in the overall pro-
cess control task. The key element is to find proper relations between its elements.

Several methods provide effective solutions to this problem under the assump-
tion of linear relationships. Unfortunately, real industrial processes exhibit nonlin-
ear properties. Significant and unknown nonlinearities limit possible approaches,
as certain assumptions might not be met. The resignation from the model-based
approach makes the result independent of the possible error of the model, which
puts the research on the safe side, and thus the considered methods are limited to
the model-free ones.

This work presents the results of Root Cause Analysis of control errors propa-
gation using the Transfer Entropy approach. The comprehensive methodology is
prepared and successfully validated with simulation and real process data. The
first choice for the analysis is the classical Transfer Entropy approach. The scientific
contribution is a departure from the classical definition of the discussed method by
using an unusual approach to the probability distribution function, which is the ba-
sis of its performance. This is accompanied by a broadly understood data analysis,
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including the decomposition process at various levels.

Keywords: Transfer Entropy, fault propagation, outliers, causality, large-scale
industrial systems, process data, data-driven methods
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Chapter 1

Introduction

The field of “causality” has seen much activity in recent years, both in its foun-
dational and theoretical aspects and in industrial applications. However, it remains
rare to draw the distinction (recognized by Rubin, 1974) between two different prob-
lem areas within it: assessing (in individual cases, or in general) the likely effects of
applied or considered interventions - the problem of “effects of causes”, EoC; and
assessing, in an individual case, whether or not an observed outcome was caused
by an earlier intervention or exposure - the problem of “causes of effects”, CoE.

Philosophers have debated causality for millennia, and have propounded a large
variety of conceptions and approaches. Statisticians, on the other hand, had tradi-
tionally been reluctant to imbue their inferences with causal meaning. But in re-
cent years much more attention has been given to what exactly represents the term
“causality”. Particularly influential have been the contributions of Rubin, 1974, who
promoted a formulation based on “potential outcomes”, and of Pearl, 2009, based
on graphical representations.

Implicit in both these approaches is the idea of a cause as an intervention applied
to a system, in line with the “agency” interpretation of causality (Reichenbach, 1956;
Price, 1991; Hausman, 1998; Woodward, 2003; Woodward, 2016). The main task for
causality is to make inferences about the effects - that is, understanding the “effects
of causes” - based on data. When making use of data, it is important to distinguish
between data generated through dedicated experiments and purely observational
data.

These considerations concern mainly humanities (in particular, philosophy). With
the growing interest in the subject, the considerations moved to other fields of life
sciences, e.g. medicine, economics, or even meteorology. The engineering sciences
are also not omitted, but the nature of causality is understood in a different way.
The purpose of the analysis, in this case, is to find the cause in the sense of root
cause error (or fault), the phenomenon of "effect" is known or often predicted using
other available methods. In engineering applications, causality is always accompa-
nied by the concept of relationship and "correlation". It is important to note that
"correlation" does not imply "causality". Even if two variables are found to be cor-
related, it does not necessarily say much about the root-cause relationship. None of
the analyses would make sense without data generated artificially (simulations) or
obtained from industrial plants (processes). In the second case, we are dealing with
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Chapter 1. Introduction

very complex objects, resulting in a huge amount of collected data or observations.
However, the real causality relations might be unclear or unknown, even though the
technological structure of the process is well known.

Over the years, many methods have been developed to deal with this issue. They
can be generally divided into those requiring a model of the tested object and the so-
called model-free approaches. In practice, in the root cause analysis, the appropriate
data-based method should be selected carefully based on known process dynamics,
the available data, and the type of error. In the literature, there may be many exam-
ples of often conditional solutions, like cross-correlation analysis, Granger causality
and its extensions, frequency domain methods, information-theoretical methods,
and Bayesian nets. One should consider whether they are sufficient. The Transfer
Entropy approach has been successfully used in simulation (theoretical) applica-
tions, but it is hard to find publications based on real industrial cases. The prelim-
inary analysis of the topic shows the enormous potential of the chosen method in
this case. Combined with the multithreading associated with data analysis, the con-
ducted research sheds light on its hitherto unconsidered possibilities. It seems that
engineers are not interested in causality, only relationships, which in fact gives no
answer to the doubts that arise.

The document is organized in the following order. Chapter 2 describes the ra-
tionale of the problem and argues the legitimacy of searching for solutions to the
considered problem. Chapter 3 presents selected methods, to which the authors of
publications most often refer, exploring the issues of root cause analysis. Chapter 4
describes the simulation system used in calculations and presents a real industrial
system as a case study example. Chapter 5 presents the results of the research car-
ried out on simulation data, using the Transfer Entropy method in its basic version.
Chapter 6 introduces the consideration of the parameters’ sensitivity of the selected
method on causality, more precisely, the impact of Probability Density Function fit-
ting on the quality of the results obtained. In Chapter 7, the author focuses on the
nature of the analyzed data that affects the results, and more specifically, the exis-
tence of outliers in the data. Chapter 8 is a continuation of the discussion on the
nature of the data, showing the impact of the components of the analyzed signals
(in this case noises) on the root cause analysis. In Chapter 9, oscillations are used
as another data component for analysis. In Chapter 10, the analytical procedure is
proposed, justified by an industrial example. Finally, Chapter 11 summarizes the
important conclusions based on the entire research process and discusses identified
open research issues.
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Chapter 2

Research rationale

The detection and diagnosis of plant-wide disturbances is a major problem in the
process industry. Because of the high degree of interconnections among different
parts in a large-scale complex system, a simple fault may propagate along informa-
tion and material flow pathways and affect other, even distort parts of the system.
There are several typical reasons for poor process performance, including inappro-
priate controller tuning, process nonlinearity, malfunctioning of actuators and sen-
sors, and severe mismatch in the process control (Braun et al., 2002). Faults that are
commonly caused by an inappropriate control loop operation may lead to low pro-
ductivity of the whole plant, can increase operational costs, and, in the most danger-
ous cases, may result in an unplanned plant shutdown or damage. To determine the
root causes of certain anomalies, it is important to capture the process connectivity
and to find the fundamental connecting pathways. Process data analysis embodies
a broad viewpoint that leads to these types of problems. It is substantially differ-
ent from conventional techniques, although it may not seem so at first. It generally
has the benefit of providing greater insight into the problems under consideration.
The structured and explicit nature of the process data analysis is very helpful in
bringing to light information that can be highly useful in the decision-making of a
given system. Efficient techniques for process analysis and controller assessment
are important for identifying areas for further process and control improvement.

Proper process data analysis strongly depends on key process variables, which
are often interpreted differently among disciplines, datasets, and research contexts.
Signal selection defines the task, and further, impacts potential results. Selecting key
variables and interactions is, therefore, an important step in achieving more accurate
predictions, better interpretation, and identification of key subgroups for further
fault analysis. In large-scale complex systems, the separation of crucial variables for
the analysis becomes the problem itself. There is also a factor related to the nature
of the data - it is sampled from industrial systems that are in most cases nonlinear,
non-stationary, of complex origin, and contaminated by noise. To overcome these
adversities, there are a lot of fault detection research methods that may be used.

The fault detection problem has been an active field of research for the past
decades, because of the ever-increasing demand for higher performance, safety, and
reliability standards. The considerations mainly focused on the optimization of fault
detection systems (Ding et al., 2000; Gao and Ding, 2007; Yin, Ding, and Luo, 2013;
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Chapter 2. Research rationale

Ding et al., 2012), the impact of delays on fault detection (Dong et al., 2011; He,
Wang, and Zhou, 2009; Zheng, Fang, and Wang, 2006), non-linear systems (Dong,
Wang, and Gao, 2012a; Dong, Wang, and Gao, 2012b), complex networks (Gokas,
2000; Ding et al., 2013), basic fault diagnosis (Yin et al., 2012; Yin et al., 2013) or
linear discrete time-varying systems (Zhong, Ding, and Ding, 2010).

Among various process supervision techniques, Fault Detection Diagnosis and
Isolation (FDDI) is a significantly critical method for accomplishing a task to main-
tain a desirable performance in industrial processes, which commonly hold several
kinds of faults. Most industries hope to improve their process performance through
a higher level of FDDI capability. The basic functions of FDDI can be summed up
into two parts, namely (1) monitoring the behavior of the process (variables) and
(2) revealing the fault presence, its characteristics, and its causes. Thus, to maintain
high process yield and throughput in industrial processes, it is necessary to adopt
fast, accurate, and effective detection and diagnosis tools for process or equipment
faults that may degrade the performance of the entire system. Many traditional
FDDI techniques have been developed for checking the existence of a trend or pat-
tern in the process or whether a certain process variable behaves normally or not.
However, they might fail to produce several hidden characteristics of the process
or fail to discover the faults in processes due to underlying process dynamics. The
general implementation procedure of a conventional FDDI can be divided into four
sequential steps as shown in Figure 2.1.

Industrial
processes
or system

Data collection
and

analysis

Feature extraction
and

selection

Model selection,
training,

and validation

Feedback (corrective actions)

FIGURE 2.1: Implementation procedure of a conventional FDDI
method

Fault diagnosis is a comprehensive task, as it has to determine fault type, fault
size, location of a fault, time of the detected fault, and the behavior of faults through
an appropriate assessment of the faults. Generally, fault diagnosis includes fault
detection, isolation, identification, classification, and evaluation, but sometimes the
combination of fault isolation and identification is called a fault diagnosis step (Park,
Fan, and Hsu, 2020). Focusing on the data-driven FDDI approaches, they have re-
ceived a lot of attention from diverse industries and have been widely applied in
complex industrial process monitoring procedures (Yin et al., 2014; He, Wang, and
Fan, 2018). The systematic categorization of various data-driven FDDI methods ac-
cording to the system characteristics is given in Table 2.1.
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Chapter 2. Research rationale

Among various data-driven FDDI approaches, due to their simplicity and effi-
ciency, Principal Component analysis-based (PCA) and partial least squares-based
(PLS) FDDI methods are recognized as powerful tools to detect and diagnose pro-
cess faults (Ding, 2014). In literature (Yin et al., 2014), one may find several data-
driven methodologies, including design frameworks useful for monitoring and FDDI
used in the process industry. For this, there are introduced process monitoring
schemes to PCA- and PLS-based methods with successive necessary modifications
needed for successful implementation of these schemes. Further, it is proposed to
apply an integrated adaptive residual generation technique into the subspace-based
process monitoring framework to resolve uncertainty problems. Wang et al., 2009
survey fault-tolerant control techniques as well as data-driven FDDI methods. In
particular, they discuss the advances as well as general developments of data-driven
FDDI and knowledge-based FDDI approaches widely used in many dynamic indus-
trial processes. They provide a successful application example and presented future
research directions, including many challenging issues in FDDI.

Yin et al., 2012 reviews several fundamental data-driven process monitoring and
fault diagnosis (PM-FD) methods (PCA, PLS, ICA, and Fisher’s discriminant anal-
ysis (FDA)). In this study, the developments and several characteristics of the men-
tioned data-driven methods are addressed, such as the original ideas, computational
complexities, design, and algorithms in use. Qin, 2012 reviews the advanced devel-
opments of several data-driven PM-FD approaches and their applications. In this
study, the Author discusses the use of a latent variable modeling approach and
its extensions for fault detection. Also, he describes contribution plot approaches
for fault diagnosis and identification and the contribution methods based on a re-
construction technique for fault identification, respectively. Furthermore, fault de-
tectability and identifiability in fault diagnosis are discussed.

It is noted that the successful use of the above-given data-driven FDDI approaches
depends on the identification of analytical models. There is always concern about
noise and robustness, as well as the quality of historical data (Laouti, Sheibat-Othman,
and Othman, 2011). It is mentioned that industrial systems are in the majority of
cases nonlinear, thus there is a need to identify a corresponding nonlinear model.
Nonlinear system identification is the art of determining a model of a nonlinear dy-
namical process by combining information obtained from data with that of physical
insight or available a priori knowledge. There is a range of options in nonlinear sys-
tem identification, and the choice of a particular method depends on the needs of
the analysts, as well as the analyst’s comfort with the fundamental ideas underly-
ing a given tool. At the most basic level, the goal might be to merely identify how
many states or modes are needed to construct a model of the system. With such
information at hand, a more detailed system identification can start. At the more
refined extreme is parametric system identification, for which the form of the dif-
ferential equations of the system is known, but unknown parameters need to be
identified. In between, these two extremes there lie techniques of non-parametric
identification and nonlinear prediction, where the goal might range from revealing
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a nonlinear restoring force characteristic to modeling the dynamic behavior without
determination of the differential equations.

Along with system identification, the model validation should come (Falkowski
and Domanski, 2019b). It is a procedure that should be carried out before any at-
tempt to explain and correct the differences, which have been observed between
the test-derived model and its analytical counterpart. The validation is the process,
which determines whether a given model is capable of describing the behavior of
the system structure if all the individual model parameters are assigned to their cor-
rect values. A model may not be verified if it lacks certain features or degrees of
freedom, which are present in the actual structure since, in this case, no amount of
parameter correction can compensate for the errors embedded in the basic model.
Models can be validated through the comparison of the responses of the model with
the responses of the system to be identified. If possible, it is a good idea to use data
separate from those used during the identification. Nonlinear system responses can
be compared by characterizations of their responses, which is another research area.
The nonlinear response can be very sensitive to the parameter estimation approach,
modeling errors, and even the initial conditions. As such, validation based on re-
sponses should be performed with caution.

Considering the above, model identification as well as its subsequent validation,
is a problematic and very subjective task (Falkowski and Domanski, 2019a). The
analysis of large-scale industrial processes from the perspective of the control sys-
tem seems to be a more universal approach. It is obvious that the main aim of a
control system is to force a given set of process variables to behave in some desired
and predefined way by either fulfilling some requirements in the time or frequency
domain or achieving the best performances as expressed by an optimization index.
Nevertheless, the scope of the control tasks varies widely. It may be to keep the pro-
cess operation close to the nominal conditions. In other cases, the control purpose
is to transfer the plant from one operating point to another or to track a given refer-
ence signal. In some other cases, the interest lies in how to obtain the best features of
the plant achieving, for instance, the maximum production, minimum energy con-
sumption or pollution, or minimum time in performing a given task. In a general
way, the following control goals might be addressed (Astrom et al., 2001):

• process control (disturbance rejection),

• system setpoint tracking,

• the generation of the sequential procedures (for start-up or shut-down),

• system adaptation (changing some tunable parameters),

• process supervision (changing the operating conditions, structure, or compo-
nents),

• system coordination (providing the operating points),
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• process learning (extracting some knowledge from the experience),

and in that case, the most important is fault detection. It is stated that the con-
trol system of any process plays a critical role in achieving the desired objectives of
the process, whether it is optimizing the process performance or achieving certain
production targets. To perform these tasks, the control system utilizes various sen-
sors to maintain the process. The information generated and used by the control
system is not limited to the control variables. The system also generates valuable
information about the process, such as disturbances, noises, process variability, and
interactions between the different variables. This information is essential for the
proper operation of the control system and can be used to identify and diagnose
various issues that may arise in the process. Therefore, it is crucial to pay atten-
tion to this valuable information that the control system contains and to utilize it for
different analyses. Consequently, the analysis performed from the control system
perspective offers several advantages:

• control system exists and covers major process areas,

• each control loop contains major properties and the most important informa-
tion about the process in a single variable,

• control error variable (an element of the loop) is representative for the loop,
being already detrended, and thus trend-stationary (no trend),

• finally, it is known how to assess a single loop performance – an atom element
of the multi-loop control system.

However, it is not as easy as it seems. Two issues relating to the analysis based
on the control system emerge from the above considerations. The first thing is to
measure control loop performance. In the literature, this issue is referred to as a
Control Performance Assessment (CPA).

CPA adventure started with a simple univariate PID-based loop assessment. The
first adequate report was proposed by (Åström, 1967) for a pulp and paper plant
in 1967 using the benchmarking of process variable standard deviation. Control
assessment solutions have evolved for more than 50 years in different directions,
delivering to the industry mature approaches, measures, and procedures. There
are many different representations of the industrial assessment process. Figure 2.2
shows a generalized diagram of the exemplary CPA industrial application process.

One may find a few methods’ classifications in the literature and block tree di-
agrams visualizing functional similarities and differences. Figure 2.3 presents a
graphical diagram of the generalized classification of the CPA techniques. The in-
dustrial perspective simplifies the picture (Domański, 2020). Simplicity is the main
borderline, i.e., the scope of required a priori knowledge for the utilization of a se-
lected approach. Methods that do not require specific knowledge can be simply
evaluated by delivering a clear message. Again, the authors distinguish between
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FIGURE 2.2: CPA industrial utilization process (Domański, 2020)

data-driven and model-based approaches. There are fundamental traps in the popu-
lar interpretation of these notions. First, each method uses data. Without data, there
is no assessment, and actually, all methods are data-driven. Thereby, one might
distinguish between model-free and model-based approaches. From that perspec-
tive, the majority of techniques are model-based only apart from some integral or
time-based approaches.

FIGURE 2.3: CPA techniques classification (Domański, 2020)
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All the statistical approaches are model-based, as evaluated measures originate
from some probabilistic density function (PDF), which is in fact a model. Thereby,
the notion of the model has to be specified. A common understanding formulated
by Miller and Starr, 1969 is that the model is a representation of reality (the real process).
Consequently, the following classification is used:

• Model-free means that no process model is required;

• Process model-based approaches require performing the modeling of the con-
trolled plant.

Therefore, model-free methods require only plant operational data, contrary to
the process model-based approaches that always need some initial assumptions, for
instance, model type, process delay, or structure. Moreover, the preferred methodol-
ogy must be robust, i.e., it has to be independent of the existing loop characteristics
noises, and statistical properties of the assessed variable. The goal is to measure
internal control quality, not affected by any noise, disturbance, or possible plant
influence of an unknown origin.

Present control performance assessment research encompasses various domains
and applications to control engineering. Different methods’ categories have been in-
vestigated in Betlem and Roffel, 2003; Shardt et al., 2012; O’Neill, Li, and Williams,
2017; Domański, 2020. The classification in Table 2.2 includes a short summary ad-
dressing the above-discussed issues.

Apart from the above items, there exists a group of methods utilizing hybrid or
fusion approaches:

1. mixed CPA measures using sensor combination (Khamseh et al., 2016) or the
Exponentially Weighted Moving Averages (EWMA) evaluated for other in-
dexes (Salsbury and Alcala, 2015);

2. graphic visualization and patter recognition methods (Howard and Cooper,
2010; Dziuba et al., 2018; Domański et al., 2019); and

3. case-specific business Key Performance Indicators (KPIs), e.g., number of alarms
or human interventions, time in manual mode (Knierim-Dietz, Hanel, and
Lehner, 2012), and many other currency-based units (Bauer et al., 2016).

On the other hand, the analysis may not only address the control loop perfor-
mance but may try to explain why the control system is not working properly and
what is the actual cause of the error. It is noted that for both cases CPA analysis
requires error propagation between loops. Therefore, a root cause analysis should
be performed. This type of research is generally known as a Causality Analysis.

The Causality Analysis is the field of experimental design and statistics pertain-
ing to establish the cause and the effect. Typically it involves the establishment
of four elements: correlation, a sequence in time (that is, causes must occur be-
fore their effect), a plausible physical or information-theoretical mechanism for an
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TABLE 2.2: Methods classification based on different applications

Methods that
require plant
experiment

metrics that em-
ploy setpoint step
response

overshoot, undershoot, rise time, peak time, settling time,
decay ratio, offset (steady-state error), and peak value (Spin-
ner, Srinivasan, and Rengaswamy, 2014)

indexes that neces-
sitate disturbance
step response

Idle Index (Hägglund, 1999), Area Index, Output Index (Vi-
sioli, 2006), and R-index (Salsbury, 2005)

Model-based
methods

variance methods minimum variance and normalized Harris index (Harris,
1989), Control Performance Index (Grimble, 2002), and other
variance benchmarking methods (Harris and Seppala, 2001)

model-based mea-
sures

aggressive/oscillatory and sluggishness indexes (Salsbury,
2007)

frequency methods Bode, Nyquist, and Nichols charts, with phase and gain mar-
gins Shardt et al., 2012, Fourier transforms (Schlegel, Skarda,
and Cech, 2013), sensitivity functions (Tepljakov, Petlenkov,
and Belikov, 2012), disturbance ratio index (Alagoz et al.,
2015), and singular spectrum analysis (Yuan, 2015)

alternative methods indexes using neural networks (Zhou and Wan, 2008) and
support vector machines (Pillay and Govender, 2017)

Data-driven
methods

integral time mea-
sures

Mean Square Error (MSE), Integral Absolute Error (IAE)
(Shinskey, 1990), Integral Time Absolute Value (ITAE)
(Zhao, Xie, and Tu, 2012), Integral of Square Time deriva-
tive of the Control input (ISTC) (Zheng, 2007), Total Squared
Variation (TSV) (Yu and Wang, 2016), and Amplitude Index
(AMP) (Spinner, Srinivasan, and Rengaswamy, 2014)

correlation mea-
sures

oscillation detection index (Horch, 1999) and relative damp-
ing index (Howard and Cooper, 2010)

statistical factors utilizing different probabilistic distribution function (stan-
dard deviation, variance, skewness, kurtosis, scale, shape,
etc.) (Choudhury, Shah, and Thornhill, 2004), variance band
index (Li and O’Neill, 2015), and factors of other probabilis-
tic distributions (Zhong, 2003; Domański, 2017; Domański
et al., 2018)

benchmarking
methods

(Hadjiiski and Georgiev, 2005)

alternative indexes wavelets (Nesic et al., 1997), orthogonal Laguerre (Lynch
and Dumont, 1996) and other functions (Jelali, 2013), Hurst
exponent (Pillay and Govender, 2014), persistence measures
(Domański, 2016; Domański, 2019), entropy (Zhang, Jiang,
and Chen, 2015; Zhou et al., 2018; Zhang et al., 2019), mul-
tifractal approaches (Domański and Gintrowski, 2017), and
fractional-order (Liu et al., 2018; Liu, Chen, and Domański,
2020)
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observed effect to follow from a possible cause, and the elimination of the pos-
sibility for common and alternative (”special”) causes. The detection and clarifi-
cation of cause-effect relationships among variables, events, or objects have been
the fundamental question in the majority of natural and social sciences over the
history of human knowledge. It is studied in dozens of high-impact domains in-
cluding education (Dehejia and Wahba, 1999; Heckerman, Meek, and Cooper, 2006;
Hill, 2011; LaLonde, 1986), medical science (Mani and Cooper, 2000; al., 2013), eco-
nomics (Imbens, 2004), epidemiology (Hernan, Brumback, and Robins, 2000; Her-
nan and Robins, 2020; Robins, Hernan, and Brumback, 2000), meteorology (Ebert-
Uphoff and Deng, 2012), and environmental health (Li, Zaiane, and Osornio-Vargas,
2014). Limited by the amount of data, solid prior causal knowledge is necessary to
learn the causality. Researchers perform studies on data collected through carefully
designed experiments, where solid prior causal knowledge is of vital importance
(Heckerman, Meek, and Cooper, 2006).

There is no universally accepted definition of causality. The causality can be un-
derstood in terms of a "flow" among processes and expressed in mathematical lan-
guage and mathematically analyzed. Most of the earlier research literature attempts
to discuss unique causes in deterministic situations, and two conditions are impor-
tant for deterministic causation: (i) the necessity: if X occurs, then Y must occur,
and (ii) the sufficiency: if Y occurs, then X must have occurred. However, determin-
istic formulation, albeit appealing and analytically tractable, is not in accordance
with reality, as no real-life system is strictly deterministic (i.e. its outcomes cannot
be predicted with complete certainty). Thus, it is more realistic if one modifies the
earlier formulation in terms of likelihood (i.e. if X occurs, then the likelihood of Y
occurring increases). The first definition of causality, which could be quantified and
measured computationally, yet very general, is given by Wiener, 1956: “For two si-
multaneously measured signals, if we can predict the first signal better by using the
past information from the second one than by using the information without it, then
we call the second signal causal to the first one". The introduction of the concept of
causality into the experimental practice, namely into analyses of data observed in
consecutive time instants, time series, is due to Clive W. J. Granger, the 2003 Nobel
prize winner in the economy. In his Nobel lecture (Granger, 2003) the Author recalls
the inspiration from Wiener’s work and identifies two components of the statement
about causality:

• the cause occurs before the effect; and

• the cause contains information about the effect that is unique and is in no other
variable.

As Granger puts it, a consequence of these statements is that the causal variable
can help to forecast the effect variable after other data has been first used (Granger,
2003). This restricted sense of causality, referred to as Granger Causality, GC there-
after, characterizes the extent, to which a process X is leading another process Y,
and builds upon the notion of incremental predictability (see Section 3.1.2).
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In physics and nonlinear dynamics, a considerable interest recently emerged in
studying the cooperative behavior of coupled complex systems (Pikovsky, Rosen-
blum, and Kurths, 2001; Boccaletti et al., 2002). A nonlinear extension of the Granger
causality approach is proposed by Chen et al., 2004 using local linear predictors. An
important class of nonlinear predictors is based on the so-called radial basis func-
tions (Butte and Kohane, 2000), which have been used for nonlinear parametric ex-
tension of the Granger causality concept (Ancona, Marinazzo, and Stramaglia, 2004;
Marinazzo, Pellicoro, and Stramaglia, 2006). A non-parametric method to measure
the causal information transfer between systems is proposed by Schreiber, 2000. His
Transfer Entropy (TE) is designed as a Kullback–Leibler distance of transition proba-
bilities (see Section 3.1.4). This measure is in fact an information-theoretic functional
of probability distribution functions. It is used in climatology (Mokhov and A., 2006;
Verdes, 2005), in physiology (Verdes, 2005; Katura et al., 2006), in neurophysiology
(Chavez, Martinerie, and Le Van Quyen, 2003), and also in the analysis of financial
data (Marschinski and Kantz, 2002), but never widely utilized in industrial engi-
neering applications.

It is still possible to divide the methods into those, which are based on the model
of an object and the model-free concepts. Among the previously developed as well
as new solutions regarding causality, it would seem that the current spectrum of
approaches in this research area is sufficient to conduct analyses in various fields of
science. However, returning to engineering issues, causality concerning intercon-
necting control loops in complex multi-loop systems, as well as their propagation is
associated with the existence of uncertainties and risks resulting from the nature of
the analyzed signals. Control error signals may exhibit unknown properties. They
can be crucial in proper root cause analysis and correct interpretation of the results.
The most common, affecting the quality of the analysis, are:

• noises with the unknown stochastic process behind the data,

• outlying observations, and

• process data oscillations.

There are many intriguing questions that raise about this topic:

• How can we detect these phenomena?

• How do they affect the causality analysis?

• How should we circumvent or exclude them?

• How should we use them and what information do they bring into the picture?

These underlying questions accompanied by some of the minor issues are an-
swered in this research. With the condition that the approach to the analysis of
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large-scale industrial plants should be as general and universal as possible, the au-
thor focuses on the model-free Transfer Entropy method, which belongs to the group
of data-driven methods. By avoiding the modeling issue, it is possible to reduce un-
necessary degrees of freedom and potential base errors. The accuracy of a diagnosis
depends not only on the diagnostic algorithm but also on the identification method
used, making it crucial to consider these factors in the analysis. Relying solely on
modeling can introduce a high complexity and lead to errors that may negatively
impact the accuracy of the diagnosis. The following chapters present the charac-
teristics of the most commonly used methodologies, at the same time justifying the
choice of the TE method, through the analysis of simulation and real datasets.
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Chapter 3

The research area review

Figure 3.1 illustrates a control system layout of a single-element control loop and
presents its components, including a sensor, a controlled process, an actuator, and
its controller. The main objective of the control system is to influence the behavior
of the process in a desired way. The process produces an output that needs to be
controlled, through the controller actions that aim at maintaining the measured pro-
cess variable (CV) at a specified value defined by the setpoint (SP), and by taking
into account (and rejecting) any disturbances impacting the process. The actuator,
which contains the final control element, receives the controller output (OP) signal
and influences the process in the desired manner.

FIGURE 3.1: Component block diagram of a single element closed-loop
system (Jelali, 2013)

To achieve the desired process control performance, it is crucial that all compo-
nents of the control system function properly, and moreover their design is appro-
priate. However, ensuring the correct operation of each component is not a trivial
task, even for a single-element control loop. From the perspective of a loop assess-
ment, we need to identify and use specific information about its performance. We
need to select the representative variables.

Considering a single-loop control system, the control error is considered the most
valuable type of signal. This is because it is trend-stationary (Clements and Hendry,
2001). It means that it exhibits a stationary mean value over time, but has a non-zero
covariance. There are several advantages of this property (Cochran, 2017):
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1. Improved accuracy: Trend-stationary control error signals can help to provide
a more accurate representation of the system’s behavior by accounting for both
the mean and variance of the error over time.

2. Better identification of system dynamics: By analyzing the trend or pattern
of the control error signal, it is possible to gain insight into the underlying
dynamics of the system, including the effects of external disturbances and
changes in system parameters.

3. Enhanced control performance: Trend-stationary control error signals can be
used to improve control performance by providing information that can be
used to adjust control parameters and compensate for errors.

4. Increased stability assessment: Analyzing trend-stationary control error sig-
nals can help to identify instabilities in the system and guide the design of
control systems that are more stable and robust.

Therefore, control error is easier to model and analyze mathematically, which
is important in this application. The control error should fluctuate around zero in
normal situations. If it is not there is a suspicion that the process is nonlinear or the
control system is not designed properly (wrong operating point).

...

FIGURE 3.2: Component block diagram of a network of single-loop
systems

The process industry typically comprises dozens of interconnected control loops
(Figure 3.2). Such systems are called multi-loop. It is an enormous challenge to
monitor and maintain top performance in such a situation. Sensors in large-scale
industrial installations measure and record the values of process variables, generat-
ing multiple sets of respective time series (Lindner, Auret, and Bauer, 2017). This
manifests in many challenges that must be faced during an analysis of the complex
installation. This applies to both the method and the data. Therefore, both aspects
must be addressed in the methodology.
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Causality analysis should basically take into account the topology of the installa-
tion. It aims to reveal the relationships between respective control errors’ time series
and helps identify potentially causal connections between them. There are several
techniques available for causality analysis used in control engineering, ranging from
simple correlation methods to complex data-driven approaches. In this thesis, the
author highlights the most popular and commonly used methods in the field. To se-
lect the appropriate approach it is required to start from the review of available tech-
niques (Yang and Xiao, 2012). Section 3.1.1 describes the cross-correlation method,
which involves the analysis of the similarity between two time series by shifting one
of them and calculating the correlation coefficient. Section 3.1.2 presents the Granger
causality method, which examines whether the past values of one-time series pro-
vide significant information for predicting the future values of another time series.
Section 3.1.3 discusses the partial-directed coherence method, which measures the
direct causal influence between two-time series, while taking into account the influ-
ence of other variables. However, the author places more emphasis on the Transfer
Entropy approach, which is not widely applied in process analysis but serves as the
basis for the analyses presented in this thesis. Section 3.1.4 delves into this method,
which measures the amount of information that a time series provides about the
future behavior of another time series, taking into account the influence of other
variables. Discussion on the available solutions aims to present both their advan-
tages and disadvantages concerning the Transfer Entropy approach that is chosen
for the analysis.

Causality analysis is a critical tool for process analysis that aims to identify causal
connections between different control errors’ time series. However, the reliability
and the accuracy of the results obtained using the Transfer Entropy method heavily
depend on the accurate estimation of the Probabilistic Density Function (PDF) of the
data. PDF can have a variety of non-Gaussian forms, and as such, understanding
their impact on the results is critical. Unfortunately, research on alternative distri-
butions in a control engineering context is limited, which limits our understanding
of how different PDFs may affect the accuracy of the Transfer Entropy estimates. It
is also important to note that fitting the distribution to the data is necessary, but not
sufficient to guarantee optimal method performance. The fitting itself can be done
using different approaches, like:

• the maximum likelihood (Coles and Dixon, 1999),

• the method of moments (“Method of Moments” 2008),

• the Goodness-of-Fit (D’Agostino and Stephens, 1986),

• the Q-Q plot method (Wilk and Gnanadesikan, 1968),

• the Least Squares estimation (Mert Kantar, 2015), or

• the L-moment Ratio Diagram (Hosking, 1990).
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While this step helps to minimize the impact of data irregularities, it does not
necessarily ensure that the results obtained are accurate. Therefore, it is important
to carefully evaluate the quality of the estimates obtained and to take into account
the limitations and assumptions of the Transfer Entropy method, which further uses
these PDFs. Improving our understanding of the PDF and its impact on the TE esti-
mates is essential across this application. An overview of the considered Probability
Density Functions is included in Section 3.2.

After taking into account the importance of accurate estimation of the Probability
Distribution Function in the Transfer Entropy approach, the next step is to consider
the characteristics of the data itself. Large-scale industrial installations are often
subject to various sources of disturbances, which can affect the behavior of the data.
Contrary to initial assumptions, it cannot always be assumed that the signals do not
exhibit any trend. When the setpoint changes, the control loop responds by adjust-
ing the inputs to the system accordingly. This adjustment can result in significant
changes in the behavior of the control errors, including the appearance of trends. In
industrial applications, this issue is known and very popular. Ignoring it may lead
to inaccurate conclusions and erroneous decisions. The methods of removing the
trend, which are used in this task are described in Section 3.4.

Consistent with the claim that process data contains a lot of useful information,
the presence of noises and oscillations in control errors can provide valuable insights
into the behavior of large-scale multi-loop control systems. Although they are often
perceived as unfavorable and undesirable, these signals can be used to gain a bet-
ter understanding of the underlying processes. It is impossible to clearly say what
is better to analyze and which type of signal better carries important information
– the oscillation or the noise. Fortunately, there are available data processing tech-
niques that can help to separate these effects from the raw data. One such technique
is signal decomposition, which involves breaking down a complex signal into its
constituent parts. This can help to identify noises and oscillations that may be diffi-
cult to discern otherwise. There are two main approaches to the signal decomposi-
tion: time-domain and frequency-domain decomposition. Time-domain decompo-
sition involves separating the signal into different time intervals or segments, while
frequency-domain decomposition involves breaking down the signal into its con-
stituent frequencies. Both approaches have their advantages and limitations, and
the choice of method depends on the specific application and the characteristics of
the signal under consideration. Regardless of the approach used, signal decomposi-
tion is a powerful tool. Section 3.6 describes two considered approaches, which are
used to solve this issue.

Poor tuning of control loops or actuator problems can lead to unstable or os-
cillatory behavior in the control system, which in turn can produce outliers in the
collected process data. These outlying observations or anomalies can be caused by
a variety of factors, including:

• data errors,
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• measurement errors,

• uncoupled disturbances,

• human impact, etc.

The detection, labeling, and processing (eventual removal) of outliers are crucial
for accurate analysis of the real-scale multi-loop control systems. Outliers can signif-
icantly bias statistical measures such as the mean and standard deviation, leading
to incorrect conclusions about the behavior of the system. The most popular and
proven methods related to the discussed issue are z-scores (also known as standard
scores) or 3σ. The z-score is calculated by subtracting the mean of the population
from the individual data point and then dividing the difference by the standard
deviation of the population. This transformation allows the data to be expressed
in terms of standard units, making it easier to compare data points from different
populations or distributions. Z-scores are commonly used in statistical analysis,
particularly in hypothesis testing, where they can be used to determine the proba-
bility that a given observation is due to chance, but also to identify outliers (Prosper,
2015). In the case of 3σ, it refers to three standard deviations above or below the
mean. It is often used as a threshold for detection of outliers or unusual values in a
data set. Specifically, a value that is more than three standard deviations away from
the mean is considered an outlier or a point that is highly unlikely to have occurred
by chance (Hacking, 2001).

Another common statistical method to identify outliers is to use Grubbs’ test or
Dixon’s test, which compares the magnitude of the outlier to the variability of the
data. If the outlier is deemed statistically significant, it can be detected, labeled, and
eventually removed from the data set. Another approach for outlier detection is
to use machine learning algorithms, such as clustering or anomaly detection tech-
niques (Gupta et al., 2014; Mehrotra, Mohan, and Huang, 2017). These methods can
be especially useful when dealing with large and complex data sets. Once outliers
have been identified, they can be replaced with the mean or median value of the
surrounding data points, or using interpolation techniques to fill in the missing val-
ues. In this case, three methods are proposed: extreme studentized deviate (ESD)
(Section 3.5.1), interquartile range method (IQR) (Section 3.5.2), and Hampel filter
(Section 3.5.3).

Chapter 4 lays the groundwork for the research presented in the following chap-
ters by describing the simulation system and the initial analysis of the generated
data, as well as the data obtained from a large-scale industrial installation. A sim-
ulation system is an essential tool for hypothesis testing, algorithms evaluation, or
gaining a deeper understanding of complex systems. The chapter describes the sys-
tem in detail, including the modeling of the process and the generation of data. The
initial analysis of the generated data and the data obtained from the industrial in-
stallation provides valuable insights into the behavior of the system and highlights
the challenges and limitations of the data. This analysis serves as a baseline for the
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subsequent research and provides a context for the results presented in the follow-
ing chapters. Chapter 5, Chapter 6, Chapter 7, Chapter 8, and Chapter 9 present the
results of the research using the methods, algorithms, and approaches described in
the thesis. These paragraphs develop the issues previously described in Chapter 2,
Chapter 3, and Chapter 4, and provide a comprehensive analysis of the identifica-
tion of causal relationships.

Finally, Chapter 10 contains a summary, supported by a case study using inde-
pendent real data, while Chapter 11 presents concluding remarks that result from
the conducted research and analyses.

3.1 Topology capturing methods

In the literature, the causality analysis of complex control systems uses the follow-
ing approaches Cross-correlation (Cc), Granger Causality (GC), or Partial Directed
Coherence (PDC). Apart from those mentioned, the Transfer Entropy (TE) approach
is characterized as the basic method of further research.

3.1.1 Cross-correlation

The cross-correlation approach adjusts the time series of x(t) and y(t) so that there
is a lag between them. The correlation coefficient between the adjusted time series
is calculated, and the procedure is repeated for a range of assumed lags. The corre-
lation FCC

x→y for an assumed lag τ is calculated as shown in Eq. 3.1

FCC
x→y =

1
N − τ

N−τ

∑
i=1

(xi(t)− µi)(yi+τ(t)− µy)

σxσy
. (3.1)

The N represents the number of samples and µ and σ represent the mean and
standard deviation of the time series, respectively. The maximum correlation found
is assumed to be the actual correlation between the time series. The lag that yields
this maximum correlation is treated as an estimate of the time delay between the
variables.

The advantage of the Cross-correlation approach lies mostly in its simplicity and
its low computational demand (Lindner, Auret, and Bauer, 2017). However, the Cc
can only detect linear interaction between time series. In large-scale industrial pro-
cesses, where nonlinear behavior prevails, it may give inaccurate or even opposite
results (Bauer and Thornhill, 2008). Moreover, the trend in a time series is ignored
during the cross-correlation analysis. The data must be stationary, and the trend
introduces non-stationarity (Yang et al., 2014). It means that the correlation between
x(t) and y(t) at a specific lag τ is calculated, and the values of the time series of x(t)
and y(t) are considered as the repeated measurements of the same event, instead
of being measurements in time. This assumption about independent process, con-
sidered as independent realizations, may be hardly met in practice. Real-process
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industrial data often exhibit long-range dependence reflected in their persistence.
This fact is contradictory with the independence assumption, and thus the Cc ap-
plicability is limited. Concluding, there is a high risk of an incorrect analysis of the
real processes and a wrong interpretation of the results.

3.1.2 Granger Causality

The basic idea of the Granger Causality can be traced back to (Wiener, 1956), who
conceived the notion that, if the prediction of one time series could be improved
by incorporating the knowledge of a second one, then the second series is said to
have a causal influence on the first one (Chen, Bressler, and Ding, 2009). Later
Granger’s formalization of this prediction idea in the context of linear regression
models (Granger, 1969), says that regression of a variable on lagged values of itself
is compared with the regression augmented with lagged values of the other vari-
able. If the augmentation is helpful for better regression, then one can conclude that
this variable is Granger-caused by another variable. For a better understanding, let’s
consider two variables (as time series), x(t) and y(t), that are jointly stationary. y(t)
is modeled as an autoregressive (AR) (Eq. 3.2), referred as the restricted one

y(t) =
q

∑
i=1

Biy(t− i) + ε̂y(t). (3.2)

Only the past values of y(t) are used to predict future values; q is the model order
defining the time lag, B is the AR polynomial coefficients, and ε̂y(t) is the prediction
error. The unrestricted model of y(t), which uses past values of both x(t) and y(t),
is shown in Eq. 3.3

y(t) =
q

∑
i=1

[Byx,ix(t− i) + Byy,iy(t− i)] + ε̂y|x(t). (3.3)

Byx and Byy represent the model polynomial coefficients, q is the model order.
The Granger Causality is quantified as in Eq. 3.4

FGC
x→y = ln

σ2
ε̂y

σ2
ε̂y|x

. (3.4)

When the prediction of y(t) is not improved with x(t), σ2
ε̂y|x

= σ2
ε̂y

and FGC
x→y = 0.

When the prediction of y(t) is improved by including x(t), σ2
ε̂y|x

< σ2
ε̂y

and FGC
x→y > 0;

x(t) is then said to be the Granger-cause y(t).
The Granger Causality is characterized by its simple implementation and high

efficiency when investigating causal relationships. Since the regression is common,
the concept is easy to understand. Despite this, the method has its limitations, espe-
cially according to real-scale applications. The main one is associated with linearity,
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thus in non-linear situations, the use of the Granger Causality is limited (Bressler
and Seth, 2010). It means that the approach requires linear stochastic and wide-sense
stationary (WSS) time series (Granger and Newbold, 1974). The causality measure
accuracy depends on the exact regression model structure and their proper identi-
fication. The use of regression models introduces limitations to their applicability.
The first is the prohibition of correlation, i.e. noise cannot be correlated with the
input. This forces the analysis of open control loops and thus excludes the analysis
of closed loops. The second limitation is the assumption that we deal with Gaussian
disturbances. In large-scale real installations, it is rare. Restrictions also apply to
model identification, and above all to the assumption that the order of the model
polynomial is known. The subjective selection of the order of the polynomial raises
doubts about whether errors in the analysis result from the model error or from the
selected method of capturing the process topology. There are some extensions of the
basic Granger Causality concept, which describes more general forms, but anyway,
it should be used with caution and only in justified applications.

3.1.3 Partial Directed Coherence

Partial Directed Coherence (PDC) belongs to a group of frequency domain methods.
Causality is represented by the energy transfer between pairs of time series at each
frequency (Landman et al., 2014). PDC has been developed to provide a frequency
domain description of Granger Causality (Baccala and Sameshima, 2001) (Section
3.1.2). The evaluation of directional interactions in the frequency domain is espe-
cially useful for a process with oscillatory behavior (Jiang, Patwardhan, and Shah,
2009). Based on time series, the k-dimensional autoregressive model is presented in
Eq. 3.5 x1(t)

...
xk(t)

 =
q

∑
i=1

Bi

x1(t− i)
...

xk(t− i)

+

υ1(t)
...

υk(t)

 . (3.5)

where X(t) = [x1(t), x2(t), . . . , xk(t)] is the vector of k process variables, Υ(t) =
[υ1(t), υ2(t), . . . , υk(t)] is k dimensional vector of the multivariate manipulated vari-
able (MV) noise terms, B1, B2, . . . , Bi are k× k matrices of the model coefficients and
q is the model order. The frequency response is obtained by application of discrete
Laplace transform (Z-transform), setting z−1 = e−jω (Eq. 3.6)

B(ω)X(ω) = Υ(ω), (3.6)

X(ω) = x1(ω)x2(ω) . . . xk(ω), (3.7)

Υ(ω) = υ1(ω)υ2(ω) . . . υk(ω). (3.8)
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The B(ω) is the transfer function of the multivariance autoregressive model (Eq.
3.9)

Bmn(ω) = −
q

∑
i=1

bmn(i)e−jωi (3.9)

and the ∑∑∑ is the noise covariance matrix of the model (Eq. 3.10)

∑∑∑ =

σ2
11 . . . σ2

1k
... . . . ...

σk1 . . . σ2
kk

 , (3.10)

where σcov refers to covariance and σ2 to the variance of the noise terms. It is
assumed that the noise terms are uncorrelated.

If bmn(i) = 0 for all values of i, there is no causality from xm to xn. The Partial
Directed Coherence from variable xm to xn is defined by Eq. 3.11

|π̂mn(ω)| = |Bmn(ω)|√
∑n

m=1 |Bmn(ω)|2
. (3.11)

The PDC is a function of Bmn(ω) alone and does not depend on the noise covari-
ance matrix. It reveals only the power of the direct interactions between each pair
of variables. The Partial Directed Coherence is useful for oscillatory data but still,
an autoregressive model is present. Similar to GC, the causality measure depends
on the accuracy of the model. Slowness in inference and generation of the model
is observed. Computations based on the model are sequential (one at a time), so
there is limited parallelism. Moreover, autoregressive models may introduce artifi-
cial bias when the wrong order is imposed. The PDC also makes assumptions about
the linearity of the underlying dynamics, which limits its accuracy and applicability
in industrial cases. Therefore, the same concerns as for GC apply to PDC and the
method should be used with caution, in situations that fulfill the specific method’s
scope of applicability.

3.1.4 Transfer Entropy

The Transfer Entropy (TE) is an information-theoretic interpretation of Wiener’s
causality definition. In practice, this is a measure of information transfer from one
variable to another that measures the reduction of uncertainty while assuming pre-
dictability (Schreiber, 2000). The basic formula of the TE is given by Eq. 3.12

Tx→y = ∑
yi+h,Yi,Xj

p(yi+h, Yi, Xj) ·
p(yi+h|Yi, Xj)

p(yi+h|Yi)
, (3.12)

where p means the complete or conditional Probabilistic Density Function (PDF),
Yi = [yi, yi−l, . . . , yi−(k−1)l], Xj = [xj, xj−l, . . . , xj−(k−1)l] are considered variables, l is
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a sampling interval, and h is a prediction horizon. Thereby, it is the difference be-
tween information about a future observation of x obtained from the simultaneous
observation of past values of both x and y. The information about the future of x is
obtained only from the past values of x. It gives a good sense of the causality infor-
mation without the need for any a priori process information, like a delay (Yang and
Xiao, 2012). The phenomenon of bi-directional entropy in flow is highly probable.
That is why a measure described as Tx→y = Tx|y − Ty|x is decisive due to quantity
and direction, which is causality.

The practical implementation of the Transfer Entropy approach between a pair
of variables according to Eq. 3.12 requires its simplification to the form presented in
Eq. 3.13

Tx→y = ∑
yi,yi−τy ,xi−τx

p(yi, yi−τy , xi−τx) ·
p(yi, yi−τy , xi−τx)p(yi−τy)

p(yi−τy , xi−τx)p(yi, yi−τy)
, (3.13)

where p means the conditional PDF, τx and τy are the time delays in x and y,
respectively. In the original formalization, the density function is based on Gaussian
kernel density estimation. If the time series length is short, the τx is set to 1 under
the assumption that the maximum auto-transfer of information occurs from the data
point immediately before the target value in y.

In the classical formulation, Transfer Entropy between two variables (i.e. x and y)
is calculated by function according to the methodology (Schreiber, 2000) presented
in the form of

Tx→y = trans f erEntropy(x, y, τx, τy, Np, Cthumb), (3.14)

where x and y are source time series as 1-D vectors, τx and τy are time delays of
x and y respectively, Np is a number of equally spaced points along each dimension
where probabilities are estimated and Cthumb is the coefficient that adjusts the rule
of thumb (Bauer et al., 2007). The Gaussian distribution is used for the probability
density function in the original algorithm formulation. The function result is Tx→y,
which is the measure of information transfer between two given variables x and y.

Transfer Entropy naturally incorporates directional and dynamical information,
because it is inherently asymmetric and based on transition probabilities (Vincente
et al., 2011). The main advantage of such an information-theoretic functional causal-
ity detection formalization, in principle, does not assume any particular model for
the interaction between variables. Thus, the sensitivity of Transfer Entropy to all or-
der correlations becomes an advantage for exploratory analyses (Kayser, Sun, and
Desposito, 2009) over model-based Cross-correlation, Granger Causality, or Partial
Directed Coherence approaches. On the contrary, the TE method is a model-free
approach. This is particularly relevant when the detection of some unknown non-
linear interactions is required. In such areas, it is expected that it should give more
accurate and robust results.
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On the other hand, the TE is restricted by a stationary formulation i.e.: the dy-
namic properties of the analyzed process do not change over the set of data used
(Duan, 2014). The assumption that the time series is stationary does not hold and
the noise (which may be nonstationary) is often greater than expected. The approach
uses Probability Distribution Function formulation thus it is highly dependent on its
accurate estimation. PDF can have any non-Gaussian form. Not many studies have
ever been carried out for other distributions, and consequently, the impact of its
change on the quality of the results obtained (Jafari-Mamaghani and Tyrcha, 2014).
Fitting the distribution to the data does not preclude improving the performance of
the method itself. Unfortunately, the resulting computational effort cannot be ne-
glected. Calculations also involve numerous parameters e.g. prediction horizon h
or the embedding dimensions.

Nevertheless, the Transfer Entropy is still a valuable method and offers great
potential in applications in the analysis of real-scale multi-loop control systems. Us-
ing each of the methods described below, a causality diagram representing a given
process can be determined; nodes represent measure variables (in this case, control
loops error outputs), solid lines represent direct causal relationships between vari-
ables, and dashed lines represent indirect relationships (see Figure 3.3).

ε1 ε2 ε3

FIGURE 3.3: The sample layout of causality diagram

3.2 Review of parametric statistical models

The examination of various functions will commence with the standard Gaussian
distribution, followed by the tailed functions of Laplace, α-stable family that in-
cludes the Cauchy function and th t Location-scale (by analogy with the others).
Gaussian normal distribution description is extended with the robust moments’ es-
timators. The choice is made since the mentioned models are well known, com-
monly used, and sufficient for most analyses using statistical approaches, including
both simulation and real data.

3.2.1 Gaussian normal distribution

The normal probability distribution function is represented by a function of x and
requires two parameters: the mean, denoted as µ, and the standard deviation, rep-
resented by σ (3.15). This function is symmetrical, and the mean serves as the offset
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coefficient while the standard deviation determines the scale

FGauss
µ,σ (x) =

1√
2πσ2

e−
(x−µ)2

2σ2 . (3.15)

Both function coefficients, i.e. µ and σ exist analytically. The Eq. (3.16) presents
the results in a discrete-time case

(
x1, . . . , xNp

)
, where Np is a number of data points

mean (x) = µ =
1

Np

Np

∑
i=1

xi, (3.16)

std (x) = σ =

√√√√∑
Np
i=1 (xi − µ)2

Np − 1
. (3.17)

In Figure 3.4 there is an example of the Gaussian normal distribution as a func-
tion of location mean and standard deviation.
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FIGURE 3.4: An illustrative representation of the Gaussian normal dis-
tribution as a function of mean and standard deviation

Changing the mean parameter causes the entire distribution to shift horizontally
along the x-axis. If µ increases, the peak of the distribution shifts to the right, and
if µ decreases, it shifts to the left. The mean represents the expected value of the
distribution. Altering the standard deviation impacts the spread or dispersion of the
data. When σ increases, the distribution becomes wider, and data points are more
spread out from the mean. Conversely, if σ decreases, the distribution narrows,
and data points cluster closer to the mean. Changes in µ and σ also influence the
skewness and the kurtosis of the distribution.

The skewness is a statistical measure that quantifies the asymmetry or lack of
symmetry in the probability distribution of a dataset. In essence, it assesses the
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extent to which the data deviates from a perfectly symmetrical, bell-shaped, normal
distribution. The formula of skewness is given by Eq. 3.18

skewness (x) = β =
1

Np

Np

∑
i=1

(xi − µ)3

σ3 , (3.18)

where µ is mean, σ is standard deviation, and Np is the number of data points.
It is computed by examining the third standardized moment of a dataset. The

standardized moment is calculated by dividing the third moment (the average cubed
deviation from the mean) by the cube of the standard deviation. The resulting value
can be positive, negative, or zero, each conveying specific information about the
distribution.

The kurtosis characterizes the peakedness or flatness of the probability distribu-
tion of a dataset in comparison to a normal distribution. It provides insights into
the shape of the distribution’s tails and the presence of outliers. The formula of the
kurtosis is given by Eq. 3.19:

kurtosis (x) = η =
1

Np

Np

∑
i=1

(xi − µ)4

σ4 , (3.19)

where µ is mean, σ is standard deviation, and Np is the number of data points.
Kurtosis is computed by examining the fourth standardized moment of a dataset,

which is obtained by dividing the fourth moment (the average fourth power of de-
viations from the mean) by the fourth power of the standard deviation.

One important property of Gaussian distribution is that it is sensitive to outliers,
which means that the presence of even a few extreme values can significantly af-
fect the mean and variance of the distribution. On the other hand, a method that
has some similarities to the Gaussian statistical model, but is much more robust, is
Huber’s logistic estimator.

3.2.2 Robust statistics – Huber’s logistic estimator

The existence of outliers in data implies fat tails in their distributions (Domański,
2020). This feature biases the standard estimation of normal moments. There are
many other estimators for the basic moments: i.e. the mean and standard deviation.
The median value is considered as a simple and robust alternative to the mean value

median (x) = µ̃ =


x Np

2 :Np
+x Np

2 +1:Np
2 if Np is even,

x Np+1
2 :Np

if Np is odd,
(3.20)
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where x1:Np 6 x2:Np 6 · · · 6 x2:Np are the ordered observations.
There are quite many robust scale estimators (Rousseeuw and Leroy, 1987). In

the considered analysis author uses the M-estimator with Huber ψ-function (Croux
and Dehon, 2014).

Scale M-estimator is obtained by solving Eq. (3.21)

1
Np

Np

∑
i=1

ρ

(
xi − µ̃

γ

)
= κ, (3.21)

where 0 < κ < ρ(∞), ρ(.) is even, differentiable, and non-decreasing on the
positive numbers for the loss function, γ is a scale estimator and µ̃ is a preliminary
shift factor (median). While the logistic ψ function (3.22) is taken as ρ(.) we obtain
the logistic ψ scale estimator

ψlog (x) =
ex − 1
ex + 1

. (3.22)

3.2.3 The family of α-stable distributions

The α-stable distribution lacks a closed-form probability density function and is in-
stead defined through its characteristic function as given in Eq. (3.23)

Fstab
α,β,δ,γ (x) = exp

{
iδx− |γx|α (1− iβ f (x))

}
, (3.23)

where

f (x) =
{

sgn (x) tan
(

πα
2

)
for α 6= 1

−sgn (x) 2
π ln |x| for α = 1

,

0 < α ≤ 2 called the stability index or the characteristic exponent,
|β| ≤ 1 is a skewness factor,
δ ∈ R is a distribution location or shift factor,
γ > 0 is distribution scale.

The α-stable distribution function is described by four parameters: the shift δ,
the scale γ and two shape factors: α and β. However, there are certain special cases,
where the probability density function (PDF) has a closed form:

• α = 2, it represents independent realizations, in particular, when α = 2, β = 0,
γ = 1, and δ = 0, the exact equation for normal distribution is obtained,

• α = 1 and β = 0, it represents the Cauchy distribution, which will be discussed
in detail in the following paragraph, and

• α = 0.5 and β = ±1, it represents the L’evy distribution, which is not included
in the analysis.
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In Figure 3.5 there is an example of the α-stable distribution as a function of
stability index, skewness parameter, location factor, and scale.
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FIGURE 3.5: An illustrative representation of the α-stable distribution
as a function of stability index, skewness, location factor, and scale

Cauchy probabilistic density function

Cauchy PDF is an example of the fat-tail distribution belonging to the family of sta-
ble distributions. The distribution is symmetrical with the following density func-
tion

FCauchy
δ,γ (x) =

1
πγ

(
γ2

(x− δ)2 + γ2

)
, (3.24)

where

δ ∈ R is a distribution shift (offset) parameter,
γ > 0 is distribution scale factor.

In Figure 3.6 there is an example of the Cauchy distribution as a function of
location parameter and scale factor.

The location parameter induces a horizontal shift of the graph along the x-axis,
while the scale factor influences the shape of the curve, making it either more com-
pact or more stretched. A smaller scale parameter leads to a taller and narrower
curve.
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FIGURE 3.6: An illustrative representation of the Cauchy distribution
as a function of location parameter and scale factor

Laplace double exponential distribution

The Laplace distribution, also known as the double exponential distribution, is con-
structed as the difference between two independent variables with identical expo-
nential distributions. Its probability density function is expressed as:

FLap
δ,γ (x) =

1
2γ

e−
|x−δ|

γ , (3.25)

where δ ∈ R is a distribution shift (location) factor and γ > 0 is a scale parameter.
Figure 3.7 demonstrates an illustrative representation of the Laplace double ex-

ponential distribution, influenced by variations in the offset factor and scale param-
eter.

This particular distribution arises from the convolution of two exponential distri-
butions, with one being positively skewed and the other negatively skewed. The off-
set factor is responsible for imparting a horizontal translation to the graph along the
x-axis, whereas the scale parameter governs the curve’s shape, determining whether
it appears more compressed or elongated. A reduced scale parameter results in a
taller and more slender curve. Notably, the Laplace double exponential distribution
exhibits a sharper peak compared to both the normal and Cauchy distributions.

30



3.2. Review of parametric statistical models

-4 -3 -2 -1 0 1 2 3 4

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

L
a

p
,

 = 0,  = 0.5

 = 0,  = 1

 = 0,  = 2

 = -2,  = 1

FIGURE 3.7: An illustrative representation of the Laplace double expo-
nential distribution as a function of offset factor and scale parameter

t Location-scale distribution

The location-scale version of the t-distribution includes more degrees of freedom
than the standard t-distribution. It is described by the following functions:

Ft−LS
δ,γ,ν (x) =

Γ
(

ν + 1
2

)
Γ
(ν

2

)
σ
√

νπ


ν +

(
x− µ

σ

)2

ν

 , (3.26)

where

δ ∈ R is a distribution shift (offset) factor,
γ > 0 distribution scale,
ν > 0 function shape,
and Γ(·) denotes a Gamma function.

The mean of the t Location-scale distribution is defined by δ, and the variance by

var = σ2 ν

ν− 2
. (3.27)

The variance is only defined for values of ν > 2. For other values of ν, the variance
is undefined.

Figure 3.8 illustrates an example of the t Location-scale distribution, with con-
siderations given to variations in the location factor, scale parameter, and shape
parameter.
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FIGURE 3.8: An illustrative representation of the t Location-scale dis-
tribution as a function of location factor, scale parameter, and shape

parameter

The location factor determines the horizontal shift of the distribution along the
x-axis. The scale parameter influences the spread or dispersion of the distribution.
A smaller scale parameter results in a narrower, more peaked distribution, while a
larger scale parameter leads to a broader, more spread-out distribution. The shape
parameter is specific to the t distribution and is responsible for controlling the shape
of the distribution’s tails. It influences the thickness of the tails relative to the center
of the distribution. A lower shape parameter leads to heavier, fatter tails, resem-
bling a Cauchy distribution, while a higher shape parameter results in thinner tails,
approaching the behavior of a normal distribution.

3.3 Review of non-parametric statistical models

Apart from the widely recognized and frequently employed statistical models, alter-
native non-parametric models can be encountered in the literature (Kraskov, Stög-
bauer, and Grassberger, 2004; Lizier, 2014). They are more flexible and can capture
not obvious patterns and relationships that are not captured by the parametric sta-
tistical models. Moreover, non-parametric models may have better generalization
performance, especially when dealing with complex and high-dimensional data.
They can handle situations, where the relationship between variables is nonlinear
or where the interactions are present, leading to more accurate predictions or esti-
mations. Therefore, unusual approaches, such as Darbellay-Vajda, Fixed-Bins, and
Kernel Density Estimation algorithms are characterized.
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3.3.1 Darbellay-Vajda algorithm

The Darbellay-Vajda (DV) algorithm is an adaptive histogram-generating process
that is determined by partitioning the observation space into a finite number of the
non-overlapping rectangular cells that are received by the recursive process (Dar-
bellay and Vajda, 1999). This approach relies on an iterative partitioning of the cells
on the observation space, based on a chi-square statistical test to ensure conditional
independence of the proposed partitioned cells from the rest of the cells.

3.3.2 Fixed-Bins algorithm

The simplest estimation approach to obtain the PDFs is called the Fixed-Bins algo-
rithm. It allocates data points to fixed, equally-spaced bins. To enhance robustness
against outliers and sparse regions in the underlying distribution, there is combined
fixed binning with ordinal sampling (ranking). In ordinal sampling, the two ana-
lyzed time series values are substituted with their ranks in those time series, similar
to most non-parametric statistical tests (Lee et al., 2012). The ranks are integers
ranging from the smallest to the largest value. The difficulty arises in selecting the
optimal number of quantization levels Q for the analyzed pair of signals (i.e. x and
y) in the Fixed-Bins algorithm due to the lack of a priori knowledge regarding cou-
pling time lag.

To select the optimal quantization level Q for the analyzed pair of signals x and
y, the constant time lag for signal y is set, and a significant information transfer is
observed while increasing the time lag in x. This observation highlights the impor-
tance of appropriately adjusting the time lag to capture the underlying relationship
between the signals. The example of a parameter Q selection for the fixed-bins al-
gorithm is presented in Figure 3.9.

FIGURE 3.9: Parameter selection for the fixed-bins algorithm (taken
from Lee et al., 2012)

The example in Figure 3.9 reveals that the highest Transfer Entropy values are
obtained at a specific time lag, τ = 2, indicating a notable information flow between
the signals at this particular delay. Selection of the quantization level is based on the
relatively highest Transfer Entropy coefficient. In this case, it will be Q = 4.
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3.3.3 Kernel Density Estimation algorithm

Kernel Density Estimation (KDE) is utilized to produce a smoothed PDF estimation
using the data samples, which stands in contrast to the histogram model which has
sharp edges resulting from a uniform distribution within each bin (Gencaga, Knuth,
and Rossow, 2015). In this method, a preselected distribution of values around each
data sample is summed to obtain an overall, smoother PDF in the data range. This
preselected distribution of values within a certain range is known as a ”kernel” (Sil-
verman, 1986). Some of the most commonly used kernels are Rectangular or Gaus-
sian. Each kernel can be thought of as a window with a bandwidth or radius. Even
if a Gaussian kernel is used, the resulting entropy estimation is more accurate com-
pared to the classic histogram approach (Prichard and Theiler, 1995). The problem
is that this method has a free parameter, λ, which is a multiplier for scaling in PDF
based on Gaussian Kernel Density Estimation and must be selected to estimate the
neighborhoods (Kugiumtzis, 2009; Prokopenko and Lizier, 2014).

The selection of this parameter is similar to choosing the fixed bins width in a
histogram. The constant time lag for signal y is set, and a significant information
transfer is observed while increasing the time lag in x. The example of a parameter
λ selection for the KDE algorithm is presented in Figure 3.10.

FIGURE 3.10: Parameter selection for the KDE algorithm (taken from
Lee et al., 2012)

The observed significant information flow between the signals is specifically ob-
served at a time lag of τ = 2, which is supported by the highest Transfer Entropy
values obtained at this particular delay. This finding justifies the choice of the pa-
rameter λ = 1.5, as it corresponds precisely to the quantization level that yields the
relatively largest Transfer Entropy value.

3.4 The trend identification

The trend identification and its removal can be made by using the most common
polynomial interpolation. It is a powerful mathematical tool for approximating
functions and estimating values within a given range. Polynomial interpolation

34



3.5. Outliers detection

is typically performed using a process called Lagrange interpolation. This involves
constructing a polynomial that passes through each of the data points, by finding
a set of coefficients that satisfy certain conditions. The degree of the polynomial is
determined by the number of data points being used for the interpolation.

Choosing the right ith polynomial degree is a contentious issue. Objective eval-
uation of a selection of appropriate polynomial degrees is carried out by applying
the concept used for a different task and presented in (Taleb, 2020). An increasingly
complex trend is set, and then after its removal, the mean absolute deviation (MAD)
of a signal is calculated (Falkowski, 2022). It is expressed as:

MAD (x) =
1

Np

Np

∑
i=1
|xi − µ|, (3.28)

where µ is mean and Np is the number of data points.
If MAD converges to a relatively small and constant value, then an order of the

polynomial is determined. Regardless of the selected degree for the analyzed sig-
nal, its MAD may not change significantly. This is why polynomial interpolation is
sensitive to noise in the data, and may not always produce accurate results. In some
cases, setting the right polynomial order is impossible, and alternative interpolation
methods, such as spline interpolation or radial basis function interpolation, may be
more appropriate.

The spline interpolation, which is defined piece-wise by polynomials (Schumaker,
1981), has the ability to handle non-uniformly sampled data and can be used to ex-
trapolate beyond the boundaries of the data. This is especially useful when dealing
with noisy or incomplete data sets. This method works by constructing a series of
piece-wise polynomial functions that smoothly connect the data points. These poly-
nomials are selected in such a way that they minimize the curvature of the function
between the data points, resulting in a smooth and continuous function. An advan-
tage of spline interpolation is that it allows for the easy computation of derivatives
and integrals of the interpolated function, which is useful in this application. Spline
interpolation offers a powerful alternative that is flexible, robust, and can handle a
wide range of data sets.

3.5 Outliers detection

An outlier is a strange occurrence commonly named as ”an observation which deviates
so much from other observations as to arouse suspicions that it was generated by a differ-
ent mechanism” (Hawkins, 1980). This phenomenon has a significant effect on data
analysis. They increase signal variance and reduce the power of statistical tests dur-
ing performed analysis (Osborne and Overbay, 2004), destroy signal normality, and
introduce fat tails (Taleb, 2020) and bias regression analysis (Rousseeuw and Leroy,
1987). Outliers come from erroneous observations or inherent data variability.
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Outliers should be detected during data analysis to label them for further activi-
ties. In the current work, the detection of abnormal data behavior is used to "clean"
data from the outliers before the core process of the root cause analysis. It is shown
that outlier detection improves causality analysis. Three approaches are used: gen-
eralized extreme studentized deviate (ESD), interquartile range method (IQR), and
Hampel filter. Their description is presented below.

3.5.1 Extreme studentized deviate

The generalized extreme studentized deviate test (Rosner, 1983) can be used to find
one or more outliers in data originating from an approximately normal distribution.
It assumes the upper limit of the outliers number. Knowing the upper limit of the
outliers number, No, the test performs No separate tests (similar to Grubb’s test):
for one, for two, and so on up to No outliers. Generally, the extreme studentized
deviate test is the sequentially applied Grubb’s test. However, it performs appro-
priate tunings for critical values taking into account the number of tested outliers.
Finally, it is robust to the significant masking effect. Detected outliers are replaced
by threshold-level values.

3.5.2 InterQuartile Range method

The majority of data is not normal enough to be considered as drawn from a normal
distribution. A possible statistic is the IQR approach (Whaley, 2005) in such a case.
It is evaluated as a difference between upper 75th (Q3) and lower 25th (Q1) percentile
of a dataset. IQR may be used to find outliers. They are considered as observations
that fall below LL = Q1− 1.5 or above HH = Q3 + 1.5 thresholds. Detected outliers
are replaced by threshold-level values.

3.5.3 Hampel filter

Hampel filter (Pearson, 2005) as such is a sliding window version of the classical
MDist (3σ) algorithm with a median estimator of location. The MDist uses the well-
known property of the normal distribution that if x is distributed with N(µ, σ2),
then z = (x − µ)/σ is distributed with N(0, 1). Thereby, one may use the Z-scores
of the observations x1, x2,. . . , xN,

zi =
xi − µ

σ
(3.29)

as an algorithm to label outliers.
The common rule labels MDist that exceed 3 in absolute value as outliers. Gen-

erally, the Hampel filter is used to detect local outliers. Being a standard median
filter with a symmetric moving window it uses one parameter: the window width.
Detected outliers are replaced by the median of neighbors within the window.
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3.6 Data decomposition methods

During the analysis, two decomposition approaches are considered: Ensemble Em-
pirical Mode Decomposition (EEMD) and its extension Median Ensemble Empirical
Mode Decomposition (MEEMD).

3.6.1 Ensemble Empirical Mode Decomposition

Since there is usually noise and signal intermittency in real-world data, it causes
mode mixing and mode splitting (MS) using EMD method. To avoid this issue the
Ensemble Empirical Mode Decomposition (EEMD) (Wu and Huang, 2009) is pro-
posed. EEMD belongs to a class of noise-assisted EMD methods that are the most
powerful tools for performing time-frequency analysis (Mandic et al., 2013; Rehman
and Mandic, 2009). Those are aimed at alleviating mode mixing caused by noise and
signal intermittency and can be successfully used in the noise and oscillation iden-
tification process.

3.6.2 Median Ensemble Empirical Mode Decomposition

Median Ensemble Empirical Mode Decomposition (MEEMD) is a variation of the
EEMD algorithm that uses the median operator instead of the mean operator to
ensemble noisy Intrinsic Mode Function (IMF) trials (Lang et al., 2020). The use
of this algorithm is a practical extension of the classic EMD and a justified choice
with real-world applications. The EMD method was developed so that data can be
examined in an adaptive time-frequency–amplitude space for nonlinear and non-
stationary signals (Mandic et al., 2013). It decomposes the input signal into a few
Intrinsic Mode Functions and a residue. The given equation will be as follows:

I(t) =
NIMF

∑
i=1

IMFi(t) + ResNIMF(t), (3.30)

where I(t) is the multi-component signal. IMFi(t) is the NIMF
th intrinsic mode

function, and ResNIMF(t) represents the residue corresponding to NIMF intrinsic
modes. The proposed median EEMD (MEEMD) algorithm, defines the median op-
erator as:

median =

{
IMF(t)[(NIMF + 1)/2] – when NIMF is odd,
IMF(t)[(NIMF/2)]+IMF(t)[(NIMF/2)+1]

2 – when NIMF is even,
(3.31)

where IMF(t) denotes the ordered IMF list at time instant t, which is obtained
from NIMF independent noise realizations. Consider a real-valued time series x(t)
and a predefined noise amplitude v, the used MEEMD is outlined in Algorithm 1
(Falkowski, Domański, and Pawłuszewicz, 2022).
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Algorithm 1 Algorithm of MEEMD

1. Generate the ensemble Si(t) = x(t) + vωi(t) for i = 1, ..., NIMF, where ωi(t) ∼
N(0, 1);
2. Decompose every member of Si(t) into NIMFj IMFs using the standard EMD,

to yield the set (di
j(t))

NIMFj
i=1 ;

3. Assemble same-index IMFs across the ensemble using the median operator to
obtain the final IMFs within MEEMD; for instance, the jth IMF is computed as
dj(t) = median(d1

j (t), d2
j (t), ..., dNIMF

j (t)).
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Chapter 4

Description of the systems

In this Chapter, a detailed overview of the simulation system is provided, which is
used to conduct the research. Next, the real industrial system is characterized, called
a case study example, to demonstrate the effectiveness of the analytical procedure
proposed and verified in Chapter 10.

4.1 Description of the simulation system

To perform an analysis of simulation data, a sample multi-loop simulation model
is created in MATLAB Simulink® environment. The model scheme is presented in
Figure 4.1. This model includes different types of processes with their transfer func-
tions taken from Åström and Hägglund, 2000 (PID control benchmarks) and from
Bequette, 2002 (boiler drum model). The system combines feedback PID control
SISO loops, cascaded structures, and feedforward filters. The model consists of five
loops controlled by four PID controllers (R1, R2, R3, and R4) and one PI (R5) con-
troller. The control errors from the loops, denoted in the scheme respectively as ε1,
ε2, ε3, ε4, and ε5, respectively, are the basis for further evaluation. The model in-
corporates the possibility of applying noises. In this case, two variants are given.
First, the simulation data can be distorted by the Gaussian noise, which reflects the
measurement noise (represented by variable σGi), and second, the process may be
distorted by the Cauchy (represented by variable γCi) disturbances as well. Such
fat-tailed noise represents industrial disturbances as shown in Domański, 2015. A
sinusoidal signal can also be added to the Cauchy disturbance to simulate potential
loop oscillations of known frequency to asses their propagation through the multi-
loop structure.

Simulated process transfer functions are in the form of the following linear mod-
els:

G1 (s) =
1

0.15s + 1
, G2 (s) =

0.25 (−s + 1)
s (2s + 1)

, G3 (s) =
1

(s + 1) (0.04s2 + 0.04s + 1)
,

Gd (s) =
−0.25 (−s + 1)

s (s + 1) (2s + 1)
, G4 (s) =

1

(s + 1)4 , G5 (s) =
1

(0.2s + 1)2 e−s. (4.1)
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FIGURE 4.1: Simulation environment presenting multi-loop PID-based
control layout (Falkowski and Domański, 2023)

Feedforward filters that are used to switch setpoint values are defined as:

F3 (s) =
1

4s2 + 3.2s + 1
, F4 (s) =

1
s2 + 1.2s + 1

, F5 (s) =
1

4s2 + 2s + 1
. (4.2)

Three filters are used to shape the fat-tailed disturbances:

Fd3 (s) =
1

2s + 1
, Fd4 (s) =

0.1
s + 1

, Fd5 (s) =
4

2s + 1
. (4.3)

Actually, the perfect or optimal tuning is not a goal of the considered research as
the analysis aims at the propagation of the disturbances in the multi-loop structure.
However, one has to be noticed, that the real industrial loops are seldom well-tuned
(Ender, 1993), and therefore it is better to leave the loops just tuned without any sig-
nificant efforts spent on tuning optimally. Controllers are tuned with the parameters
sketched in Table 4.1.

TABLE 4.1: Tuning parameters of simulated controllers Ri – Matlab PID
implementation in a pararel formulation

i=1 i=2 i=3 i=4 i=5

P 0.2 2 0.13 0.27 0.01
I 0.01 0.2 0.5 0.61 0.2
D 0.02 – 0.08 0.21 –
N 10 – 10 100 –

Due to the occurrence of disturbances in the proposed simulation system, dis-
turbance decoupling is implemented using the industrial design (Domanski, 2020)
with a block diagram and parameters sketched in Figure 4.2.

To simulate the opposite signal as close as possible to the disturbance in order
to compensate it, two first-order inertial terms are used (with time constants T1 and
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FIGURE 4.2: Layout of the industrial realization of the feedforward dis-
turbance decoupling

T2), which are subtracted from each other. The resulting signal is multiplied by the
gain constant K. In order to select the appropriate parameters T1, T2, and K, the
following method can be used (Trewiński, 2018):

1. Identify the disturbance signal and determine its frequency range and ampli-
tude;

2. Choose a value for T1 that is greater than the dominant frequency of the dis-
turbance signal. This will ensure that the first inertial term has a sufficient time
constant to filter out the disturbance;

3. Choose a value for T2 that is less than the dominant frequency of the distur-
bance signal, but greater than the bandwidth of the system under control. This
will ensure that the second inertial term responds quickly to changes in the
system and helps compensate for the disturbance;

4. Adjust the gain constant K to achieve the desired level of compensation for the
disturbance;

5. Test the system with the chosen parameters and adjust as necessary.

It is important to note that this method is not a "one-size-fits-all" solution and
may need to be adjusted for specific systems and disturbances. Additionally, it is
crucial to carefully consider the effects of adding the compensating signal to the
system to ensure stability and avoid unintended consequences. Finally, the selected
parameters are as follows: T1 = 0.001, T2 = 2.0, and K = 2.5.

The generated simulation data with added Gaussian noise are shown in Figure
4.3. The Gaussian noise parameters for each variable σi are presented in Table 4.2.
The purpose of adding Gaussian noise is to simulate the inherent variability that is
present in real-world data. This variability can arise due to several factors, such as
measurement errors, environmental factors, or natural variations in the system.

Figure 4.4 presents the results of a simulation, where both Gauss and Cauchy
disturbances are included. Parameters of each γCi with sinusoidal signal of fre-
quency equals 30 Hz are given in Table 4.2. The purpose of this simulation is to
further investigate the impact of noise and disturbances on the causality results. By
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FIGURE 4.3: Control errors time series for the simulation data including
Gaussian noise
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FIGURE 4.4: Control errors time series for the simulation data including
Gaussian noise and Cauchy disturbance
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TABLE 4.2: Gaussian noise and Cauchy disturbance signals parameters

minimum maximum mean median standard deviation

σG1 0.6444 1.4090 0.9989 1.0040 0.0975
σG2 0.7030 1.3620 1.0020 1.0010 0.0991
σG3 0.5751 1.3290 0.9983 0.9975 0.1018
σG4 0.6910 1.3420 0.9994 1.0000 0.0998
σG5 0.6939 1.3570 0.9988 0.9995 0.0985
γC3 -0.6392 6.8330 3.0230 3.0240 1.2280
γC4 -0.8589 6.7640 3.0310 2.9890 1.2190
γC5 -1.0990 7.1130 2.9910 3.0430 1.2480

combining different types of noise and disturbances, a more complex and realistic
simulation that better reflects the behavior of real-world systems is evaluated.

Root-cause relations between control errors are known, due to the known multi-
loop structure. The true causality diagram for the simulation model is shown in
Figure 4.5. The solid line denotes a direct relationship and the dashed line represents
an indirect relationship.

ε4 ε1 ε2 ε3 ε5

FIGURE 4.5: The actual causality diagram of the simulated benchmark

Histograms are a common tool used in data analysis to visualize the distribution
of a dataset. In the context of control error histograms, they are used to observe
the statistical properties of the data and to evaluate the effectiveness of the control
system. The histograms presented in Figure 4.6, Figure 4.7, Figure 4.8, Figure 4.9,
and Figure 4.10 show simulation data including Gaussian noise with PDF fitting.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

10

20

30

40

50

60

70

80

D
a

ta

histogram

Gauss

Cauchy

-stable

Laplace

Huber

t Location-Scale

FIGURE 4.6: Control error ε1 histogram for the simulation data includ-
ing Gaussian noise with PDF fitting
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FIGURE 4.7: Control error ε2 histogram for the simulation data includ-
ing Gaussian noise with PDF fitting
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FIGURE 4.8: Control error ε3 histogram for the simulation data includ-
ing Gaussian noise with PDF fitting
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FIGURE 4.9: Control error ε4 histogram for the simulation data includ-
ing Gaussian noise with PDF fitting

For comparison purposes, apart from the Gaussian distribution, other distribu-
tions are also presented, i.e. Cauchy, α-stable, Laplace, Huber, and t Location-Scale.
The presence of fat tails in the loop statistical properties suggests that the data has
a higher likelihood of experiencing extreme events than what would be expected
under a normal distribution. When attempting to fit a normal curve to data with fat
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FIGURE 4.10: Control error ε5 histogram for the simulation data includ-
ing Gaussian noise with PDF fitting

tails, the curve underestimates the probability of extreme events and overestimates
the probability of events in the central part of the distribution. This can lead to a
misinterpretation of the data and an overestimation of the variance.

To avoid misfitting and variance overestimation, robust statistical scale estima-
tors should be used. These estimators are designed to be less sensitive to outliers
and extreme events, which can cause standard estimators such as the sample stan-
dard deviation to be biased. Examples of robust scale estimators include the median
absolute deviation (MAD) and the interquartile range (IQR). Using robust statisti-
cal scale estimators provides a more accurate understanding of the data’s statistical
properties and may improve the effectiveness of the Transfer Entropy approach. It
is important to carefully consider the choice of scale estimator based on the charac-
teristics of the data and the specific application of the control system.

The histograms presented in Figure 4.11, Figure 4.12, Figure 4.13, Figure 4.14,
and Figure 4.15 show simulation data that includes both Gaussian noise and Cauchy
disturbance with PDF fitting. The histograms reveal that the data is not normally
distributed and that there are fat tails in the control error data histograms.
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FIGURE 4.11: Control error ε1 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with PDF fitting
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FIGURE 4.12: Control error ε2 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with PDF fitting
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FIGURE 4.13: Control error ε3 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with PDF fitting

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

35

40

D
a

ta

histogram

Gauss

Cauchy

-stable

Laplace

Huber

t Location-Scale

FIGURE 4.14: Control error ε4 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with PDF fitting

Furthermore, it is shown that none of the presented distributions satisfactorily
fits the data due to its irregular and scattered nature. This fact highlights the impor-
tance of taking into account alternative and robust statistical methods, once analyz-
ing given datasets. In particular, heavy-tailed distributions like the Cauchy distri-
bution may need to be considered, when using data-driven methods like Transfer
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FIGURE 4.15: Control error ε5 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with PDF fitting

Entropy.
Generally, the histograms of the simulation data reveal important information

about the statistical properties of the control error datasets. They highlight the need
for caution when assuming normality and emphasize the importance of using ro-
bust statistical methods to accurately fit the data.

4.2 Description of the real industrial system

Root cause analysis using the Transfer Entropy approach is employed to investigate
the relationships in the ammonia production process at Grupa Azoty Zakłady Azo-
towe “Puławy” SA. The actual data collected from the ammonia plant is utilized for
this purpose. The production of ammonia involves the autothermal reforming of
methane (CH4) using both pure oxygen and oxygen derived from the air (see Figure
4.16).

To prepare hydrogen for subsequent ammonia synthesis processing, the follow-
ing sub-processes are involved:

1. Methane conversion (raw materials heating, including natural gas, process
air, oxygen, and 3.2 MPa steam, in the preheaters, followed by autothermal
methane reforming,

2. Carbon oxide conversion in shift reaction,

3. Removal of CO2 through absorption in a hot potassium carbonate and activa-
tor solution in the Benfield unit,

4. Elimination of residuasl CO and CO2 from the process gas through Copper-
Ammonia Cleaning.

The initial stage of the process involves the conversion of methane into hydro-
gen, concurrently producing carbon monoxide (CO) and carbon dioxide (CO2) as
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secondary products, as outlined in the subsequent chemical reactions (Dziuba et al.,
2020):

CH4 + 2O2 → CO2 + 2H2O

CH4 +
1
2

O2 → CO + 2H2

CH4 + H2O→ CO + 3H2 (4.4)
CH4 + CO2 → 2CO + 2H2

CH4 + 2H2O→ CO2 + 4H2

FIGURE 4.16: Ammonia production plant layout (Domański et al.,
2023)

Following the initial conversion of methane into hydrogen, which generates un-
desired carbon oxide byproducts, the subsequent steps of the process involve fur-
ther transformations. In the shift conversion section, carbon oxides are reacted with
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process steam to produce additional hydrogen and carbon dioxide. To remove car-
bon dioxide from the syngas stream, absorption in a potassium carbonate solution
(utilizing Benfield technology) is employed, and the separated CO2 is redirected for
urea production.

The final phase in the synthesis gas production process involves Copper-Ammonia
Cleaning, which serves to eliminate any residual traces of carbon monoxide or car-
bon dioxide from the gas stream. To ultimately yield the desired end-product, am-
monia, hydrogen is subjected to a catalytic reaction with nitrogen, which is sourced
from process air. This reaction results in the formation of anhydrous liquid ammo-
nia. The ammonia synthesis process occurs within a balanced system known as the
synthesis loop, where circulating synthesis gas (syngas) is mixed with fresh input.
Notably, the ammonia synthesis reaction transpires on a ferric catalyst, concurrently
producing heat that is harnessed for steam generation and gas preheating.

The catalytic reaction between hydrogen and nitrogen can be described by the
following chemical equation:

3H2 + N2 → 2NH3 (4.5)

The entire process operates at a pressure of approximately 28-30 MPa. After the
reaction, the produced ammonia is condensed through heat exchangers and chillers.
The condensed ammonia is then collected in separators, where it undergoes decom-
pression before being directed to subsequent installations for further processing.

For the purpose of conducting a causal analysis utilizing the Transfer Entropy
method, a dataset derived from the ammonia production process, as elaborated
upon earlier, is employed. This dataset is graciously provided by Grupa Azoty Za-
kłady Azotowe "Puławy" SA and encompasses control errors of flow (marked as
εFi), level (marked as εLi), pressure (marked as εPi), and temperature (marked as
εTi). Control errors are stemming from 22 intricately linked control loops within the
overarching system (Domański et al., 2023). Furthermore, supplementary data per-
taining to the environmental conditions surrounding the system is possessed. This
dataset encompasses parameters such as ambient air temperature (Tα), external at-
mospheric pressure (Pe), air humidity levels (H), and air density (ρα) characteristics.
This data will undergo comprehensive analysis to ascertain their influence on the
causal relationships emerging from the interplay of control errors. This examina-
tion seeks to explore the potential impact of environmental factors on the causality
analysis within the system.

The dataset is segregated into distinct subsets corresponding to 14 consecutive
months. Unlike the simulation system, due to the intricate nature of this dataset, it
is not feasible to straightforwardly depict the waveforms of individual control error
signals in a manner that is easily interpretable and user-friendly. To provide an
overview of the dataset’s fundamental attributes, Figure 4.17 displays the temporal
profiles of control errors in flow (εF7), level (εL1), pressure (εP1), and temperature
(εT2). This data pertains specifically to the 8th month.
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FIGURE 4.17: Selected control errors of flow, level, pressure, and tem-
perature of the ammonia synthesis installation - dataset for the 8th

month of operation

A thorough visual examination of the chosen control errors within the ammonia
synthesis installation provides compelling evidence of its well-tuned nature. This
assertion is substantiated by the absence of discernible oscillations in the character-
istics of selected control errors.

Additionally, Figure 4.18 illustrates the ambient (outdoor) parameters correspond-
ing to the same selected month. These parameters encompass essential environ-
mental factors, such as ambient air temperature, air density, humidity level, and
atmospheric pressure, which are pertinent to the broader context of the study.
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FIGURE 4.18: Selected weather parameters of ambient air temperature,
air density, humidity level, and atmospheric pressure of the ammonia

synthesis installation - dataset for the 8th month of operation

The characteristics of the weather data during the 8th month of the installation’s
operation align with anticipated patterns. Evident fluctuations in ambient temper-
ature are observed, and the inverse relationship between humidity and rising am-
bient temperature validates the integrity and comprehensiveness of the collected
dataset. It is noteworthy that the availability of 14 distinct datasets ensures cover-
age across all four seasons. It is essential to bear in mind that seasonal variations can
lead to fluctuations in the contribution of weather data to the causality relationships
associated with control errors. Moreover, the ambient conditions affect the process,
as it uses air, whose density depends on weather conditions.

To gain a deeper comprehension of the data that will be utilized for causality
analysis, there are generated probability distribution diagrams. Specifically, Figure

52



4.2. Description of the real industrial system

4.19 illustrates the probability distribution for flow control error (εF7), Figure 4.20
depicts the distribution of level control error (εL1), Figure 4.21 showcases the prob-
ability distribution of pressure control error (εP1), and Figure 4.22 provides insight
into the distribution of temperature control error (εT2). Each of the figures presented
illustrates the probability distributions for the respective variable over a span of 14
months. These distributions encapsulate the statistical characteristics and variations
observed in the data across this multi-month timeframe, offering a comprehensive
view of the data’s stochastic behavior.
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FIGURE 4.19: Probability distribution of the flow control error (εF7)
over a 14-month operational period of the ammonia synthesis instal-

lation
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FIGURE 4.20: Probability distribution of the level control error (εL1)
over a 14-month operational period of the ammonia synthesis installa-

tion
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FIGURE 4.21: Probability distribution of the pressure control error (εP1)
over a 14-month operational period of the ammonia synthesis installa-

tion
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FIGURE 4.22: Probability distribution of the temperature control error
(εT2) over a 14-month operational period of the ammonia synthesis in-

stallation

In a majority of instances, the data distributions under examination exhibit char-
acteristics akin to the normal distribution. This is particularly advantageous when
employing the Transfer Entropy method, as its fundamental version relies on the
assumption of normality. Nevertheless, in several scenarios where deviations from
the normal distribution are observed, they do not pose significant impediments to
our analytical pursuits.

Of paramount importance is the absence of outliers in the data representations.
This absence can be attributed to the well-optimized performance of the system,
thereby streamlining the subsequent data analysis procedures.

The conducted visual observations, represented through time-series charts of
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specific control errors and probability distributions, while informative, do not of-
fer a comprehensive overview of the whole dataset. Consequently, it is decided to
determine Gaussian statistical metrics for the complete dataset (for all 14 months),
categorized according to individual control errors. A comprehensive summary of
these metrics, encompassing the mean, median, standard deviation, kurtosis, skew-
ness, and median absolute deviation, are presented in Table 4.3, Table 4.4, Table 4.5,
Table 4.6, Table 4.7, and Table 4.8, respectively. This approach aids in providing an
understanding of the underlying characteristics of the dataset.

Analyzing the Gaussian statistical metrics for the control errors in the ammonia
production process yields several noteworthy findings:

1. Mean: For εF1 to εF12 , the mean values range from -0.17 to 0.26. It is notable
that for most cases, control errors εF6 to εF10 have mean values equal to zero,
suggesting that there is no significant deviation for these errors during the en-
tire period. This may indicate the stable performance of control loops. Control
errors εF8 and εF11 exhibit both positive and negative mean values, indicating
fluctuations in performance over the months.

εL1 to εL3 show mean values close to zero. εL1 has a particularly high mean
value in the 14th month (0.26), indicating a substantial deviation from the de-
sired performance.

In the case of εP1 and εT1 to εT6 , most of these have mean values close to zero,
suggesting that pressure and temperature deviations are relatively small and
balanced over time.

2. Median: The median values for control factors range from -0.22 to 0.20. Similar
to the mean values, control errors εF6 to εF10 manifest values equal to zero,
suggesting that there are no significant deviations for these errors during the
entire period. Control error εF2 has high-magnitude median values, indicating
substantial variations and deviations over the months.

The median values for εL1 to εL3 are close to zero, indicating that the deviations
are relatively balanced over time.

In the case of εP1 and εT1 to εT6 , most of these control errors have median val-
ues close to zero, suggesting that pressure and temperature deviations are typ-
ically small and balanced over time.

3. Standard Deviation: There is considerable variation in the standard deviation
values across different control errors. Smaller standard deviations, exempli-
fied by εF9 and εF10 , indicate lower data variability, while larger values, seen
in εF1 to εF3 , point to heightened variability within these errors. Standard de-
viation is responsible for the vertical extent of a probability distribution. It is
primarily determined by the sample size unless the data is subject to normal-
ization, which could potentially offer a more advantageous approach.
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4. Kurtosis: Values greater than 3 indicate leptokurtic distributions, meaning
they have heavier tails and a more peaked central region compared to a nor-
mal distribution (which has a kurtosis of 3). Control errors like εF1 , εF4 , εF5 , εF7 ,
εF8 , εF10 , εF11 , εF12 , εL2 , εL3 , εP1 , εT1 , εT2 , εT4 , and εT6 exhibit this characteristic,
suggesting that the errors in these parameters have distributions with more
pronounced peaks.

Control errors like εF3 , εF6 , εF9 , εL1 , εL3 , and εT5 exhibit significant kurtosis
values, signifying the presence of heavier tails and greater susceptibility to
extreme errors.

Parameters with exceptionally high kurtosis values, such as εF4 , εF6 , εL3 , and
εT2 , suggest the presence of outliers or extreme values in the control error data
for certain months. These outliers can contribute to increased variability and
non-normality in the distributions.

Kurtosis values below 3, as seen in εF2 , εF5 , and εF7 , indicate platykurtic dis-
tributions, which have lighter tails and flatter central regions compared to a
normal distribution. This suggests that the control errors for these parameters
may exhibit less extreme values and relatively more stable behavior.

5. Skewness: Control errors, such as εF2 , εF4 , εF5 , εF7 , εF8 , εF9 , εF10 , εF11 , εF12 , εL1 ,
εL2 , εL3 , εP1 , εT1 , εT2 , εT3 , εT4 , and εT5 , exhibit skewness values close to zero.
This suggests that the distributions of control errors for these parameters are
approximately symmetric.

Control errors with positive skewness, such as εF1 , εF3 , εF5 , εF6 , εL1 , εL2 , εP1 , εT1 ,
εT2 , and εT4 , have distributions that are skewed to the right. This indicates that
they may have a longer right tail, with potential outliers or extremely positive
values.

Some control errors, like εF6 and εT6 , exhibit extreme positive skewness values.
This suggests that their control error distributions have highly pronounced
right tails, indicating the presence of significant outliers or extreme positive
errors during certain months.

6. Mean absolute deviation: Control errors with higher MAD values, such as
εF2 , εF3 , εF4 , εF5 , εL1 , εL2 , εP1 , εT1 , εT4 , and εT5 , exhibit larger dispersion in their
control errors. This implies that the errors for these parameters tend to deviate
significantly from their respective means, indicating potential variability or
instability.

Extremely high MAD values, such as those observed for εF2 , may suggest the
presence of outliers or extreme control errors during those specific months.
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4.2. Description of the real industrial system

To summarize, the control errors demonstrate varying levels of data variability,
tail heaviness or lightness, and skewness in either direction. These statistical met-
rics provide valuable insights into the underlying data characteristics, serving as a
foundation for further causality analysis aimed at enhancing the Transfer Entropy
approach effectiveness, which results in better reflection of relationships between
control loops.

Considering a familiarity with the ammonia synthesis installation, Figure 4.23
displays the actual causality graph stemming from the interconnections among the
control loops. This graph will serve as the foundational reference for evaluating
the efficacy of the Transfer Entropy approach in scrutinizing causal relationships
within the system. The solid line denotes a direct relationship and the dashed line
represents an indirect relationship. It is imperative to note that Figure 4.23 exclu-
sively showcases the depiction of control errors represented as nodes. Currently,
it is not feasible to visually represent the variables associated with ambient (out-
door) parameters, specifically ambient temperature, air density, humidity level, and
atmospheric pressure. This limitation arises from the absence of a clear understand-
ing regarding the interrelationship between these ambient parameters and control
errors.

The verification of the Transfer Entropy method’s efficacy is expounded upon
in Chapter 10. This validation process is rooted in a sequence of meticulously con-
ducted investigations, the detailed chronological account and outcomes of which
are comprehensively delineated in the ensuing chapters.
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FIGURE 4.23: The actual causality diagram of the ammonia synthesis
installation
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Chapter 5

Implementation of the classical
Transfer Entropy method

In this section, the relationships between the five control error variables of a simu-
lation system are analyzed using the Transfer Entropy method in its basic version
(based on the Gaussian distribution). Both simulation data, impacted by the Gaus-
sian noise (see Figure 4.3) and by the Gaussian noise and Cauchy disturbance (see
Figure 4.4) are assessed.

To better illustrate the fit of only the Gaussian distribution to the data, histograms
for both datasets are shown in the following figures, representing individual con-
trol error variables. These histograms provide visual insights into the distribution
of the data and help assess the adequacy of the Gaussian assumption. The x-axis
represents the range of individual control error values, while the y-axis indicates
the count of occurrence for each value range. Examining the histograms, we can
observe the distribution pattern and assess whether it aligns with a Gaussian distri-
bution. A good fit to the Gaussian distribution would typically show a symmetric
bell-shaped curve centered around the mean value.

In typical scenarios involving data analysis, apart from constructing histograms,
it is customary to employ normality tests such as the Kolmogorov-Smirnov or Lil-
liefors. These tests serve a vital purpose when there is a fundamental need to scruti-
nize whether a given dataset adheres to the fundamental assumptions of normality
that underlie a multitude of statistical methodologies. However, the judicious ap-
plication of normality tests hinges upon the intrinsic characteristics of the dataset at
hand.

Control errors, as encountered in this case, are subject to the influence of Gaus-
sian noise and Cauchy disturbance. Such influence unequivocally engenders devia-
tions from the idealized normal distribution, imparting a non-normal quality to the
observed error patterns. Consequently, the very nature of these errors diverges from
Gaussian expectations.

The discerning choice to abstain from subjecting the dataset to normality tests is
steered by an array of considerations, encompassing the wealth of prior knowledge
pertaining to the simulation process. In instances where there exist compelling theo-
retical and practical rationales that firmly suggest the inappropriateness of a normal
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Chapter 5. Implementation of the classical Transfer Entropy method

distribution as a descriptor for the dataset, the application of normality tests stands
to yield limited additional insights.

Figure 5.1 shows a histogram for control error ε1 from the simulation system
affected by Gaussian noise. Visual inspection shows that the fit is not perfect and
can be improved with data processing techniques, or by changing the PDF type
entirely.
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FIGURE 5.1: Control error ε1 histogram for the simulation data includ-
ing Gaussian noise with Gaussian distribution fitting

The histogram for the control error variable ε2 from the simulation system af-
fected by Gaussian noise is presented in Figure 5.2. Upon visual inspection, it can
be observed that the fit of the Gaussian distribution is comparatively better for ε2
when compared to ε1. However, there is still room for improvement in the fitting of
the Gaussian distribution for ε2.
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FIGURE 5.2: Control error ε2 histogram for the simulation data includ-
ing Gaussian noise with Gaussian distribution fitting

Similar to the control error ε1, the fit of the Gaussian distribution for control error
ε3 is also inadequate. This observation is evident from the histogram shown in Fig-
ure 5.3. The distribution of ε3 deviates noticeably from the expected Gaussian shape,
indicating that the assumption of a pure Gaussian noise model might not accurately
capture the underlying dynamics of this variable. Further analysis and modeling
techniques may be required to improve the fit and gain a better understanding of
the behavior of ε3 in the simulation system.
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FIGURE 5.3: Control error ε3 histogram for the simulation data includ-
ing Gaussian noise with Gaussian distribution fitting

The situation worsens when considering control error variables ε4 and ε5. The
application of a parametric Gaussian model fails to capture the dynamics of both
control errors effectively. This is evident from the histograms presented in Figure
5.4 and Figure 5.5, where the distributions significantly deviate from the Gaussian
shape.
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FIGURE 5.4: Control error ε4 histogram for the simulation data includ-
ing Gaussian noise with Gaussian distribution fitting
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FIGURE 5.5: Control error ε5 histogram for the simulation data includ-
ing Gaussian noise with Gaussian distribution fitting
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Chapter 5. Implementation of the classical Transfer Entropy method

The subsequent histograms provided in Figure 5.6, Figure 5.7, Figure 5.8, Figure
5.9, and Figure 5.10 depict the distribution of control error variables in the simula-
tion system, when influenced by both Gaussian noise and Cauchy disturbance.
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FIGURE 5.6: Control error ε1 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with Gaussian distribution

fitting
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FIGURE 5.7: Control error ε2 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with Gaussian distribution

fitting

By analyzing these histograms, we can gain insights into how the presence of
the fat-tailed Cauchy disturbance affects the distribution of each control error vari-
able. These histograms allow us to compare the resulting distributions with the
histograms obtained when considering only Gaussian noise. Such a comparison
can help us evaluate the impact of the Cauchy disturbance on the shape and char-
acteristics of the control error variables. The inclusion of Cauchy disturbance in the
dataset may lead to further deviations from the Gaussian model, as Cauchy distri-
butions have heavier tails compared to Gaussian distributions. By examining these
histograms, we can assess the extent to which the presence of Cauchy disturbance
affects the fit of the Gaussian model and the overall distribution of the control error
variables.

Fitting a Gaussian model to the data for control error variables ε1 and ε2 for the
given dataset proves to be extremely challenging, if not impossible. The nature of
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Chapter 5. Implementation of the classical Transfer Entropy method

the data itself does not exhibit a normal distribution pattern, as evident from the
histograms shown in Figure 5.6 and Figure 5.7. The lack of a normal distribution for
these control errors indicates that relying on a Gaussian model would not accurately
capture their underlying dynamics. It is crucial to acknowledge that attempting to
force a Gaussian assumption onto such non-Gaussian data can lead to inaccurate
analysis and misleading results.

When considering control error variables ε3 and ε4 in the simulation system,
the situation appears to show some improvement compared to the previous cases.
However, it is still far from meeting the expectations set by the Gaussian model.
The histograms presented in Figure 5.8 and Figure 5.9 illustrate the distribution of
the data for these control errors. While there are some similarities to a Gaussian
distribution, there are noticeable deviations that prevent a perfect fit.
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FIGURE 5.8: Control error ε3 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with Gaussian distribution

fitting
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FIGURE 5.9: Control error ε4 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with Gaussian distribution

fitting

Similar to the cases of control errors ε1 and ε2, control error ε5 exhibits a signifi-
cant deviation from the Gaussian model. The nature of the data demonstrates a clear
departure from a normal distribution pattern. Upon examination of the histogram
shown in Figure 5.10, it is apparent that the distribution of ε5 does not align with
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FIGURE 5.10: Control error ε5 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with Gaussian distribution

fitting

the expectations set by the Gaussian model. The observed deviations highlight the
presence of underlying dynamics or influence that render the Gaussian assumption
inadequate for accurately representing the behavior of ε5.

Despite the challenges of fitting a Gaussian distribution to the data, it is still pos-
sible to apply the Transfer Entropy method to both datasets, including the one im-
pacted by Gaussian noise and the one affected by both Gaussian noise and Cauchy
disturbance. While the Gaussian assumption may not accurately represent the un-
derlying dynamics of the control error variables, the Transfer Entropy method is not
only limited to specific distributional assumptions. Therefore, according to the Eq.
3.14, the following parameters presented in Table 5.1 are defined for each dataset
calculation.

TABLE 5.1: Parameters of Transfer Entropy function for the simulation
data

Parameter Relationship Value Description

τ

ε1 ↔ ε2 0 time delay between control errors
ε1 ↔ ε3 9 time delay between control errors
ε1 ↔ ε4 0 time delay between control errors
ε1 ↔ ε5 102 time delay between control errors
ε2 ↔ ε3 0 time delay between control errors
ε2 ↔ ε4 0 time delay between control errors
ε2 ↔ ε5 97 time delay between control errors
ε3 ↔ ε4 1 time delay between control errors
ε3 ↔ ε5 62 time delay between control errors
ε4 ↔ ε5 9 time delay between control errors

Np - 20 value of 20 points along each dimension is set
Cthumb - 1 rule of thumb

In situations where the time-series length is relatively short, a time delay pa-
rameter τ of 1 is often chosen when applying the Transfer Entropy method. This

70



5.1. Causality for the dataset with Gaussian noise

assumption is based on the notion that the maximum transfer of information typi-
cally occurs from the data point immediately preceding the target value in y. These
parameter values, according to Table 5.1, are selected based on the specific charac-
teristics of the dataset and the desired analysis goals.

Another important parameter to consider is Np, which determines the number
of points along each dimension used for estimating probabilities in the Transfer En-
tropy calculation. Sample tests conducted in the research indicate that varying Np
between 20, 30, 40, and 50 leads to negligible differences in calculated entropies.
Therefore, a value of Np = 20 is chosen as a practical compromise (as shown in
Table 5.1).

It is worth noting that the parameter Cthumb set to 1 in this case, indicates that
there are no modifications made to the default rule of thumb for selecting parame-
ter values. These parameter choices and adjustments aim to optimize the Transfer
Entropy method for the specific dataset, considering the limited time-series length
and other practical considerations.

With a careful selection of these parameter values, we can ensure that the Trans-
fer Entropy analysis effectively captures the information flow and dependencies be-
tween the control error variables, providing meaningful insights into their relation-
ships in the simulation system.

5.1 Causality for the dataset with Gaussian noise

When analyzing the simulation data affected by Gaussian noise, it becomes chal-
lenging to present the results in the form of TE coefficients. The calculated values
presented in Table 5.2 often result in "NaN" (Not a Number) or "Inf" (Infinity) en-
tries, which are typically interpreted as zero in the context of causality analysis. This
implies that no causality is observed between such variables.

TABLE 5.2: Calculated Transfer Entropy coefficients for the simulation
data – Gaussian noise

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA In f NaN NaN NaN
ε2 0.0762 NA NaN NaN NaN
ε3 NaN NaN NA NaN In f
ε4 NaN 0.0288 In f NA NaN
ε5 NaN In f In f NaN NA

The prevalence of "NaN" or "Inf" values in the results can be attributed to the
Gaussian disturbance being too weak to adequately stimulate the simulation sys-
tem. The impact of the Gaussian noise on the variables may not be significant
enough to produce discernible causal relationships or information transfer captured
by the Transfer Entropy method.
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Chapter 5. Implementation of the classical Transfer Entropy method

It is important to recognize the limitations of the Gaussian noise and its impact
on the simulation system. The weak stimulation resulting from the Gaussian distur-
bance can lead to inconclusive or non-existent causal relationships, as reflected in
the "NaN" or "Inf" values observed in the analysis.

To address this issue and to obtain more meaningful results, it may be necessary
to consider alternative approaches such as increasing the intensity of the Gaussian
disturbance or exploring different types of disturbances that can better stimulate the
simulation system, such as adding the Cauchy disturbance.

5.2 Causality for the dataset with Gaussian noise and
Cauchy disturbance

Results for a second case with simulation data impacted by Gaussian noise and
Cauchy disturbance are presented in Table 5.3.

TABLE 5.3: Calculated Transfer Entropy coefficients for the simulation
data – Gaussian noise and Cauchy disturbance

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.1143 0.0743 0.0608 0.0631
ε2 0.0589 NA 0.0556 0.0490 0.0653
ε3 0.0568 0.0475 NA 0.0699 0.0854
ε4 0.0285 0.0374 0.0547 NA 0.0419
ε5 0.0685 0.0694 0.0886 0.0646 NA

Applying a threshold value to the obtained entropy values in Transfer Entropy
analysis is subjective and is not an objective approach. To facilitate interpretation,
a practical approach is adopted, where the highest entropy value in each row is
identified and visually highlighted in blue and bold font. This helps draw attention
to the most prominent entropy value for each pair of variables.

The resulting causality graph for this specific case with comparison to the actual
graph is depicted in Figure 5.11. Comparing this graph to the assumed causality
diagram, it becomes apparent that there is little resemblance between them. This
discrepancy suggests that the Transfer Entropy method might not effectively cap-
ture the expected causal relationships in the simulated data.

One possible reason for this poor performance could be attributed to the inher-
ent characteristics of the data itself. It is observed that the variables exhibit continu-
ous changes and display clear trends over time. Such characteristics, including the
presence of sudden changes or discontinuities, can pose challenges for the Transfer
Entropy analysis.

Investigations of real data (Falkowski and Domański, 2020) reveal that Transfer
Entropy is not resilient to sudden changes in variable values. This lack of resilience
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5.2. Causality for the dataset with Gaussian noise and Cauchy disturbance

indicates that the Transfer Entropy approach may be ineffective in accurately cap-
turing the relationships and determining reliable coefficients in such scenarios.

ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated
benchmark

ε4 ε1 ε2 ε3 ε5

(B) The obtained causality diagram of the simulated
benchmark

FIGURE 5.11: Comparision of the actual and obtained causality graphs
– data impacted by Gaussian noise and Cauchy disturbance

Based on these findings, it is advised to take serious caution to the determined
coefficient values obtained through the Transfer Entropy method. It is crucial to
explore alternative analysis approaches or models that can better handle the specific
characteristics of the data and provide more reliable results. The inadequate fit of
the Gaussian model to these control errors has significant implications when using
the Transfer Entropy method. Transfer Entropy relies on accurate modeling and
assumptions about the underlying dynamics of the variables involved. In this case,
the deviation from a Gaussian distribution shows that the Transfer Entropy results
obtained using the Gaussian model are unreliable and misleading.

To overcome this limitation, alternative modeling approaches or non-parametric
methods that can capture the non-Gaussian dynamics of data are required. The
Transfer Entropy method can be applied with greater confidence by using more
appropriate models, leading to more accurate and meaningful results in the analysis
of the relationships between these control error variables in the simulation system.
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Chapter 6

Impact of the PDF on the Transfer
Entropy method

In this chapter, the calculation results based on the Transfer Entropy approach are
presented, with a focus on comparing the outcomes obtained using parametric and
non-parametric statistical models. The aim is to assess the impact of the choice of
probability density function (PDF) determination on the simulation system. The
results are discussed in two sections: Section 6.1 highlights the findings using para-
metric statistical models, while Section 6.2 delves into the outcomes obtained with
non-parametric statistical models.

6.1 Parametric statistical models

The causality analysis using the Transfer Entropy approach continues with the de-
termination of parametric probability distributions, adjusted for each control error
separately. This applies to data generated both with Gaussian noise as well as for the
Gaussian noise and Cauchy disturbance. The fittings of Cauchy, α-stable, Laplace,
Huber, and t Location-scale distributions for the dataset with Gaussian noise are
presented in Figure 6.1, Figure 6.2, Figure 6.3, Figure 6.4, and Figure 6.5, for each εi
respectively.
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FIGURE 6.1: Control error ε1 histogram for the simulation data includ-
ing Gaussian noise with selected PDF fitting
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FIGURE 6.2: Control error ε2 histogram for the simulation data includ-
ing Gaussian noise with selected PDF fitting
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FIGURE 6.3: Control error ε3 histogram for the simulation data includ-
ing Gaussian noise with selected PDF fitting
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FIGURE 6.4: Control error ε4 histogram for the simulation data includ-
ing Gaussian noise with selected PDF fitting

Upon visual inspection, it becomes evident that the Cauchy and Laplace proba-
bility distributions do not adequately fit the observed data. The patterns and char-
acteristics exhibited by the observed data deviate significantly from those expected
from the Cauchy and Laplace distributions. The lack of fit suggests that these dis-
tributions may not be appropriate for accurately modeling the data. However, a
slightly better fit is observed when considering alternative distributions such as the
α-stable, Huber, and t Location scale. Although they still do not provide a perfect fit
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FIGURE 6.5: Control error ε5 histogram for the simulation data includ-
ing Gaussian noise with selected PDF fitting

but demonstrate a closer alignment with the observed data.
For the dataset with Gaussian noise and Cauchy disturbance, fittings of Cauchy,

α-stable, Laplace, Huber, and t Location-scale distributions are presented in Figure
6.6, Figure 6.7, Figure 6.8, Figure 6.9, and Figure 6.10, for each εi respectively.
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FIGURE 6.6: Control error ε1 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with selected PDF fitting
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FIGURE 6.7: Control error ε2 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with selected PDF fitting

Upon closer examination, a significant portion of the data does not exhibit suf-
ficient normality. This lack of normality is particularly pronounced in the case of
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FIGURE 6.8: Control error ε3 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with selected PDF fitting
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FIGURE 6.9: Control error ε4 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with selected PDF fitting
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FIGURE 6.10: Control error ε5 histogram for the simulation data includ-
ing Gaussian noise and Cauchy disturbance with selected PDF fitting

the control errors ε1 and ε2. The characteristics of these errors do not conform to
any of the given distributions considered for fitting. The inability to fit the data to
any of the provided distributions suggests that the underlying nature of the data is
more complex and does not adhere to the assumptions. In such cases, alternative
approaches may need to be considered. In Chapter 3.5, non-parametric methods are
explored to address the non-normality and better capture the true behavior of such
data.
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6.1. Parametric statistical models

Enhancing the goodness of fit between the chosen parametric probability distri-
butions and the observed data is crucial for accurate modeling, reliable predictions,
and gaining meaningful insights into the underlying phenomena. Nevertheless, the
assessment of the quality of fit of the probability distributions selected for analysis
can not be only a visual evaluation. To objectively determine which PDF fits the
control error histogram the best, a fit indicator is used. The fitting indexes are calcu-
lated as mean square errors between the empirical histogram heights and the value
of the fitted probabilistic density function evaluated at the middle of the respective
histogram bin. The results for the dataset with Gaussian noise are presented in Table
6.1 and for the dataset with Gaussian noise and Cauchy disturbance are presented in
Table 6.2. The lowest values of the fit indicator (which is considered the best fitting)
for each εi are marked in blue, and bold.

TABLE 6.1: Fit indicators for the dataset with Gaussian noise

Cauchy α-stable Laplace Huber t Location-
scale

ε1 3.3440 1.4925 2.4805 1.5098 1.5333
ε2 3.6252 1.3049 2.7709 1.3007 1.4069
ε3 3.3966 1.4344 2.2947 1.5182 1.5246
ε4 3.5771 1.9684 2.8030 1.9850 1.9877
ε5 3.1062 1.9417 2.5749 1.9473 1.8361

TABLE 6.2: Fit indicators for the dataset with Gaussian noise and
Cauchy disturbance

Cauchy α-stable Laplace Huber t Location-
scale

ε1 5.1540 5.7679 5.5035 5.6962 5.7589
ε2 5.0164 5.0727 4.9170 4.9768 4.9432
ε3 3.1914 1.9279 2.9657 2.1143 2.1835
ε4 3.9075 2.2738 3.6509 2.3228 2.3033
ε5 3.5362 3.1455 3.8385 3.4425 3.1752

Table 6.1 shows that for the dataset with Gaussian noise, α-stable distribution
appears to be best fitted in case of control errors ε1, ε3, and ε4. For the control error
ε2 it is robust distribution and for the ε5, the t location-scale. In Table 6.2, the lowest
value of the fit indicator is calculated for the α-stable distribution for control errors
ε3, ε4, and ε5. Significantly different nature of trends of the control errors ε1 and
ε2, clearly affected the fit indicators calculations. In both cases, the values of the
indicator are higher than those determined for control errors ε3, ε4, and ε5. Still, the
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Chapter 6. Impact of the PDF on the Transfer Entropy method

best fit for ε1 is characterized by the Cauchy distribution, and for the ε2, the Laplace
distribution.

The general conclusion for both datasets is that the α-stable distribution in most
cases has the best fit for considered εi. Therefore, it is decided that concerning the
classical Transfer Entropy approach, the determined TE coefficients are based on α-
stable distribution. The results for the dataset with Gaussian noise and the dataset
with Gaussian noise and Cauchy disturbance are presented in Section 6.1.1 and Sec-
tion 6.1.2 respectively. The parameters of the Transfer Entropy approach remain the
same (see Table 5.1).

6.1.1 Causality for the dataset with Gaussian noise

In this section, the simulation data impacted by the Gaussian noise (see Figure 4.3)
is analyzed. The relationships between five control errors of a simulation system
are designated using the Transfer Entropy approach based on Gaussian distribution
and α-stable distribution.

It is shown that results for simulation data impacted by Gaussian noise for the
classic Transfer approach are problematic to be presented in the form of a table (see
Section 5.1). When using the Transfer Entropy method based on α-stable distribu-
tion, the results turn out to be satisfactory. The TE coefficients are obtained, included
in Table 6.3.

TABLE 6.3: Calculated Transfer Entropy coefficients based on α-stable
distribution for the dataset with Gaussian noise

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.1284 0.0729 0.0725 0.1016
ε2 0.1499 NA 0.0508 0.0387 0.0511
ε3 0.0450 0.0531 NA 0.0322 0.0401
ε4 0.0435 0.0371 0.0349 NA 0.0399
ε5 0.0430 0.0518 0.0409 0.0433 NA

Since there is no objective method for applying a threshold value for obtained
entropy values, the highest entropy value in each row is marked in blue, and bold.
The above assumption enforces to show only the direct relationships but still, the
causality graph can be drawn. It is given in Figure 6.11b.

Based on the analysis of the results, it can be concluded that the change in the
probability distribution has a positive impact on the quality of the Transfer Entropy
(TE) method. This suggests that by considering a different probability distribution,
the TE method is better able to capture and represent the relationships and causal
dependencies within the data.

80



6.1. Parametric statistical models

ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark –
dataset with Gaussian noise

FIGURE 6.11: Comparision of the actual and obtained causality graphs
- data impacted by Gaussian noise

Scrutinizing the causality graph obtained from the analysis and comparing it
to the assumed causal relationships depicted in Figure 6.11a, noticeable discrepan-
cies emerge in the directional relationships between the control errors ε2 and ε5.
Additionally, an absence of correlation is observed between ε3 and ε1, contrary to
the assumed causality. These inconsistencies can be attributed to the underlying as-
sumption used in the analysis, which relies on determining the relationship between
control errors based on the highest Transfer Entropy (TE) coefficient within a given
row. It is shown that the reliance on the highest TE coefficient in a row to establish
causality can lead to misinterpretations, especially in a given scenario, where the
relationship between variables is more complex or when multiple causal factors are
at play.

The discrepancy in the direction of the relationship between ε1 and ε5 suggests
that further investigation and analysis may be necessary to better understand the
underlying dynamics and causal mechanisms in this particular relationship. It could
be due to various factors such as non-linear dependencies or the influence of exter-
nal factors, such as outliers, not accounted for in the analysis. It highlights the im-
portance of critically evaluating and interpreting the results of this analysis method.
In the case of real-world applications, it is crucial to consider the limitations and po-
tential sources of error, such as model assumptions or data quality issues, that could
impact the accuracy of the identified causal relationships.

6.1.2 Causality for the dataset with Gaussian noise and Cauchy
disturbance

This section focuses on the analysis of simulation data that has been influenced by
Gaussian noise and Cauchy disturbance, as illustrated in Figure 4.4. To examine
the causal relationships within this data, the Transfer Entropy (TE) approach utiliz-
ing the α-stable distribution is employed. The calculated entropies in this case are
documented in Table 6.4.
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TABLE 6.4: Calculated Transfer Entropy coefficients based on α-stable
distribution for the dataset with Gaussian noise and Cauchy distur-

bance

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.1154 0.0729 0.0599 0.0601
ε2 0.0561 NA 0.0540 0.0491 0.0666
ε3 0.0568 0.0475 NA 0.0699 0.0854
ε4 0.0772 0.0284 0.0521 NA 0.0380
ε5 0.0643 0.0695 0.0888 0.0623 NA

Furthermore, the resulting causality graph associated with Table 6.4 is sketched
in Figure 6.12b.

ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark –
dataset with Gaussian noise and Cauchy disturbance

FIGURE 6.12: Comparison of the actual and obtained causality graphs
– data impacted by Gaussian noise and Cauchy disturbance

The resulting causality relationships obtained from the Transfer Entropy calcu-
lations are found to be only partially correct. Precise indications can be made for
the relationships between control errors ε4 and ε1, as well as ε2 and ε5. However,
other relationships inferred from the analysis are misleading and do not align with
the assumed causality graph presented in Figure 6.12a.

These inconsistencies raise several questions regarding the obtained results. In
particular, the effectiveness of changing the probability density function from a
Gaussian distribution to an α-stable distribution for a dataset with Gaussian noise
is questionable. It is evident that we deal with data of a different nature, requiring
deeper analysis and understanding. The use of non-parametric statistical models
presents another clue or indication for the analysis. Unlike parametric models, the
non-parametric ones make fewer assumptions about the underlying data distribu-
tion or functional form (see Section 3.3.1, Section 3.3.2, and Section 3.3.3). Instead,
they rely on ranking, ordering, or other distribution-free techniques to analyze the
data.
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6.2. Non-parametric statistical models

6.2 Non-parametric statistical models

Within this section, there is applied a set of non-parametric statistical models, named
the Darbellay-Vajda algorithm, Fixed Bins, and Kernel Density Estimation, in con-
junction with the Transfer Entropy approach. To ensure the accuracy of the analysis,
the methodologies outlined in Section 3.3.1, Section 3.3.2, and Section 3.3.3 are fol-
lowed. For the Fixed Bins approach, the parameter Q is checked for each pair of
control errors separately. Similarly, for the Kernel Density Estimation approach, the
parameter λ is determined. In the majority of cases, the Q and λ parameters exhibit
repeatability. For calculations, there are adopted fixed values of Q = 8 and λ = 1.
These parameters remain consistent throughout the analysis, ensuring reproducibil-
ity and comparability across given datasets.

6.2.1 Causality for the dataset with Gaussian noise

The initial findings of Transfer Entropy calculations using the Darbellay-Vajda algo-
rithm are presented in Table 6.5. Remarkably, despite employing a straightforward
estimation of time lags for the specified pairs of control errors, the results demon-
strate a high level of accuracy. These outcomes highlight the effectiveness of the
Darbellay-Vajda algorithm in capturing the underlying causal relationships within
the data.

TABLE 6.5: Calculated Transfer Entropy coefficients based on
Darbellay-Vajda algorithm for the dataset with Gaussian noise

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.0665 0 0.0726 0.0412
ε2 0.1411 NA 0 0.0529 0.0193
ε3 0.0899 0 NA 0.0057 0.0251
ε4 0.1803 0.0439 0 NA 0.0173
ε5 0.0252 0.0518 0 0 NA

It becomes evident upon a careful analysis of the causality graphs depicted in
Figure 6.13 that the majority of the correct relationships among the control errors are
indeed preserved. However, it is noteworthy that the direction of causality between
ε2 and ε5 is inaccurately determined in this case. This discrepancy suggests the
existence of hidden factors or complex dynamics influencing the causal interactions
between these variables.

Another limitation arises when a particular control error, such as ε3, exhibits
correlations with multiple errors, such as ε1 and ε2. The current approach, which
selects the highest Transfer Entropy coefficient value for a given set of relationships,
fails to capture the full extent of the causal dependencies within the system. As a
result, potential additional relationships among the variables may go unnoticed.
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ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark -
dataset with Gaussian noise

FIGURE 6.13: Comparison of the actual and obtained causality graphs
– data impacted by Gaussian noise

The subsequent set of results, presented in Table 6.6, pertains to the application of
the Transfer Entropy (TE) method utilizing the Fixed Bins algorithm. As described
in Section 3.3.2, this methodology involves discretizing the dataset, partitioning it
into fixed bins, and subsequently estimating the TE values based on this discretiza-
tion approach. The table showcases the calculated TE values for the specified pairs
of control errors, enabling the examination of the causal relationships within the
dataset affected by Gaussian noise. By quantifying the TE values, valuable insights
are gained regarding the strength and direction of the causal influences between the
control errors.

TABLE 6.6: Calculated Transfer Entropy coefficients based on Fixed
Bins algorithm for the dataset with Gaussian noise

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.2039 0.1772 0.1659 0.1773
ε2 0.1716 NA 0.1612 0.1533 0.1438
ε3 0.1427 0.1416 NA 0.1713 0.1786
ε4 0.3216 0.1619 0.1734 NA 0.1634
ε5 0.1438 0.1567 0.1546 0.1514 NA

Based on the results presented in Table 6.6, the causality graph for this particular
case, along with the actual graph for comparison, is depicted in Figure 6.14. Notably,
in the case of the Fixed Bins method, a Transfer Entropy coefficient greater than zero
is obtained for each of the relationships in contrast to the results obtained using
the Darbellay-Vajda (DV) algorithm. The Fixed Bins method partially succeeded in
identifying the relationships between the control errors. This is evident, for instance,
in the presence of a direct relationship between the ε3 and ε5 variables. However,
it should be noted that the identified relationships are not entirely accurate, and
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there exist indirect influences between each of the errors. Additionally, studying the
causality of the control error ε5 poses challenges. Theoretically, each of the variables
has an indirect relationship with ε5, as indicated by the TE coefficient values in the
table. However, it is expected that the values of these coefficients would be orders
of magnitude lower compared to the preceding control errors. These observations
highlight the complexities involved in capturing the precise dependencies and in-
teractions among the control errors, emphasizing the need for further refinement
and exploration of alternative methodologies.

ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark -
dataset with Gaussian noise

FIGURE 6.14: Comparison of the actual and obtained causality graphs
– data impacted by Gaussian noise

The last non-parametric method of choice in this study is Kernel Density Esti-
mation. The Transfer Entropy coefficients obtained using the KDE algorithm are
presented in Table 6.7. This methodology involves estimating the TE values by con-
structing kernel density estimates for the probability distributions of the variables
involved. The table provides a comprehensive overview of the TE coefficients, en-
abling the assessment of causal relationships within the dataset with Gaussian noise.

TABLE 6.7: Calculated Transfer Entropy coefficients based on Kernel
Density Estimation method for the dataset with Gaussian noise

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.0726 0 0.0665 0.0412
ε2 0.1411 NA 0 0.0529 0.0193
ε3 0.0899 0 NA 0.0057 0.0251
ε4 0.1803 0.0439 0 NA 0.0173
ε5 0.0252 0.0518 0 0 NA

The findings derived from the analysis reported in Table 6.7 have been utilized to
construct the causality graph specific to this case. This graph is visually compared
to the actual causality graph, and both are illustrated in Figure 6.15.
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ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark –
dataset with Gaussian noise

FIGURE 6.15: Comparison of the actual and obtained causality graphs
– data impacted by Gaussian noise

Similar to the DV and Fixed bins case, the implementation of the Transfer En-
tropy method with the Kernel Density Estimation approach successfully reveals the
relationships between the analyzed control errors. Once again, we encounter the
issue of incorrect directionality in the relationship between ε2 and ε5. In other in-
stances, the obtained results are accurate.

The fundamental assumption guiding the determination of dependencies based
solely on the largest TE coefficient leads to the failure in confirmation of the de-
pendence between ε3 and ε2. This particular assumption constitutes a significant
limitation in the current approach. It is evident that this flaw will also affect the
results obtained from the dataset with Gaussian noise and Cauchy disturbance, as
discussed in Section 6.2.2.

To mitigate this problem, alternative rules to identify relationships could be ex-
plored. For instance, considering multiple significant TE coefficients or employing
statistical tests to validate the causality relationships could enhance the reliability of
the results.

6.2.2 Causality for the dataset with Gaussian noise and Cauchy
disturbance

In this section, a comparative study using three distinct non-parametric statistical
models such as Darbellay-Vajda, Fixed bins, and Kernel Density Estimation is con-
ducted. The study focuses on the dataset with Gaussian noise and Cauchy dis-
turbance. The preliminary results of Transfer Entropy calculations utilizing the
Darbellay-Vajda algorithm are displayed in Table 6.8.

For each of the examined control errors, denoted as εi, the Transfer Entropy cal-
culations yielded non-infinite (Inf) and non-not-a-number (NaN) coefficients, all of
which are greater than zero. This observation indicates that meaningful information
flow and directed causal interactions exist between the variables.
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TABLE 6.8: Calculated Transfer Entropy coefficients based on
Darbellay-Vajda algorithm for the dataset with Gaussian noise and

Cauchy disturbance

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.6016 0.4445 0.1210 0.7697
ε2 0.6458 NA 0.2475 0.1044 0.4532
ε3 0.5236 0.2581 NA 0.0984 0.4128
ε4 0.2571 0.2374 0.0989 NA 0.1808
ε5 0.8251 0.3214 0.3061 0.0860 NA

Based on these obtained TE coefficients, a causality graph is constructed, rep-
resenting the causal relationships and information transfer patterns between the
control errors. Each edge in the causality graph corresponds to a significant TE
coefficient, signifying the direction of causality from one control error to another. It
is shown in Figure 6.16b.

ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark –
dataset with Gaussian noise and Cauchy disturbance

FIGURE 6.16: Comparison of the actual and obtained causality graphs
– data impacted by Gaussian noise and Cauchy disturbance

The examination of the causality graph in this case has brought to light an unex-
pected and unprecedented relationship between the control errors ε1 and ε5. Upon
comparing this graph to the actual causality graph illustrated in Figure 6.16a, it is
evident that the identified relationship between ε1 and ε5 is solely indirect, precisely
in direction ε1 → ε5.

The emergence of this unique causal relationship between the control errors
raises intriguing questions regarding the underlying dynamics and behavior of the
given dataset. The presence of this causal relationship between ε1 and ε5 result-
ing from calculations suggests the possibility of mediating factors or unaccounted
confounding variables influencing this relationship.
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Despite notable improvements in the quality of the results compared to previous
analyses, the current findings still exhibit inconsistencies with the actual causality
graph. These discrepancies underscore the complexity inherent in the causal inter-
actions within the dataset and underscore the need for more sophisticated method-
ologies.

The next notable non-parametric statistical model utilized in conjunction with
the Transfer Entropy approach is the Fixed bins algorithm. The outcomes of this
analysis are presented in Table 6.9.

TABLE 6.9: Calculated Transfer Entropy coefficients based on Fixed
Bins algorithm for the dataset with Gaussian noise and Cauchy dis-

turbance

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.2041 0.1820 0.1804 0.1908
ε2 0.0885 NA 0.1615 0.1632 0.1830
ε3 0.1234 0.0874 NA 0.1673 0.1829
ε4 0.0768 0.1042 0.1288 NA 0.1172
ε5 0.1301 0.1013 0.1642 0.1493 NA

According to acquired Transfer Entropy coefficients using the Fixed bins algo-
rithm, the causality graph is visualized in Figure 6.17b.

ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark –
dataset with Gaussian noise and Cauchy disturbance

FIGURE 6.17: Comparison of the actual and obtained causality graphs
– data impacted by Gaussian noise and Cauchy disturbance

For the dataset with Gaussian noise and Cauchy disturbance, the chosen ap-
proach encounters significant challenges and ultimately fails to accurately represent
the underlying causal relationships. The resulting causality graph exhibits stark dis-
parities when compared to the actual causality graph depicted in Figure 6.17a. The
evident reason for this discrepancy lies in the unique nature of the analyzed data,
which is heavily influenced by the presence of Cauchy disturbance.

88



6.2. Non-parametric statistical models

The pronounced impact of the Cauchy disturbance on the dataset poses consid-
erable complexity in unraveling the true causal dependencies among control errors.
The Fixed bins algorithm, which demonstrated relatively favorable performance in
the absence of Cauchy disturbance, appears to struggle when confronted with this
particular type of noise. Although it partially accomplishes its task by mapping
some relationships, the presence of Cauchy disturbance evidently introduces signif-
icant challenges, leading to deviations from the actual causality graph.

This outcome serves as valuable feedback, highlighting the intricacies and limi-
tations of the Fixed bins algorithm in the context of datasets influenced by diverse
interference patterns. It underscores the crucial relationship between algorithm ef-
ficiency and the underlying characteristics of the analyzed data.

The final approach considered in this section involves the application of the
Transfer Entropy approach utilizing the Kernel Density Estimation algorithm. Un-
like the dataset with Gaussian noise, where several relationships resulted in TE co-
efficients equal to zero, the current analysis yielded non-zero TE coefficients for each
of the examined control error pairs. The results are presented in Table 6.10.

TABLE 6.10: Calculated Transfer Entropy coefficients based on Kernel
Density Estimation method for the dataset with Gaussian noise and

Cauchy disturbance

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.1106 0.0320 0.0586 0.0294
ε2 0.0605 NA 0.0256 0.0448 0.0308
ε3 0.0526 0.0485 NA 0.0589 0.0412
ε4 0.0243 0.0293 0.0224 NA 0.0152
ε5 0.0520 0.0664 0.0308 0.0682 NA

The prominent positioning of the Transfer Entropy coefficient with the highest
values in Table 6.10 unambiguously suggests that the identified associations be-
tween control errors in data affected by Gaussian noise and Cauchy disturbance
are erroneous. Nevertheless, a causal graph can still be constructed, as depicted in
Figure 6.18b.

Through a comprehensive comparison of the causality graph obtained using the
Transfer Entropy method with a non-parametric statistical model in the form of Ker-
nel Density Estimation, with the actual causality graph, it is evident that the KDE-
based TE approach fails to capture the true causal relationships. This failure extends
to both direct causal connections and even indirect relationships, which are denoted
by dashed lines in the graph (see Figure 6.18a).

Attempts to adjust the methodology for this specific type of data are also unsuc-
cessful. This included fine-tuning the method by altering the time lags or adjusting
the parameter N, which represents the number of points along each dimension used
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ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark –
dataset with Gaussian noise and Cauchy disturbance

FIGURE 6.18: Comparison of the actual and obtained causality graphs
– data impacted by Gaussian noise and Cauchy disturbance

in probability calculations. Despite these adjustments, the results remained perplex-
ing and do not align with the expected causal relationships.

Interestingly, when the KDE-based TE method is applied to a dataset influenced
solely by Gaussian noise, it showed promise and exhibited more favorable out-
comes. However, when confronted with the additional factor of Cauchy distur-
bance, the approach proved to lack robustness and became inadequate in revealing
the true causal patterns.

The observed discrepancy highlights the necessity for the implementation of ad-
vanced and sophisticated data analysis methods that can effectively handle the com-
plexities arising from various types of noise and disturbances. In doing so, these
methods should also enhance the efficacy of the Transfer Entropy approach in cap-
turing accurate causal relationships. Rather than solely concentrating on develop-
ing more resilient causal inference techniques, future research should also empha-
size the investigation of data properties, including the identification of outliers, as a
means to address the challenges posed by this diverse dataset.

90



Chapter 7

Impact of outliers on the Transfer
Entropy method

Understanding the impact of outliers and their locations in the dataset can signif-
icantly contribute to refining the causal inference process. Identifying and appro-
priately handling outliers can lead to a more accurate and reliable determination
of causal relationships, even in the presence of complex noise patterns like Cauchy
disturbance.

As a result, the future direction of research pursues a comprehensive approach
that combines advanced outliers detection methods, ESD (see Section 3.5.1), IQR
(see Section 3.5.2), and Hampel filter (see Section 3.5.3), thereby fostering more ef-
fective and robust framework for causal inference in the presence of challenging
datasets.

The accurate detection of outliers in a dataset is notably influenced by the un-
derlying data trend. In the context of the dataset with Gaussian noise, a computa-
tionally less demanding polynomial interpolation method may suffice to effectively
remove the trend. According to the methodology described in Section 3.4, Table 7.1
shows MAD calculations results up to the 9th polynomial order for the given dataset.

TABLE 7.1: Mean absolute deviation (MAD) values for ith polynomial
order - dataset with Gaussian noise

0 1st 2nd 3rd ... 6th 7th 8th 9th

ε1 0.0536 0.0536 0.0502 0.0478 ... 0.0423 0.0412 0.0405 0.0405
ε2 0.0186 0.0186 0.0185 0.0185 ... 0.0183 0.0183 0.0183 0.0183
ε3 0.0339 0.0338 0.0338 0.0338 ... 0.0338 0.0338 0.0339 0.0340
ε4 0.0355 0.0355 0.0354 0.0354 ... 0.0353 0.0353 0.0354 0.0354
ε5 0.0387 0.0387 0.0388 0.0386 ... 0.0380 0.0375 0.0366 0.0364

Scrutinizing the results presented in Table 7.1, it becomes evident that elevat-
ing the order of the polynomial has a negligible effect on reducing the Mean Ab-
solute Deviation value. As a result, when conducting further investigations on the
dataset with Gaussian noise, it is reasonable to adopt order 0 for the polynomial for
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each control error εi (i.e., assuming that the signals are merely shifted by a constant
value).

However, in the presence of both Gaussian noise and Cauchy disturbance in the
second dataset, a trend becomes more significant, necessitating the adoption of a
more sophisticated interpolation technique, such as spline interpolation (see Section
3.4).

It is essential to clarify that the observed trend does not hold for all εi values
in the dataset; rather, it specifically applies to cases, where classical polynomial in-
terpolation leads to a substantial reduction in the Mean Absolute Deviation (MAD)
value (see Table 7.2). In particular, this phenomenon is significant in ε1 and ε2, where
the MAD coefficient exhibits a significant decline as the polynomial order increases
and reaches a stabilization point at around the 7th order.

TABLE 7.2: Mean absolute deviation (MAD) values for ith polynomial
order – dataset with Gaussian noise and Cauchy disturbance

0 1st 2nd 3rd ... 6th 7th 8th 9th

ε1 2.5714 2.5947 2.5040 1.6965 ... 0.7934 0.6988 0.6895 0.6898
ε2 0.2547 0.2594 0.1813 0.1628 ... 0.0512 0.0496 0.0497 0.0495
ε3 0.2367 0.2364 0.2399 0.2399 ... 0.2307 0.2294 0.2282 0.2275
ε4 0.0728 0.0726 0.0724 0.0720 ... 0.0714 0.0714 0.0712 0.0712
ε5 1.7890 1.8339 1.8414 1.7441 ... 1.4454 1.4403 1.3782 1.3392

The utilization of such high-order polynomials, although capable of reducing the
MAD for ε1 and ε2, proves to be impractical from both computational and scientific
perspectives. The computational effort associated with the evaluation of high-order
polynomials increases significantly, impacting the efficiency of data analysis. More-
over, employing excessively complex polynomial interpolations is not considered a
favorable practice in classical scientific methodologies, as it may lead to overfitting
and unreliable interpretations of the underlying data.

Figure 7.1 and Figure 7.2 show the outcomes of employing the spline interpo-
lation technique for control errors ε1 and ε2, respectively, derived from the dataset
with Gaussian noise and Cauchy disturbance. Remarkably, a 2nd order polynomial
yielded satisfactory results in both instances. This observation is of considerable im-
portance as it parallels the concerns raised earlier for the conventional polynomial
interpolation method. The successful implementation of the spline method show-
cases its efficacy in mitigating the issues associated with the classical approach, ob-
taining a change from a 7th order polynomial to a 2nd order polynomial.

After preparing the datasets using interpolation methods, they are ready for the
outlier detection procedures. However, it is important to acknowledge that each se-
lected method (ESD, IQR, and the Hampel filter) exhibits varying sensitivities to the
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FIGURE 7.1: Results of trend identification and its removal from ε1 us-
ing spline interpolation – dataset with Gaussian noise and Cauchy dis-

turbance
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FIGURE 7.2: Results of trend identification and its removal from ε2 us-
ing spline interpolation – dataset with Gaussian noise and Cauchy dis-

turbance

type and number of outliers present in the data. Consequently, the lower and up-
per thresholds determined by these methods differ significantly and impose varying
degrees of restrictiveness on the identified outliers.

The results of these outlier identification methods, in the form of min and max
thresholds, for each εi for both the dataset with Gaussian noise and the dataset with
Gaussian noise and Cauchy disturbance are presented in Table 7.3 and Table 7.4,
respectively.

In the first analyzed dataset with Gaussian noise, the most effective approach
for outlier detection is the Interquartile Range method. For each control error εi,
the minimum and maximum limits are computed based on the IQR, which defines
a less restrictive threshold. This characteristic enables the IQR method to identify
outliers effectively while preserving the underlying data distribution.

On the other hand, the Hampel filter also calculates threshold values; however,
these are considerably more restrictive. If the results from the Hampel filter are

93



Chapter 7. Impact of outliers on the Transfer Entropy method

accepted, it may lead to a loss of data dynamics, which is undesirable, particularly
from the perspective of the Transfer Entropy method.

The least effective method among the three is the Extreme Studentized Devi-
ate, especially concerning the control errors ε1 and ε2. Although the computed
minimum and maximum values for ε3, ε4, and ε5 are higher compared to the IQR
method, the absence of results for ε1 and ε2 renders the ESD method unsuitable for
further consideration.

Following these observations, it is reasonable to conclude that the IQR method
is the most suitable choice for the analysis of the given dataset.

TABLE 7.3: Calculated thresholds values using ESD, IQR and Hampel
filter - dataset with Gaussian noise

Control error ESD IQR Hampel
min max min max min max

ε1 NA NA -0.1745 0.1741 -0.0015 0.0021
ε2 NA NA -0.0617 0.0619 -0.0093 0.0056
ε3 -0.17805 0.1943 -0.1045 0.1042 -0.0091 0.0057
ε4 -0.21697 0.1900 -0.1175 0.1159 -0.0020 0.0134
ε5 -0.22265 -0.2204 -0.1165 0.1233 -0.0031 0.0058

In both datasets, we obtain identical conclusions. Once again, the application
of the Interquartile Range method for the dataset with Gaussian noise and Cauchy
disturbance yields objectively satisfactory results, enabling subsequent analysis and
the establishment of causal relationships (see Table 7.4).

However, the Hampel filter’s threshold values prove excessively restrictive, ren-
dering it unsuitable for utilization. As a consequence, valuable information embed-
ded in the control errors may be lost due to its overly stringent nature.

Likewise, the Extreme Studentized Deviate method displays the lowest effective-
ness in this context. Furthermore, it is incapable of determining the minimum and
maximum values for control errors ε4 and ε5. Consequently, it is evident that the
ESD method is not the ideal choice for identifying outliers.

TABLE 7.4: Calculated thresholds values using ESD, IQR and Hampel
filter - dataset with Gaussian noise and Cauchy disturbance

Control error ESD IQR Hampel
min max min max min max

ε1 -3.3819 -3.3689 -1.7775 1.8140 -0.1004 -0.0386
ε2 -0.3743 -0.3733 -0.1615 0.15198 -0.0207 -0.0098
ε3 -1.5339 -1.5157 -0.6997 0.7638 -0.0705 0.0067
ε4 NA NA -0.2661 0.26508 -0.0038 0.0008
ε5 NA NA -4.6939 5.4028 -0.2045 0.2844
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7.1. Causality for the dataset with Gaussian noise

The IQR method stands out as the preferred approach for identifying outliers in
this dataset during that experiment. It serves as the basis for further investigations
into the establishment of causal relationships between control errors. By employ-
ing the IQR method, the research endeavors can progress with confidence in the
robustness and reliability of the results obtained.

The data processing methodology described above, which includes detrending
and identifying outliers using the Interquartile Range method, facilitates the com-
putation of Transfer Entropy coefficients and subsequently enables the construction
of causality graphs for both datasets. Emphasizing the significance of these data
analysis techniques, it is noteworthy that they allow the calculation of TE coeffi-
cients using the classical approach. This advantage can be attributed primarily to
the successful attainment of data probability distributions for each control error εi,
which closely approximates the normal distribution. This adherence to normality
assumptions enhances the applicability and reliability of the classical TE calculation
method, providing valuable insights into causal relationships within the datasets.
Moreover, the resulting causality graphs offer a comprehensive visualization of the
interdependencies among variables and facilitate the understanding of causal influ-
ences governing the simulation system. The results are presented in Section 7.1 and
Section 7.2 for each dataset.

7.1 Causality for the dataset with Gaussian noise

This section presents the outcomes of Transfer Entropy computations for a dataset
with Gaussian noise. Prior to analysis, the dataset underwent preprocessing, involv-
ing trend removal and the application of the Interquartile Range method to identify
outliers. The resultant TE coefficients are detailed in Table 7.5.

TABLE 7.5: Calculated Transfer Entropy coefficients using IQR outliers
detection method for the dataset with Gaussian noise

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.1207 0.0875 0.0975 0.0800
ε2 0.1162 NA 0.0654 0.0731 0.0676
ε3 0.0662 0.0694 NA 0.0824 0.0755
ε4 0.1594 0.1262 0.0820 NA 0.0711
ε5 0.0668 0.0752 0.0747 0.0997 NA

The causality graph resulting from the TE coefficients presented in Table 7.5 is
displayed in Figure 7.3. This graph depicts the inferred causal relationships among
the control errors in the given dataset, revealing the directionality and strength of
information flow. Additionally, the causality graph is compared to the real graph,
which likely represents the true underlying causal connections in the simulation
system.
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ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark –
dataset with Gaussian noise and Cauchy disturbance

FIGURE 7.3: Comparison of the actual and obtained causality graphs –
data impacted by Gaussian noise and Cauchy disturbance

In the analyzed dataset, the detrending process involved a simple shifting of the
samples by a constant value, effectively removing the linear trend component. The
IQR method’s determination of limit values significantly influenced the obtained
results, successfully identifying outliers and improving the data quality for subse-
quent analysis.

However, applying the classical Transfer Entropy approach directly to the raw
dataset seems to be problematic, making it impossible to present the results in tab-
ular form or as a causality graph. As a consequence, a more refined analysis is
required to capture the causal relationships effectively.

The causality graph derived from the TE coefficients exhibited limitations, as
it does not accurately represent all the causal connections within the dataset. Al-
though proper causality is evident for relationships between ε1 and ε2, as well as ε4
and ε1, other control errors’ causal relationships are incorrect.

It is pertinent to refer to the results presented in Section 6.1.1 and Section 6.2.1,
where both parametric and non-parametric statistical models are tested. In this con-
text, the obtained results are less promising, indicating the need for further explo-
ration and refinement of the analysis techniques.

A comparison with the previous results for the dataset with Gaussian noise re-
vealed that while some pairs of control errors yielded meaningful outcomes, the
outlier identification process leads to the loss of certain information. Alternatively,
fitting the data distribution with less effort, results in more satisfactory and accurate
results.

This underscores the importance of choosing appropriate data preprocessing
techniques or statistical model selection when conducting causality analyses. Fu-
ture investigations involve exploring data properties with more sophisticated ap-
proaches to improve causality inference accuracy in this case.
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7.2. Causality for the dataset with Gaussian noise and Cauchy disturbance

7.2 Causality for the dataset with Gaussian noise and
Cauchy disturbance

The data processing procedure for the dataset with Gaussian noise and Cauchy dis-
turbance, which involved trend removal through spline interpolation and outlier
identification using the IQR method, has a substantial impact not only on the ob-
tained results but also on the underlying nature of the data itself. This observation
is particularly relevant to the control errors ε1 and ε2, as evident in Figure 7.1 and
Figure 7.2.

The calculated Transfer Entropy coefficients using the classical approach are pre-
sented in Table 7.6, providing quantitative measures of the information flow and
causal relationships among the control errors.

TABLE 7.6: Calculated Transfer Entropy coefficients using IQR outliers
detection method for the dataset with Gaussian noise and Cauchy dis-

turbance

Trow→column ε1 ε2 ε3 ε4 ε5

ε1 NA 0.2157 0.0415 0.0692 0.0371
ε2 0.2085 NA 0.1842 0.0598 0.0897
ε3 0.0418 0.0805 NA 0.0542 0.0361
ε4 0.0292 0.1282 0.0220 NA 0.0125
ε5 0.0387 0.0705 0.0297 0.0652 NA

The application of spline interpolation for trend removal effectively reduced the
influence of trends and fluctuations in the data, resulting in a more stable and con-
sistent dataset. Moreover, the IQR method’s outlier identification further enhanced
the data quality by identifying and treating potential anomalies and extreme values
that could have skewed the analysis.

With the TE coefficients at hand, it becomes possible to construct the causality
graph, visualizing the inferred causal connections among the control errors. The
causality graph is presented in Figure 7.4b, revealing the directionality and strength
of information transfer within the simulation system.

Regrettably, even with the current approach, a complete representation of the
existing relationships remains elusive. This is evident in both the inferred causality
between ε4 and ε2, as well as between ε5 and ε4. When applying the classic Trans-
fer Entropy method to the raw simulation dataset, entirely contradictory results are
obtained, leading to their complete rejection (see Section 6.1.2). Nevertheless, a no-
ticeable improvement can be observed when comparing these previous results with
the ones currently discussed. The effectiveness of the trend removal and outlier
identification algorithms cannot be denied; however, as demonstrated in Section
6.2.2, non-parametric statistical models proved to handle this issue more effectively.
Although a reasonable decision is to employ spline interpolation for control errors
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ε1 and ε2, which is reflected in the results, the relationships resulting from the ε4
and ε5 pose challenges.

ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark –
dataset with Gaussian noise and Cauchy disturbance

FIGURE 7.4: Comparison of the actual and obtained causality graphs -
data impacted by Gaussian noise and Cauchy disturbance

In summary, the research indicates that the choice between parametric and non-
parametric statistical models significantly influences the quality of the results. It
is essential to emphasize the possibility of combining these methodologies, where
trend removal and outlier identification precede fitting the most appropriate proba-
bility distribution to the data. However, this approach carries substantial risks.

There is a considerable danger that the impact of these techniques, often subcon-
sciously connected, may lead to significant data distortion, resulting in matching
data to methods rather than methods to the data. Such over-interpretation can pro-
duce impressive results but remain subjective and applicable only to a specific case,
contradictory in other, even similar applications. Being mindful of these limitations,
subsequent chapters primarily focus on the nature and properties of the analyzed
data, and the selection of the most appropriate method of analysis. The objective is
to extract information from the data that might be invisible at first glance, residing
within the noise and later within the oscillations. Understanding these intricacies is
paramount to uncovering the underlying dynamics and causal relationships within
the dataset effectively and objectively.
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Chapter 8

Implementation of the Transfer
Entropy method for noise signals

Noise signals often play a crucial role in real-world systems, normally introducing
uncertainties and complexities within them. Noises can also be indicators of infor-
mation flow, crucial in root cause analysis. In this chapter, we delve into the causal-
ity analysis using the Transfer Entropy approach within a simulation system for the
dataset with Gaussian noise and the data set with Gaussian noise and Cauchy dis-
turbance separately. The idea is to use the noise component of the variable as the
carrier of the causality information.

Noise signals can be decomposed from the time series through the Ensemble
Empirical Mode Decomposition (see Section 3.6.1) or its extension, Multivariate En-
semble Empirical Mode Decomposition (see Section 3.6.2). The study aims to inves-
tigate the causality relationships among noises in control errors εi, and both these
methods serve as valuable tools to decompose the signals into Intrinsic Mode Func-
tions (IMFs), enabling a thorough examination of their dynamics and an impact on
the Transfer Entropy approach effectiveness.

The EEMD and the MEEMD are data-driven decomposition techniques that offer
a flexible and adaptive approach to handling non-linear and non-stationary signals.
Both algorithms have their limitations, in particular, the dependence between the
length of analyzed data and the number of received IMFs resulting from such a
decomposition process.

The main difference between the EEMD and the MEEMD lies in their respec-
tive applications to single-dimensional and multi-dimensional data. EEMD is pri-
marily designed for decomposing one-dimensional time series signals into IMFs
with different timescales, which collectively capture the signal’s non-linear and non-
stationary characteristics. MEEMD is specifically tailored for multi-dimensional
datasets and can handle multiple interdependent variables or dimensions simul-
taneously. It decomposes the multi-dimensional data into sets of IMFs for each di-
mension, thereby capturing the underlying modes of variability and interactions
among the variables.

As above, it is decided to apply the MEEMD algorithm to decompose control
errors for both datasets and subsequently compute the Transfer Entropy coefficients
to construct causality graphs. Investigation of the usefulness of noise in the causality
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analysis presents a promising avenue for addressing challenges posed by the data,
leading to more robust and accurate causal inference in this case.

Figure 8.1 demonstrates the exemplary effect of decomposition on the control
error ε1 from a dataset with Gaussian noise. On the other hand, Figure 8.2 also
depicts the decomposition outcome of ε1, this time from a dataset including both
Gaussian noise and Cauchy disturbance.
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FIGURE 8.1: Results of decomposition process using MEEMD algo-
rithm for control error ε1 – dataset with Gaussian noise

Figure 8.1 and Figure 8.2 present a comprehensive decomposition of the control
error ε1 into distinct sections. At the topmost section, the original analyzed signal
(control error ε1) is depicted. Below that, seven Intrinsic Mode Functions are shown,
representing various intrinsic modes of variability extracted from the data. Again,
it is important to note that the number of IMFs obtained through the decomposition
process depends on the data’s length. In this particular case, the algorithm suggests
a decomposition into seven IMFs, each revealing different timescales of variability
within the control error signal. Specifically, the IMFs IMF1, IMF2, and IMF3 are
considered as noise components, while the remaining, i.e., IMF4, IMF5, IMF6, and
IMF7, are regarded as oscillatory modes. Lastly, at the bottom, the residue is dis-
played, capturing any remaining fluctuations not captured by the IMFs.
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FIGURE 8.2: Results of decomposition process using MEEMD algo-
rithm for ε1 – dataset with Gaussian noise and Cauchy disturbance

The extracted IMFs play a critical role in unraveling the causal relationships be-
tween control errors εi. They allow us to distinguish the noise from significant oscil-
latory patterns within the data. This functionality is particularly evident in Figure
8.2, where the dataset comprises Gaussian noise and Cauchy disturbance.

By effective isolation of the noise components from the original signal, the IMFs
enhance the visibility of underlying oscillations present in the data. The data de-
rived from the decomposition process not only contribute to this Chapter but also
have implications for the subsequent Chapter 9.

The subsequent subsections 8.1 and 8.2 present the outcomes of computing Trans-
fer Entropy coefficients for the noise signals extracted from both datasets.

In Section 8.1, we delve into the analysis of TE coefficients for the noise signals
derived from the dataset with Gaussian noise. This examination aims at quantifica-
tion of the directed information flow and causal interactions within the simulation
system.

Similarly, Section 8.2 focuses on the TE coefficient calculations for the noise sig-
nals obtained from the dataset with Gaussian noise and Cauchy disturbance. This
investigation is vital for understanding the causal relationships within a more com-
plex and challenging environment.

At this moment, it is crucial to highlight that the forthcoming tables presenting
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the TE coefficients will undergo modifications from their current state. During the
decomposition procedure, three distinct noise signals are acquired for each εi. As a
result, the investigation of causality using the Transfer Entropy method is conducted
independently for each noise signal, and this process is repeated for every εi.

This approach ensures that the causality study is comprehensive, allowing for
examination of the information flow and directional influences between control er-
ror’s noises. Such analysis for each noise signal separately allows us to gain a more
nuanced understanding of the underlying causal relationships, which may vary de-
pending on the nature and intensity of the noise. These detailed investigations aid in
uncovering complex interactions and improving the overall reliability and accuracy
of the Transfer Entropy approach.

8.1 Causality for the dataset with Gaussian noise

Table 8.1 exhibits the computed Transfer Entropy coefficients for the noise signals
acquired during the Multivariate Ensemble Empirical Mode Decomposition process
on the dataset with by Gaussian noise.

TABLE 8.1: Calculated Transfer Entropy coefficients for noise signals –
dataset with Gaussian noise

Trow→column ε1 ε2 ε3 ε4 ε5

IMF1 NA 0.5907 0.0529 0.2365 0.0509
ε1 IMF2 NA 0.1202 0.0846 0.1512 0.0758

IMF3 NA 0.1018 0.0956 0.3143 0.0935

IMF1 0.2450 NA 0.0545 0.1618 0.0460
ε2 IMF2 0.4900 NA 0.0735 0.2769 0.0812

IMF3 0.3370 NA 0.0938 0.2323 0.1000

IMF1 0.0553 0.0499 NA 0.0571 0.0469
ε3 IMF2 0.0745 0.0656 NA 0.0855 0.0835

IMF3 0.0993 0.0997 NA 0.1111 0.0869

IMF1 0.2641 0.4543 0.0579 NA 0.0518
ε4 IMF2 0.1498 0.1035 0.0801 NA 0.0833

IMF3 0.2943 0.0989 0.0891 NA 0.0818

IMF1 0.0525 0.0510 0.0509 0.0505 NA
ε5 IMF2 0.0865 0.0720 0.0786 0.0780 NA

IMF3 0.1069 0.0913 0.0859 0.0805 NA

The examination of the Transfer Entropy coefficients reveals a notable pattern:
despite the successive stages of data decomposition within the presence of Gaus-
sian noise, the results for the noise signals exhibit a degree of consistency. In many

102



8.1. Causality for the dataset with Gaussian noise

instances, the highest TE values correspond to the same pairs of signals. However,
it is essential to note that these relationships between control errors only marginally
reflect the actual causal connections within the simulation system.

It is worth noting that the analysis of noise signals reveals specific characteris-
tics of the simulation system, compared with the previous research. Specifically, it
is notable during the determination of the relationships involving the control error
ε5. The TE coefficients values computed for ε5 are remarkably similar, suggesting
equivalent relationships between this control error and ε1, ε2, ε3, and ε4. This arises
from the inherent characteristic of an closed-loop system, indicating that the ε5 lacks
a direct causal relationship with other control errors, as is observable with, for in-
stance, ε1.

This finding, in conjunction with the previously highlighted issues related to
non-singularity and non-unidirectionality in the relationships between specific con-
trol errors, is another challenge in determining causality using the Transfer Entropy
approach.

In light of these results, Figure 8.3b presents a causality graph to the discussed
scenario. This graph encapsulates the observed causal relationships among the con-
trol errors within the system, as inferred from the TE coefficients.

ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark -
dataset with Gaussian noise

FIGURE 8.3: Comparison of the actual and obtained causality graphs –
data impacted by Gaussian noise

As previously emphasized, the depicted causal relationships do not accurately
reflect the underlying connections through the system. In the majority of instances,
the displayed relationships are incorrect, and in some cases, even contradictory. This
includes the indirectly inferred relationships, indicated by dashed lines in Figure
8.3a.

Among the various types of signals scrutinized in this research, it becomes ev-
ident that the noise within the dataset carries relatively limited information. Con-
sequently, it is not well-suited as a medium for implementing the chosen analytical
approach. This observation underscores the importance of selecting appropriate
data types and preprocessing techniques when applying causal inference methods,
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especially in scenarios where noise components dominate the signal, and their ef-
fects may obscure meaningful causal relationships.

8.2 Causality for the dataset with Gaussian noise and
Cauchy disturbance

Table 8.2 displays the computed Transfer Entropy coefficients for the noise signals
extracted during the Multivariate Ensemble Empirical Mode Decomposition pro-
cess on the dataset with Gaussian noise and Cauchy disturbance.

TABLE 8.2: Calculated Transfer Entropy coefficients for noise signals –
dataset with Gaussian noise and Cauchy disturbance

Trow→column ε1 ε2 ε3 ε4 ε5

IMF1 NA 0.4396 0.0487 0.1903 0.0500
ε1 IMF2 NA 0.0942 0.0806 0.1085 0.0763

IMF3 NA NaN 0.0961 0.2270 0.1254

IMF1 0.1249 NA 0.0448 0.1409 0.0439
ε2 IMF2 0.3096 NA 0.0841 0.3504 0.0794

IMF3 0.2872 NA 0.0890 0.3601 0.1168

IMF1 0.0453 0.0407 NA 0.0527 0.0414
ε3 IMF2 0.0754 0.0808 NA 0.0836 0.0797

IMF3 0.0874 NaN NA 0.0900 NaN

IMF1 0.1869 0.4223 0.0487 NA 0.0434
ε4 IMF2 0.1223 0.0888 0.0835 NA 0.0742

IMF3 0.2598 NaN 0.0868 NA 0.1238

IMF1 0.0516 0.0466 0.408 0.0462 NA
ε5 IMF2 0.0846 0.0755 0.0813 0.0760 NA

IMF3 0.1234 NaN NaN 0.1158 NA

Despite the implementation of the Cauchy disturbance, the results shown in Ta-
ble 8.2 remain highly analogous to those presented in Table 8.1. The sole distinction
lies in the depiction of the causal relationship between ε2 and ε4, which is indicated
to be erroneous. This observation implies that, notwithstanding the additional inter-
ference factor, the noise signals derived during the dataset decomposition process
do not adequately account for this phenomenon. In other words, it appears that the
noise signals obtained from the decomposition process do not reflect the distinctive
characteristics introduced by the Cauchy disturbance.

Once more, we observe that the Transfer Entropy coefficients pertaining to the
control error ε5 exhibit a remarkable degree of proximity, more so than in preceding
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cases. This consistency in values affirms the robustness of the findings derived from
the calculations in Section 8.1.

Despite the absence of entirely satisfactory results, this particular observation
holds significant value and stands as one of the most pivotal conclusions gleaned
from the entire research endeavor. It underscores the persistence of certain causal
patterns, even amid the challenges posed by complex noise sources and interference,
providing valuable insights for further investigations and analytical refinement.

As in Section 8.1, we obtain inaccurate results. This discrepancy becomes ev-
ident upon a careful comparison of the resulting causality graph with the actual
representation provided in Figure 8.4.

ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark -
dataset with Gaussian noise and Cauchy disturbance

FIGURE 8.4: Comparison of the actual and obtained causality graphs –
data impacted by Gaussian noise and Cauchy disturbance

In reality, all of the inferred causal relationships, with the exception of ε4 and
ε1, are found to be invalid. This observation serves to reinforce the assertion that
employing noise as a signal in conjunction with the Transfer Entropy approach sig-
nificantly diminishes its reliability and efficacy, thus rendering it unsuitable for such
applications.

The reproducibility of results across both the dataset with Gaussian noise and
the dataset with Gaussian noise and Cauchy disturbance validates the sound func-
tionality of the Transfer Entropy method under the adopted calculation parameters.
In both instances, the identified dependencies align; however, their fidelity in repre-
senting the actual causal relationships remains notably deficient. This limitation is
attributed to the nature of the signals utilized in the computations, specifically, noise
signals. The observed limited effectiveness of the method primarily emanates from
the intrinsic characteristics of noise itself, which, as evidence, does not convey per-
tinent information conducive to precise Transfer Entropy analysis. Consequently,
it is ascertained that further exploration of this particular case lacks merit, and the
inclusion of noise in causal analysis is discouraged.
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As already shown, the absence of satisfactory results does not singularly consti-
tute the sole conclusion drawn from this chapter. The convergence of TE coefficient
values for ε5 underscores that the challenges inherent to causal analysis extend be-
yond the quandary of delineating threshold values to ascertain relationships among
control errors, especially when seeking to capture multiple relationships for a given
variable. The issue tied to the system’s inherent nature, specifically whether it op-
erates as a closed-loop system, emerges as a significant factor. In the context of the
subject simulation system, precise knowledge exists regarding which variables lack
a direct causal relationship with others. However, this complication is magnified
when such knowledge is absent. It is imperative to acknowledge that the intro-
duction of oscillatory signals in the subsequent chapter will not inherently resolve
this challenge. Instead, it will serve to evaluate how oscillatory signals, in contrast
to previously employed data processing techniques and method variance, impact
its accuracy and efficacy. This examination helps shed light on whether oscillatory
signals provide a more viable avenue for causal analysis in complex systems.
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Chapter 9

Implementation of the Transfer
Entropy method for oscillatory signals

Oscillations represent an inherent and ubiquitous component of real signals within
complex automation systems. These oscillatory patterns manifest for a multitude of
reasons, including but not limited to:

1. System dynamics, where the control system’s feedback loop generates oscil-
latory behavior due to its inherent time delays and interactions;

2. Control tuning, when a system attempts to regulate itself due to poorly tuned
control algorithms or inappropriate control parameters;

3. Nonlinearities, such as saturation effects or dead times, can cause oscillations
under specific conditions;

4. Sensor noise, that can introduce fluctuations in measured signals, potentially
leading to oscillations;

5. Actuators malfunctioning, like valve stiction;

6. Resonance frequencies, when subjected to certain input;

7. Interference or disturbances, that are external in most cases;

8. System instabilities, resulting from inadequate stability margins or improper
design;

9. Communication delays, introducing time lags, potentially leading to instabil-
ity and oscillations;

10. Controller switching, that can induce transient oscillations;

11. Environmental factors, i.e. temperature fluctuations or other environmental
factors that can affect system parameters, leading to oscillations if not ade-
quately controlled.
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These are just a few examples, while the specific causes of oscillations can vary
significantly depending on the particular system and its operating conditions. Ana-
lyzing and mitigating oscillations is a critical aspect of control system engineering to
ensure stable and reliable system performance. Despite often being perceived as an
undesirable phenomenon, oscillations hold intrinsic value in the context of causal
analysis, as they can serve as a rich carrier of transferred information, a crucial ele-
ment within the framework of the Transfer Entropy method.

The research findings presented in this chapter exhibit a close interrelation with
those presented in the preceding Chapter 8. The central focus resides in the data de-
composition process, which enables the separation of oscillatory signals from noise
components using MEEMD algorithm. This pivotal step lays the foundation for the
discussions and investigations in the subsequent Section 9.1 and Section 9.2, offering
a structured approach to leveraging oscillatory signals for enhanced causal analysis
within the simulation system.

To provide a visual representation of the oscillatory signals extracted through
the Multivariate Ensemble Empirical Mode Decomposition process for the perti-
nent datasets, Figure 9.1 and Figure 9.2 present their waveform characteristics for
ε1, as an example. In this decomposition, each control error εi is disassembled into
seven constituent components. The initial three components are identified as noise
components (as elucidated in Chapter 8), while the subsequent components, specif-
ically IMF4, IMF5, IMF6, and IMF7, constitute the oscillatory signals that serve as
the foundational elements for subsequent research endeavors.
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FIGURE 9.1: Oscillatory signals obtained in the process of MEEMD de-
composition for control error ε1 – dataset with Gaussian noise

These oscillatory signals, meticulously separated from noise components, form
the cornerstone of our investigations, facilitating in-depth analysis and exploration
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of their role in elucidating causal relationships within the studied system. Their in-
tricate waveforms encapsulate valuable information that contributes to the broader
understanding of system dynamics and causal interactions.
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FIGURE 9.2: Oscillatory signals obtained in the process of MEEMD de-
composition for ε1 – dataset with Gaussian noise and Cauchy distur-

bance

It is worth to highlight that in the context of the dataset with Gaussian noise, the
properties of the oscillatory signals exhibit significant disparities when compared
to those observed in the dataset with Gaussian noise and Cauchy disturbance. This
divergence in behavior can be attributed to the limited influence of Gaussian noise
on the system. The implementation of Gaussian noise in this particular dataset does
not sufficiently perturb the system to induce discernible oscillations.

This observation implies that conducting causality assessments using the Trans-
fer Entropy approach on oscillatory signals within the dataset with Gaussian noise
may yield not only inconclusive but potentially misleading results. In essence, the
absence of clear oscillatory patterns diminishes the likelihood of these signals con-
veying information relevant to the Transfer Entropy method.

Conversely, the situation is markedly more promising in the case of the dataset
with Gaussian noise and Cauchy disturbance. Here, oscillations are very distinct,
and consequently, the likelihood of these oscillatory signals containing pertinent in-
formation for the Transfer Entropy method is notably higher. This suggests that the
utilization of oscillatory signals in causal analyses within the context of the dataset
with Gaussian noise and Cauchy disturbance holds greater potential for yielding
meaningful insights into the underlying causal relationships within the simulation
system.

Similarly to the analysis that uses noise signals, Section 9.1 and Section 9.2 are
dedicated to showcasing the outcomes of Transfer Entropy coefficient calculations,
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specifically pertaining to the dataset with Gaussian noise and the dataset with Gaus-
sian noise and Cauchy disturbance, respectively. In these sections, an investigation
into relationships is undertaken for each of the individual IMFi components. The
primary objective here is to ascertain the consistency and reproducibility of the re-
sults across the various oscillatory components.

By the systematical analysis of the Transfer Entropy coefficients for each IMFi,
we aim to discern any recurring patterns or causal relationships that may exist
within these oscillatory signals. This comprehensive approach allows us to evalu-
ate the robustness of the findings and gain deeper insights into the causal dynamics
embedded within the oscillatory components of both datasets.

9.1 Causality for the dataset with Gaussian noise

Table 9.1 displays the Transfer Entropy coefficient values pertaining to the oscilla-
tory signals, derived through the decomposition process of the dataset with Gaus-
sian noise, for each respective εi control error.

As anticipated, the presented outcomes do not offer substantial insights. In most
instances, regardless of the depth of decomposition, obtaining Transfer Entropy co-
efficient values was unfeasible. This behavior is inherently linked to the previously
highlighted issue of insufficient system excitation, resulting in a lack of observable
oscillations. Consequently, constructing a causality graph based on these findings
proves unattainable. One may contemplate the significance of these NaNs encoun-
tered in the computational process. Nevertheless, this matter delves into the realm
of data processing, warranting dedicated investigation in forthcoming research.

However, it is imperative to recognize that the challenges encountered in this
analysis do not inherently invalidate the pursuit of causal analysis utilizing oscilla-
tory signals. In this particular instance, the decomposition process succeeded pri-
marily in isolating oscillations from noise, yet these oscillations, in contrast to noise,
appear to carry even less, if any, meaningful information.

Upon closer examination, a significant observation emerges from the analysis.
Despite the application of the TE method across successive IMFi components, coef-
ficient values are not attainable. This raises a pertinent question: what if we were
dealing with a single waveform of an oscillatory signal, and the TE method still
failed to yield coefficient values? To elaborate further, it is highly plausible that
even when we possess individual oscillatory signals for various control errors, the
calculation of coefficients for certain pairs may remain elusive. This should not nec-
essarily imply an absence of causal relationships between the particular control loop
and others within the intricate context of a multi-loop system. This phenomenon
becomes evident through the calculations conducted on the dataset with Gaussian
noise and Cauchy disturbance, as observed in Section 9.2.
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TABLE 9.1: Calculated Transfer Entropy coefficients for oscillatory sig-
nals – dataset with Gaussian noise

Trow→column ε1 ε2 ε3 ε4 ε5

IMF4 NA NaN NaN 0.3084 0.1397
ε1 IMF5 NA NaN NaN 0.4890 0.1980

IMF6 NA NaN NaN 0.2636 0.2462
IMF7 NA NaN NaN 0.1010 0.0844

IMF4 NaN NA NaN 0.1407 0.1246
ε2 IMF5 NaN NA NaN NaN NaN

IMF6 0.2927 NA NaN 0.2076 NaN
IMF7 NaN NA NaN 0.1236 0.1606

IMF4 NaN NaN NA NaN 0.1395
ε3 IMF5 NaN NaN NA NaN NaN

IMF6 0.3068 NaN NA 0.2347 NaN
IMF7 0.1545 NaN NA 0.1079 0.2093

IMF4 NaN NaN NaN NA 0.1395
ε4 IMF5 0.4765 NaN NaN NA 0.1478

IMF6 0.4100 NaN NaN NA 0.1560
IMF7 0.1138 NaN NaN NA 0.1031

IMF4 NaN Nan NaN 0.1051 NA
ε5 IMF5 0.2642 NaN NaN 0.1956 NA

IMF6 0.2632 NaN NaN 0.2509 NA
IMF7 0.1991 NaN NaN 0.1327 NA

9.2 Causality for the dataset with Gaussian noise and
Cauchy disturbance

Table 9.2 presents the Transfer Entropy coefficient values associated with the oscil-
latory signals from the dataset with Gaussian noise and Cauchy disturbance.

The analysis of Transfer Entropy coefficient values in this context reveals a no-
table degree of consistency. Irrespective of the level of decomposition denoted by
IMFi, the highest coefficient values consistently correspond to the same pairs of con-
trol errors. An exception arises with IMF4, where distinct dependencies emerge, or
coefficient values calculated at this decomposition level cannot be expressed numer-
ically. This observation engenders a crucial conclusion.

The Multivariate Ensemble Empirical Mode Decomposition method has effec-
tively disentangled noise from oscillations within the original dataset, as evidenced
in Chapter 8. While applying the Transfer Entropy method to noise signals yielded
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TABLE 9.2: Calculated Transfer Entropy coefficients for oscillatory sig-
nals – dataset with Gaussian noise and Cauchy disturbance

Trow→column ε1 ε2 ε3 ε4 ε5

IMF4 NA NaN NaN 0.1367 0.1685
ε1 IMF5 NA 0.3388 NaN 0.1283 0.2596

IMF6 NA 0.3683 0.3310 0.1630 0.1528
IMF7 NA 0.2254 0.1785 0.0957 0.1464

IMF4 NaN NA NaN 0.1191 0.1305
ε2 IMF5 0.6457 NA 0.3246 0.1305 0.2504

IMF6 0.3767 NA 0.3017 0.1899 0.1469
IMF7 0.1590 NA 0.0675 0.1118 0.1224

IMF4 0.3356 NaN NA 0.0966 0.1911
ε3 IMF5 0.3804 0.3761 NA 0.1905 0.2611

IMF6 0.1895 0.0611 NA 0.0817 0.1754
IMF7 0.1430 0.1052 NA 0.1246 0.1026

IMF4 0.1887 NaN 0.1126 NA 0.1625
ε4 IMF5 0.1703 0.1524 0.1300 NA 0.1488

IMF6 0.1977 0.1378 0.1514 NA 0.1312
IMF7 0.1291 0.1140 0.1255 NA 0.1247

IMF4 0.1582 NaN 0.1731 0.1192 NA
ε5 IMF5 0.2353 0.2550 0.1804 0.1669 NA

IMF6 0.1730 0.2011 0.1269 0.01529 NA
IMF7 0.1302 0.1526 0.0875 0.1430 NA

moderate results, its application to oscillatory signals has proven highly satisfac-
tory. However, the pivotal consideration lies in the level of data decomposition,
which directly influences the number of oscillatory signals generated.

Assuming four levels of decomposition for the examined control errors, erro-
neous results would manifest for IMF4, rendering the selection of oscillations for
TE analysis redundant. Hence, it is imperative to determine an optimal and objec-
tively effective number of Intrinsic Mode Functions for each control error’s decom-
position. This ensures not only the acquisition of valuable analytical results but also
avoids superfluous computational overhead. Furthermore, this analysis facilitates
the comparison of results across multiple levels of decomposition, confirming the
consistency of the derived conclusions.

Figure 9.3 showcases the causality graph for this scenario, offering a comparative
perspective against the current representation.

As anticipated, the causality graph derived from the dataset with Gaussian noise
and Cauchy disturbance, based on oscillatory signals, closely reflects the actual sys-
tem’s causal relationships. It effectively captures the genuine connections between
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ε4 ε1 ε2 ε3 ε5

(A) The actual causality diagram of the simulated bench-
mark

ε4 ε1 ε2 ε3 ε5

(B) The causality diagram of the simulated benchmark -
dataset with Gaussian noise and Cauchy disturbance

FIGURE 9.3: Comparison of the actual and obtained causality graphs –
data impacted by Gaussian noise and Cauchy disturbance

the specified control errors. These findings underscore the caveats highlighted in
earlier investigations.

Firstly, the limitation imposed by the selected criterion for determining relation-
ships (i.e., the maximum TE value within a given set of pairs) results in the inability
to ascertain multiple connections for a single error. Secondly, the closed-loop nature
of the analyzed simulation system introduces complexities. It is exemplified by the
calculated relationship between ε5 and ε3, which, while correct in existence, exhibits
an inaccurate direction.

The comprehensive research process has facilitated an in-depth exploration of
both the dataset and the Transfer Entropy method as a tool for causality analysis.
Numerous facets, encompassing not only the inherent system dynamics but also
data processing factors influencing the method’s efficacy, have been meticulously
examined. Chapter 10 presents an exhaustive account of the insights garnered thus
far. This knowledge forms the basis for the development of an objective analytical
procedure designed to execute effective causal analyses within complex multi-loop
control systems.
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Chapter 10

Research overview and industrial
validation

10.1 Summary

During the investigation, we have examined a simulation system subject to testing
in two distinct variants. In the first scenario, we scrutinize a dataset affected by the
Gaussian noise. The analysis focuses on control errors, which exhibit a relatively
stationary character, and their distribution can be considered close to the normal
one. In the second case, we implement fat-tailed Cauchy disturbance simulating
industrial-like impacts, markedly inducing serious oscillatory behavior to the con-
trol errors. The probability distributions of this dataset deviate from the Gaussian
one. We consistently apply the same data processing techniques to both variants,
combined with various modifications to the Transfer Entropy method. The objec-
tive is to underscore the pivotal role played by the characteristics and dynamics of
the data selected for analysis. This approach not only enables the application of ob-
jective data analysis methodologies but also engenders significant insights into the
employed analytical approach.

Evidently, the Transfer Entropy method does not have to be confined solely to
humanities research, as exemplified here, but extends its utility to the realm of tech-
nical disciplines, specifically to control engineering. Nonetheless, it exhibits note-
worthy limitations and requires prerequisites that must be satisfied for its reliability
and resilience in accommodating the characteristics of the analyzed problem. It is
pertinent to highlight the judicious choice of data for the analysis, in this instance,
control errors, as previously substantiated in Section 3. These limitations can be cat-
egorized into two distinct domains: those arising from the inherent nature of the
system itself and, consequently, the dataset’s characteristics, and those stemming
from the chosen Transfer Entropy methodology.

The initial category of constraints revolves around the inherent inability to con-
duct an objective assessment of the system using only raw data. The intricate infor-
mational content embedded within the analyzed datasets hampers the attainment of
precise outcomes and, consequently, the accurate delineation of relationships among
control errors. Presuming the suitability of the classic Transfer Entropy approach,
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founded on probability calculations contingent upon a normal distribution, is fun-
damentally flawed. This is primarily attributed to the fact that, in the majority of
cases, we confront nonlinear systems and data characterized by a non-Gaussian dis-
tribution. Hence, an exhaustive scrutiny of the datasets is imperative, accompanied
by their meticulous preprocessing.

This ushers in the second constraint, concerning data processing. Raw datasets
often fail to yield the desired outcomes, when subjected to the conventional TE
methodology. Consequently, further steps involving data manipulation or the segre-
gation of signal components are contemplated, contingent upon the specific nature
of the data. Although theoretically promising, it is crucial to exercise caution, when
selecting data processing algorithms. The main consideration is to prevent data
from being forcibly aligned with the algorithm, engendering an artificial enhance-
ment in TE efficiency that is context-specific. However, it is imperative to refrain
from the wholesale exclusion of these techniques since, in real control systems, they
may significantly influence the quality of TE analysis.

Additionally, once we deal with a relatively unexcited system, the efficacy of data
processing notably diminishes, often resulting in misleading outcomes and conse-
quent dependencies (the well-known identification requirement for enough excita-
tion of the variables). For such data, solutions should be sought in the versatility
of the TE method, as manifested in the successful alignment of probability distri-
bution types with control errors (see Section 6). In systems exhibiting pronounced
oscillatory characteristics, the manipulation of oscillatory signals derived from the
decomposition process yields substantial benefits. Nonetheless, the outcomes are
not without imperfections, leading to an additional inference.

Causality analysis in the context of close-loop control systems presents inherent
challenges. As shown in this research, it is feasible to capture relationships within a
control loop, even when the output signal of that loop lacks a direct connection with
another loop. However, the issue arises in discerning the correct direction of this
relationship. When conducting research solely based on data without prior knowl-
edge of the system, it can potentially yield a false representation of the system’s
structure, as gleaned from calculations using the Transfer Entropy method. It is
conjectured that in closed-loop systems, this phenomenon is less likely to occur, as
each signal typically maintains a close relationship with others within the system.

One of the most significant drawbacks of the Transfer Entropy, among those as-
sociated directly with the method itself, is the absence of an objectively determined
threshold for establishing relationships between control errors. This point has been
reiterated throughout this research. In numerous instances, the TE values obtained
are very similar, rendering the strict criterion of selecting the highest coefficient
value as the most objective but not entirely sufficient. Consequently, the only re-
course is to assume a solitary relationship between the pairs of examined control
errors. This approach precludes the determination of dependencies involving one
loop and two or more others, a common occurrence in multi-loop control systems.
Consequently, the system’s depicted structure is simplified to the utmost degree.
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However, this simplicity may overlook crucial relationships that hold significant
implications for the overall process.

Another noteworthy conclusion drawn from this research is the computational
efficiency of the Transfer Entropy method when applied to extensive long datasets.
To manage longer time series, one might consider dividing them into smaller sub-
sets. However, this approach carries the risk of potential losses of necessary infor-
mation that is relevant to the TE method. Hence, caution should be exercised during
such practices.

The aforementioned doubts, deliberations, and conclusions collectively contribute
to the formulation of the original procedure for conducting causality analysis of the
multi-loop control systems using the Transfer Entropy method. The proposed pro-
cedure is visually represented in Figure 10.1, providing a structured guideline for
investigations in the causality analysis of complex control systems. The proposed
causality assessment procedure, which is shown graphically and described narra-
tively below constitutes the synthetic result of the performed research.

The initial phase of the causality assessment procedure focuses on the acqui-
sition of imperative data for subsequent analysis, specifically focusing on control
error variables derived from the considered system. Control errors serve as crucial
indicators of system performance and behavior, necessitating a meticulous exami-
nation.

Step 1 Data Acquisition and Time-Domain Analysis
Data Acquisition: The primary step entails the acquisition of control error data
originating from the target control system. These variables encapsulate vital
information about the control system’s performance.

Time-Domain Analysis: Subsequently, an assessment of the time characteris-
tics of these time series is conducted. The aim is to ascertain the presence or
absence of oscillations within the system dynamics, as they often mean poor
tuning, nonlinearities, or instability.

Step 2 Analysis Pathways Depending on the Decomposed Oscillation

Case 1 Absence of Oscillations
In scenarios, where the oscillations are not evident in the analyzed dataset,
a specific set of analytical steps is initiated:
Trend Removal: If any underlying trends exist in the control error data,
these trends are removed. This action ensures that the focus remains on
the intrinsic characteristics of the trend stationary data.
Histogram Analysis: Following trend removal, the control error data is
subjected to histogram analysis. This facilitates the identification of po-
tential outliers and offers further insight into the data.
PDF Fitting: If the data distribution diverges from normality, a suitable
parametric or non-parametric probability distribution is fitted to the data.
This distribution forms the foundation for subsequent calculations.
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Transfer Entropy Causality Analysis: Utilizing the chosen probability distri-
bution, Transfer Entropy analysis is performed. Transfer Entropy quanti-
fies the causality relationships within the data, ultimately leading to the
construction of the causality graph.

Case 2 Presence of Oscillations
In scenarios where the system exhibits clear oscillations, the following
steps are integrated into the procedure:
Decomposition Assessment: The determination of the decomposition level
becomes pivotal, especially when employing the Multivariate Empirical
Mode Decomposition approach. If the decomposition level exceeds 7, the
dataset necessitates subdivision into smaller, manageable subsets.
MEEMD Decomposition: Employing the MEEMD methodology, the dataset
undergoes a systematic decomposition process. This process disentan-
gles oscillatory components from the original data, effectively isolating
the embedded noise.
Transfer Entropy Causality Analysis: Post-decomposition, the causality anal-
ysis is conducted using Transfer Entropy. This analysis reveals causal re-
lationships within the decomposed oscillatory components.

Step 3 Causality Graph Presentation
The outcome of the analysis is presented in the form of the causality graph,
showing fundamental causality relationships within the system.

Concluding, this procedure offers an original, structured, and scientifically-grounded,
but practical approach for the comprehensive analysis of causality relationships in
the multi-loop control systems, tailored to the presence or absence of oscillations
(poor-tuned or well-tuned system). The methodology encompasses data prepro-
cessing, stochastic analysis, and advanced techniques to unveil causal relationships.

The proposed original procedure is derived using simulation and theoretical
analysis. Its practical potential is shown using real industrial data. The consec-
utive Section 10.2 provides a comprehensive causality analysis example, which is
executed according to the proposed procedure shown in Figure 10.1. It includes the
industrial validation of the proposed causality assessment procedure run on real
data from the ammonia synthesis system of the Grupa Azoty, Zakłady Azotowe
”Puławy” SA.

118



10.1. Summary

Collect a dataset in the form of control
errors from a real industrial plant
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behavior within
the dataset?

Execute the dataset within a chosen programming environment 
and generate its graphical representation

Compute histograms
for each control error

Fit normal distribution to
histograms

Establish a degree of data
decomposition using the

MEEMD algorithm based on
the dataset's length

No YesDoes the dataset exhibit
a normal distribution?

Fit selected parametric/non-
parametric distribution
functions to histograms

Remove trend form
the dataset

YesNo

Do the histograms
display characteristics

indicative of
"fat tails"?

Identify outliers

Select a best fitted probability
density function based

on a fit indicator

Plot causality graph

Determine the causality
coefficients using the Transfer

Entropy approach with
selected probability
distribution function

Determine the causality
coefficients using the classic
Transfer Entropy approach

Perform data decomposition
utilizing the Multivariate

Ensemble Empirical Mode
Decomposition algorithm

YesNo Does the decomposition
level exceed 7?

Divide the dataset into subsets
of appropriate length

Separate noise from
oscillatory signals

FIGURE 10.1: Diagram of the proposed analytical procedure for causal-
ity analysis using the Transfer Entropy approach
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10.2 Validation with the ammonia synthesis installa-
tion dataset

The subsequent section contains the results of the causal analysis conducted on the
dataset encompassing control errors within the ammonia synthesis installation. Ac-
cording to the causality assessment procedure, the causality graphs are derived as
a consequence of systematically executing the procedure in the specified sequence.
The process unfolds in the following order: Step 1, followed by Step 2 (specifically,
Case 1), and ultimately, Step 3. This sequential approach ensures that each step
builds upon the results and insights obtained from the previous one, facilitating a
comprehensive assessment of causality relationships within the dataset. This asser-
tion is corroborated by the insights derived from the analyses detailed in Section
4.2.

It is important to emphasize that the outcomes originally derived from the sim-
ulation system, as illustrated by the table showcasing Transfer Entropy coefficients
and the accompanying causality graph, do not hold direct applicability within the
present context. This divergence is chiefly attributed to the substantial volume of
datasets, as well as the multifarious control errors for which causal relationships are
scrutinized, as elaborated upon in Section 4.2. In strict adherence to the causality
assessment procedure delineated in Figure 10.1, there are presented a total of 14
distinct causality graphs, each corresponding to one of the 14 consecutive months
encompassing the operational trajectory of the ammonia synthesis installation.

In contrast to the comprehensive causality graph depicted in Figure 4.23, each
of the corresponding graphs presented in Figure 10.2, Figure 10.3, Figure 10.4, Fig-
ure 10.5, Figure 10.6, Figure 10.7, Figure 10.8, Figure 10.9, Figure 10.10, Figure 10.11,
Figure 10.12, Figure 10.13, Figure 10.14, and Figure 10.15, includes additional nodes
representing ambient (outdoor) parameters, specifically air temperature (Tα), air
density (ρα), humidity level (H), and atmospheric pressure (Pe). The purpose of this
investigation is to check the potential influence of external factors on the observed
control errors, thereby establishing the interrelationships between these environ-
mental variables and the control errors in question. This approach allows for a more
holistic understanding of how ambient conditions might contribute to variations in
relationships between control errors.

It must be noted that the data used for the causality analysis are reviewed and
selected very carefully. This step, though rarely included in the research reports, is
inevitable for the analysis. Poorly chosen or incomparable time series lead to wrong
conclusions. Data selections must lead to a reliable and comparable time series.
They must refer to the similar operating conditions of the installation. Considered
analysis uses data from 14 months of operation (07/2020–08/2021), which are sam-
pled with 1-minute time intervals. Much attention is paid to finding installation
operation periods characterized by comparable loads and similar operating condi-
tions. Plant load varies ±1.5% in the considered data. The load demand within
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the data is not intentionally affected by existing variations related to normal process
behavior. Moreover, the data do not include periods with known hardware issues.

The analysis of causality graphs derived from the 14-month operational data of
the ammonia synthesis installation reveals a remarkably high degree of similarity
among them. Specifically, two distinct groups of identical relationships between
control errors have been identified. The first group encompasses months 1, 4, 5, 6,
and 12, while the second group includes months 2, 3, 7, 8, 9, 10, and 11. The sole
distinction between these obtained graphs lies in the alternating causal relationship,
with the first group featuring a connection between εF12 and εL1 , and the second
group showing a connection between εF12 and εL2 . It is imperative to underscore
that all established relationships between control errors are consistent in both cases.

A significant observation arising from the comparative analysis between the ex-
isting causality graph presented in Figure 4.23 and the derived causality graphs
refers to the nature of the relationship between variables εF7 and εT3 with respect to
the εF10 . For all 14 periods, employing the Transfer Entropy method for calculations
yielded the highest Transfer Entropy coefficients for these errors. This implies that
within the resultant causality graphs, the associations involving the control errors
εF7 and εF10 , as well as εT3 and εF10 , are considered direct in nature.

In contrast to the actual causality graph depicted in Figure 4.23, the subsequent
graphs also incorporate causal relationships involving ambient temperature (Tα),
atmospheric pressure (Pe), humidity level (H), and air density (ρα). As expected,
these variables exhibit close and reproducible causal connections. Notably, in none
of the cases does a relationship with any of the control errors emerge, irrespective of
whether the focus is on errors originating from control loops related to flow, level,
pressure, or temperature.

The ultimate conclusion of the above analysis confirms the proposed analytical
methodology. Despite a long period of the analysis, which covers 14 months of the
plant operation the analysis delivers comparable and repeatable results. Moreover,
the obtained causality graphs are consistent with the real relations. This proves the
method’s reliability.

A limitation encountered in the application of the Transfer Entropy method ob-
served during the analysis of the simulation system, and likewise encountered in
the analysis of industrial data, pertains to its incapacity to discern multiple relation-
ships involving a single control error. In many instances, we encountered actual
dependencies where one control error exhibited associations with several others, as
exemplified by εF3 or εF6 . This constraint arises from the underlying assumption that
the relationship between control errors is established based on the highest value of
the Transfer Entropy coefficient. A potential remedy for this limitation is elaborated
upon in the Conclusion (Chapter 11).
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FIGURE 10.2: The causality diagram of the ammonia synthesis instal-
lation – 1st month dataset
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FIGURE 10.3: The causality diagram of the ammonia synthesis instal-
lation – 2nd month dataset
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FIGURE 10.4: The causality diagram of the ammonia synthesis instal-
lation – 3rd month dataset
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FIGURE 10.5: The causality diagram of the ammonia synthesis instal-
lation – 4th month dataset
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FIGURE 10.6: The causality diagram of the ammonia synthesis instal-
lation – 5th month dataset
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FIGURE 10.7: The causality diagram of the ammonia synthesis instal-
lation – 6th month dataset
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FIGURE 10.8: The causality diagram of the ammonia synthesis instal-
lation – 7th month dataset

128



10.2. Validation with the ammonia synthesis installation dataset

εF5

εF1

εF2

εF3

εF6

εP1

εF4

εT2

εT4

εT1

εF7

εT3

εF9

εF10

εF8

εT5 εF12

εF11

εT6

εL3

εL1

εL2

HTα ραPe

FIGURE 10.9: The causality diagram of the ammonia synthesis instal-
lation – 8th month dataset
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FIGURE 10.10: The causality diagram of the ammonia synthesis instal-
lation – 9th month dataset

130



10.2. Validation with the ammonia synthesis installation dataset

εF5

εF1

εF2

εF3

εF6

εP1

εF4

εT2

εT4

εT1

εF7

εT3

εF9

εF10

εF8

εT5 εF12

εF11

εT6

εL3

εL1

εL2

HTα ραPe

FIGURE 10.11: The causality diagram of the ammonia synthesis instal-
lation – 10th month dataset
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FIGURE 10.12: The causality diagram of the ammonia synthesis instal-
lation – 11th month dataset
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FIGURE 10.13: The causality diagram of the ammonia synthesis instal-
lation – 12th month dataset
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FIGURE 10.15: The causality diagram of the ammonia synthesis instal-
lation – 14th month dataset
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Chapter 11

Conclusion

This thesis focuses on a comprehensive exploration of root-cause analysis in multi-
loop complex control systems. It emphasizes the applicability and significance of
the Transfer Entropy method as a powerful tool for causality analysis in complex
systems. The performed research leads to the evaluation of the original causality
assessment procedure for conducting causality analysis of the multi-loop control
systems. The utilization of a simulation system allows for a rigorous examination of
the method’s performance and the validation of the developed analytical procedure
in real-world scenarios.

The fundamental element of this research is the selection of the appropriate sig-
nal type for causality analysis. The deliberate and well-justified choice of control
error as a vital information medium aligns perfectly with the principles of the Trans-
fer Entropy approach. The consistent application of identical data processing tech-
niques across simulation datasets, coupled with multiple iterations of the Transfer
Entropy method, highlights the pivotal role played by the unique characteristics and
dynamics of selected data in shaping causal outcomes. This approach not only facil-
itates the application of objective data analysis methodologies but also illuminates
profound insights into the chosen analytical approach.

Indeed, this research underscores the remarkable versatility of the Transfer En-
tropy method, demonstrating its relevance across diverse domains, transcending
the traditional boundaries of humanities research, and extending its utility into the
domain of technical disciplines. However, it is imperative to acknowledge and ad-
dress significant limitations and prerequisites vital for ensuring the method’s effi-
cacy and resilience. These constraints can be primarily categorized into two do-
mains: those stemming from the inherent nature of the system and its dataset char-
acteristics, and those arising from the specific Transfer Entropy properties.

One of the most notable intrinsic limitation of Transfer Entropy is the absence
of an objectively determined threshold for establishing relationships among con-
trol errors. This concern is a recurrent theme in the research, as Transfer Entropy
values often exhibited remarkable similarity. This observation necessitates the re-
consideration of the strict criterion of selecting the highest coefficient value as the
sole objective criterion. Consequently, it is assumed a singular relationship between
pairs of examined control errors, thereby precluding the determination of depen-
dencies involving one control loop and two or more others – a scenario frequently
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encountered in multi-loop control systems. This simplified depiction of the system’s
structure may have potentially overlooked crucial relationships with significant im-
plications for overall system behavior. An intriguing avenue for further research in-
volves the consideration of time delay between control errors as an additional factor
in the determination of the relationships between variables, potentially expanding
the developed procedure.

The doubts, deliberations, and conclusions drawn from this research lead to the
formulation of the original causality assessment procedure for conducting the root-
cause analysis using the Transfer Entropy method. This procedure is successfully
validated using real data from the ammonia synthesis installation, graciously pro-
vided by Grupa Azoty Zakłady Azotowe “Puławy” SA.

In conclusion, this research endeavor makes significant contributions to the un-
derstanding of the Transfer Entropy method’s applicability and leads to the devel-
opment of the scientifically grounded causality assessment procedure for the com-
prehensive analysis of complex multi-loop control systems. The proposed method-
ology, tailors to accommodate both poorly-tuned and well-tuned systems, takes into
account the tuning quality, data preprocessing, distribution analysis, and advanced
techniques for revealing causal relationships. The results underscore the signifi-
cance of the selection of appropriate data which are used during the analysis. The
observations present the potential and limitations of the Transfer Entropy method.

These findings may open new research areas, which now are rarely addressed.
The potential and industrial implications of the causality analysis and the Trans-
fer Entropy are significant. The reliable root-cause analysis introduces a new per-
spective to the monitoring, fault diagnosis, alarming, and maintenance of complex
multi-loop control systems.
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I Multi-component signal
k Number of process variables
K Gain
l Sampling interval
N Number of samples
NIMF Number of Intrinsic Mode Functions
No Outliers number
Np Number of data points
p Complete / conditional Probability Density Function
Pe External atmospheric pressure
q Model order
Q Quantization level
Q1 First quartile (lower)
Q3 Third quartile (upper)
R PID / PI controller
r(t) Setpoint
ResNIMF Residue of NIMF intrinsic modes
T Time constant
Tα Ambient air temperature
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List of Symbols

Tx→y Transfer Entropy coefficient
u(t) Controller output
uv(t) Manipulated variable
v Noise amplitude
x(t) Process variable x
y(t) Process variable y
z(t) Output
B AR polynomial coefficients
X Vector of x process variables
Y Vector of y process variables

α Stability index
β Skewness parameter
κ Scale M-estimator
∑∑∑ Noise covariance matrix
δ Distribution location
ε(t) Control error
εF Control error of flow
εL Control error of level
εP Control error of pressure
εT Control error of temperature
η Kurtosis parameter
γ Distribution scale factor
γC Cauchy disturbance
ε̂(t) Prediction error
λ Multiplier for scaling in Probability Density Function
µ Mean
ν Shape function
ρα Air density
σ Standard deviation
σ2 Variance
σcov Covariance
σG Gaussian noise
τ Time delay (lag)
µ̃ Median
|π̂(ω)| Partial Directed Coherence coefficient
Υ(t) Vector of multivariate manipulated variable noise terms
υ(t) Manipulated variable noise terms
Γ(·) Gamma function
ψlog Logistic scale estimator
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Domański, P. D. et al. (2018). “Robust and Asymmetric Assessment of the Benefits
from Improved Control – Industrial Validation”. In: IFAC-PapersOnLine 51.18.
10th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM
2018, pp. 815–820.
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Falkowski, Michał J., Paweł D. Domański, and Ewa Pawłuszewicz (2022). “Causality
in Control Systems Based on Data-Driven Oscillation Identification”. In: Applied
Sciences 12.8. ISSN: 2076-3417. DOI: 10.3390/app12083784. URL: https://www.
mdpi.com/2076-3417/12/8/3784.

Gao, Z. and S. X. Ding (2007). “Actuator fault robust estimation and fault-tolerant
control for a class of nonlinear descriptor systems”. In: Automatica 43.5, pp. 912–
920.

Gencaga, D., K. H. Knuth, and W. B. Rossow (2015). “A Recipe for the Estimation of
Information Flow in a Dynamical System”. In: Entropy, pp. 438–470.

Gokas, F. (2000). “Distributed control of systems over communication networks
[Ph.D. dissertation]”. In: University of Pennsylvania, Philadelphia, Pa, USA.

Granger, C. and P. Newbold (1974). “Spurious regression in econometrics”. In: J Econ
2, pp. 111–20.

Granger, C. W. J. (2003). “Time series analysis, cointegration, and applications”. In:
Nobel Lecture, pp. 360–366.

156

https://doi.org/10.1109/ACCESS.2020.3038206
https://doi.org/10.1109/CoDIT49905.2020.9263965
https://doi.org/doi:10.1515/9783110729122-007
https://doi.org/doi:10.1515/9783110729122-007
https://doi.org/10.1515/9783110729122-007
https://doi.org/10.3390/app13105849
https://www.mdpi.com/2076-3417/13/10/5849
https://www.mdpi.com/2076-3417/13/10/5849
https://doi.org/10.3390/app12083784
https://www.mdpi.com/2076-3417/12/8/3784
https://www.mdpi.com/2076-3417/12/8/3784


Bibliography

Granger, CWJ (1969). “Investigating causal relations by econometric models and
cross-spectral methods”. In: Comput Math Organ Theory 37, pp. 424–438.

Grimble, M. J. (2002). “Controller performance benchmarking and tuning using gen-
eralised minimum variance control”. In: Automatica 38.12, pp. 2111–2119.

Gupta, M. et al. (2014). Outlier Detection for Temporal Data. Morgan & Claypool Pub-
lishers. ISBN: 1627053751.

Hacking, Ian (July 2001). An Introduction to Probability and Inductive Logic. ISBN: 9780521772877.
DOI: 10.1017/CBO9780511801297.

Hadjiiski, M. and Z. Georgiev (2005). “Benchmarking of Process Control Perfor-
mance”. In: Problems of Engineering, Cybernetics and Robotics. Vol. 55. Sofia, Bul-
garia: Bulgarian Academy of Sciences, pp. 103–110.

Hägglund, T. (1999). “Automatic detection of sluggish control loops”. In: Control
Engineering Practice 7.12, pp. 1505–1511.

Harris, T. J. (1989). “Assessment of closed loop performance”. In: Canadian Journal of
Chemical Engineering 67, pp. 856–861.

Harris, T. J. and C. T. Seppala (2001). “Recent Developments in Controller Perfor-
mance Monitoring and Assessment Techniques”. In: Proceedings of the Sixth Inter-
national Conference on Chemical Process Control, pp. 199–207.

Hausman, D. (1998). Causal Asymmetries. Cambridge: Cambridge University Press.
Hawkins, D. M. (1980). Identification of outliers. London; New York: Chapman and

Hall.
He, F., C. Wang, and S. K. S. Fan (2018). “Nonlinear fault detection of batch processes

based on functional kernel locality preserving projections”. In: Chemometr. Intell.
Lab. 183, pp. 79–89.

He, X., Z. Wang, and D. H. Zhou (2009). “Robust fault detection for networked sys-
tems with communication delay and data missing”. In: Automatica 45.11, pp. 2634–
2639.

Heckerman, D., C. Meek, and G. Cooper (2006). “A Bayesian approach to causal
discovery. In Innovations in Machine Learning”. In: Springer, pp. 1–28.

Hernan, M. A., B. Brumback, and J. M. Robins (2000). “Marginal structural models
to estimate the causal effect of zidovudine on the survival of HIV-positive men”.
In: Epidemiology, pp. 561–570.

Hernan, M. A. and J. M. Robins (2020). “Causal Inference”. In: CRC Boca Raton, FL.
Hill, J. L. (2011). “Bayesian nonparametric modeling for causal inference”. In: J. Com-

put. Graph Stat. 20.1, pp. 217–240.
Horch, A. (1999). “A simple method for detection of stiction in control valves”. In:

Control Engineering Practice 7.10, pp. 1221–1231.
Hosking, J.R.M. (1990). “L-Moments: Analysis and Estimation of Distributions Us-

ing Linear Combinations of Order Statistics”. In: Journal of the Royal Statistical
Society. Series B (Methodological) 52.1, pp. 105–124. ISSN: 00359246. URL: http:
//www.jstor.org/stable/2345653 (visited on 09/05/2023).

157

https://doi.org/10.1017/CBO9780511801297
http://www.jstor.org/stable/2345653
http://www.jstor.org/stable/2345653


Bibliography

Howard, R. and D. Cooper (2010). “A novel pattern-based approach for diagnostic
controller performance monitoring”. In: Control Engineering Practice 18.3, pp. 279–
288.

Imbens, G. W. (2004). “Nonparametric estimation of average treatment effects under
exogeneity: A review”. In: Rev. Econ. Stat. 86.1, pp. 4–29.

Jafari-Mamaghani, Mehrdad and Joanna Tyrcha (Feb. 2014). “Transfer Entropy Ex-
pressions for a Class of Non-Gaussian Distributions”. In: Entropy 16. DOI: 10.
3390/e16031743.

Jelali, M. (2013). Control Performance Management in Industrial Automation: Assess-
ment, Diagnosis and Improvement of Control Loop Performance. London: Springer-
Verlag.

Jiang, H., R. Patwardhan, and S. L. Shah (2009). “Root cause diagnosis of plant-wide
oscillations using the concept of adjacency matrix”. In: Journal of Process Control
19.8. Special Section on Hybrid Systems: Modeling, Simulation and Optimiza-
tion, pp. 1347–1354.

Katura, T. et al. (2006). “Quantitative evaluation of interrelations between sponta-
neous low-frequency oscillations in cerebral hemodynamics and systemic car-
diovascular dynamics”. In: Neuroimage 31.

Kayser, A. S., F.T. Sun, and M. Desposito (2009). “A comparison of Granger causality
and coherency in fMRI-based analysis of the motor system”. In: Hum Brain Mapp
30.11, pp. 3475–3494.

Khamseh, S. Afshar et al. (2016). “Control performance assessment based on sensor
fusion techniques”. In: Control Engineering Practice 49, pp. 14–28.

Knierim-Dietz, N., L. Hanel, and J. Lehner (2012). Definition and verification of the Con-
trol Loop Performance for Different Power Plant Types. Tech. rep. Institute of Com-
bustion and Power Plant Technology, University of Stutgart.

Kraskov, Alexander, Harald Stögbauer, and Peter Grassberger (2004). “Estimating
mutual information”. In: Phys. Rev. E 69 (6), p. 066138. DOI: 10.1103/PhysRevE.
69.066138. URL: https://link.aps.org/doi/10.1103/PhysRevE.69.066138.

Kugiumtzis, D. (2009). “Improvement of Symbolic Transfer Entropy”. In: Proceedings
of the 3rd International Conference on Complex Systems and Applications, pp. 338–342.

LaLonde, R. J. (1986). “Evaluating the econometric evaluations of training programs
with experimental data”. In: Am. Econ. Rev., pp. 604–620.

Landman, R. et al. (2014). “Fault propagation analysis of oscillations in control loops
using data-driven causality and plant connectivity”. In: Computers and Chemical
Engineering 71, pp. 446–456.

Lang, X. et al. (2020). “Median ensemble empirical mode decomposition”. In: Signal
Processing 176.

Laouti, N., N. Sheibat-Othman, and S. Othman (2011). “Support Vector Machines for
Fault Detection in Wind Turbines”. In: Proceedings of the 18th World Congress of The
International Federation of Automatic Control, Milano, Italy, 28 August-2 September,
pp. 7067–7072.

158

https://doi.org/10.3390/e16031743
https://doi.org/10.3390/e16031743
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://link.aps.org/doi/10.1103/PhysRevE.69.066138


Bibliography

Lee, J. et al. (2012). “Transfer entropy estimation and directional coupling change
detection in biomedical time series”. In: BioMedical Engineering OnLine 11.19,
pp. 1315–1321.

Li, J., O. R. Zaiane, and A. Osornio-Vargas (2014). “Discovering statistically sig-
nificant co-location rules in datasets with extended spatial objects”. In: DaWaK,
pp. 124–135.

Li, Y. and Z. O’Neill (2015). “Evaluating control performance on building HVAC
controllers”. In: International Building Performance Simulation Association. Hyder-
abad, India, pp. 962–967.

Lindner, B., L. Auret, and M. Bauer (2017). “Investigating the Impact of Perturba-
tions in Chemical Processes on Data-Based Causality Analysis. Part 1: Defining
Desired Performance of Causality Analysis Techniques”. In: IFAC-PapersOnLine
50.1. 20th IFAC World Congress, pp. 3269–3274.
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