
DISCIPLINE OF SCIENCE INFORMATION AND COMMUNICATION TECHNOLOGY

FIELD OF SCIENCE ENGINEERING AND TECHNOLOGY

Ph.D. Thesis
Wojciech Masarczyk, M.Sc.

Data representations in

non-stationary optimization

Supervisor

prof. Tomasz Trzciński

WARSAW 2025

Data representations in non-stationary optimization

Deep learning has achieved remarkable success across various fields, including

image generation, natural language processing, protein folding, and material

design. Despite differences in architectures and optimization strategies, these

breakthroughs share a fundamental assumption: a fixed training dataset. Cur-

rently, breaking this assumption leads to many issues, such as catastrophic for-

getting or loss of plasticity. However, moving beyond the fixed-dataset paradigm

would enable a continuous adaptation of these models to the ever-changing

environment, an ability of any intelligent entity. To make it possible, we need

to address several fundamental research questions. One of these questions

explores the connection between the fundamental building blocks of deep

neural networks, data representations, and the model’s ability to learn in a

non-stationary fashion. Specifically, this thesis comprises five publications

that partially answer the following question.

What role do data representations play in non-stationary optimization?

The first part of our work aims to understand how carefully crafted modifications

to data representations before training can either reduce or induce the effect

of catastrophic forgetting. To achieve the former, we design a meta-learning

scheme that creates a synthetic dataset to reduce catastrophic forgetting. The

latter is achieved by fine-tuning data with highly discriminative features, which

can dramatically deteriorate the model’s performance. The last work of this

group explores how the use of surrogate loss helps to build data representations

that are more robust to catastrophic forgetting.

The second part of the thesis explores deep neural networks in greater detail

and focuses on hidden data representations. The first work from this group

introduces the Tunnel Effect Hypothesis, which states that layers of sufficiently

deep networks divide into two distinct parts that contribute differently to the

task. The initial layers produce linearly separable representations, while the

subsequent layers, the tunnel, compress these representations. The tunnel is

non-trivial in the model’s generalization and continual learning, challenging

existing perspectives on catastrophic forgetting. As a continuation, the subse-

quent publication analyzes representations’ dynamics to understand the Tunnel

Effect’s origins. As an effect, the work discovers rank-deficit bias, a novel class of

solutions findable by neural networks thanks to softmax function’s surprising

ability to increase the representations’ rank. The rank-deficit bias leads to

multiple consequences among them are learning more compressed data repre-

sentations which generalize better in distribution and worse out-of-distribution.

4

Keywords: Continual Learning, Hidden Representations, Transfer Learning

Reprezentacje danych w optymalizacji niestacjonarnej

Uczenie głębokie osiągnęło znaczące sukcesy w różnych dziedzinach, takich

jak generowanie obrazów, przetwarzanie języka naturalnego, przewidywanie

struktur białkowych czy projektowanie materiałów. Pomimo różnic w archi-

tekturach i strategiach optymalizacji, te przełomy opierają się na wspólnym

założeniu: stałym zbiorze danych treningowych. Obecnie odstąpienie od tego

założenia prowadzi do wielu problemów, takich jak katastroficzne zapominanie

czy utrata plastyczności. Jednak wyjście poza paradygmat stałego zbioru da-

nych umożliwiłoby ciągłą adaptację modeli do zmieniającego się środowiska –

cechę charakterystyczną każdego inteligentnego bytu. Aby to osiągnąć, należy

odpowiedzieć na kilka fundamentalnych pytań badawczych. Jedno z nich do-

tyczy związku między podstawowymi elementami składowymi głębokich sieci

neuronowych, reprezentacjami danych, a zdolnością modelu do uczenia się

w warunkach niestacjonarnych. W szczególności, niniejsza praca doktorska

składa się z pięciu publikacji, które częściowo odpowiadają na następujące

pytanie:

Jaką rolę odgrywają reprezentacje danych w optymalizacji niestacjonarnej?

Pierwsza część naszej pracy analizuje, jak celowo wprowadzone modyfikacje

reprezentacji danych przed treningiem mogą zmniejszyć lub wywołać efekt

katastroficznego zapominania. Aby osiągnąć ten pierwszy cel, proponujemy

schemat meta-uczenia, który tworzy syntetyczny zbiór danych zmniejszający

katastroficzne zapominanie. Drugi cel osiągamy poprzez dotrenowanie na da-

nych z dodatkiem wysoce dyskryminacyjnych cech, co może znacząco pogorszyć

wydajność modelu. Ostatnia praca z tej grupy bada, jak zastosowanie zastępczej

funkcji straty pomaga budować reprezentacje danych bardziej odporne na

katastroficzne zapominanie.

Druga część pracy doktorskiej dogłębniej analizuje głębokie sieci neuronowe,

skupiając się na ukrytych reprezentacjach danych. Pierwsza praca z tej grupy

wprowadza Hipotezę Efektu Tunelu, która stwierdza, że warstwy wystarcza-

jąco głębokich sieci dzielą się na dwie odrębne części, które w różny sposób

przyczyniają się do rozwiązania zadania. Początkowe warstwy generują repre-

zentacje liniowo separowalne, podczas gdy kolejne warstwy, tunel, kompresują

te reprezentacje. Tunel odgrywa kluczową rolę w generalizacji modelu i uczeniu

ciągłym, podważając dotychczasowe perspektywy dotyczące katastroficznego

zapominania. Kontynuując ten wątek, kolejna publikacja analizuje dynamikę

reprezentacji, aby zrozumieć źródła Efektu Tunelowego. W efekcie praca odkrywa

efekt deficytu rzędu (ang. rank-deficit bias), nową klasę rozwiązań znajdowanych

6

przez sieci neuronowe dzięki zaskakującej zdolności funkcji softmax do zwięk-

szania rzędu reprezentacji. Efekt deficytu rzędu prowadzi do wielu konsekwencji,

w tym uczenia bardziej skompresowanych reprezentacji danych, które lepiej

generalizują w obrębie dystrybucji, ale gorzej poza nią.

Słowa kluczowe: Uczenie ciągłe, ukryte reprezentacje, transfer wiedzy

Contents

1. Introduction 12

1.1. Research questions . 13

1.2. Thesis contributions . 15

1.2.1.Reducing catastrophic forgetting with learning on synthetic

data . 15

1.2.2.On robustness of generative representations against

catastrophic forgetting . 16

1.2.3.On consequences of finetuning on data with highly

discriminative features . 17

1.2.4.The Tunnel Effect: Building data representations in deep

neural networks . 19

1.2.5.Unpacking Softmax: How Temperature Drives Rank Collapse,

Compression and Generalization 20

1.3. Publications not included in the thesis 22

2. Reducing catastrophic forgetting with learning on synthetic data 23

Abstract . 23

2.1. Introduction . 23

2.2. Related Work . 25

2.3. Method . 26

2.4. Experiments . 28

2.5. Conclusions . 31

3. On robustness of generative representations against catastrophic

forgetting 32

3.1. Introduction . 32

3.2. Related works . 34

3.3. Methodology . 35

3.3.1.Hypothesis 1 . 36

3.3.2.Hypothesis 2 . 41

8

3.4. Discussion . 43

4. On consequences of finetuning on data with highly discriminative

features 45

4.1. Introduction . 45

4.2. Experiments and results . 46

4.3. Discussion . 49

5. The Tunnel Effect: Building Data Representations in Deep Neural

Networks 52

Abstract . 52

5.1. Introduction . 52

5.2. The tunnel effect . 54

5.2.1.Experimental setup . 54

5.2.2.The main result . 55

5.3. Tunnel effect analysis . 57

5.3.1.Tunnel development . 58

5.3.2.Compression and out-of-distribution generalization 59

5.3.3.Network capacity and dataset complexity 61

5.4. The tunnel effect under data distribution shift 62

5.4.1.Exploring the effects of task incremental learning on

extractor and tunnel . 63

5.4.2.Reducing catastrophic forgetting by adjusting network depth 64

5.5. Limitations and future work . 65

5.6. Related work . 65

5.7. Conclusions . 66

Appendix . 68

5.8. Experimental setup . 68

5.8.1.Architectures and hyperparameters 68

5.8.2.Datasets . 69

5.8.3.Compute . 71

5.9. Full results . 72

5.9.1.MLPs . 72

5.9.2.ResNet-34 . 73

5.9.3.Dataset complexity experiments 76

5.10.Out of distribution generalization - extended results 84

9

5.11.Exploring the effects of task incremental learning on extractor

and tunnel – extended results . 86

5.11.1.Different number of classes in source and target tasks. . . . 87

5.11.2.On the primary source of catastrophic forgetting on

split-CIFAR10 task. 88

5.12.CKA similarity . 91

5.13.Inter and Intra class variance . 91

5.14.Tunnel development . 93

5.15.ResNets without skip connections 93

6. Unpacking softmax: How temperature drives rank collapse,

generalization and compression 95

Abstract . 95

6.1. Introduction . 95

6.2. Rank deficit bias . 97

6.2.1.Results . 98

6.2.2.Consequences . 99

6.2.3.Analysis . 100

6.2.4.Can softmaxincrease matrix’s rank? 102

6.2.5.Avoiding rank deficit bias . 103

6.3. The role of the softmaxtemperature 104

6.3.1.Experiments . 104

6.3.2.Analysis . 104

6.3.3.Consequences . 107

6.3.4.What factors implicitly change the temperature? 108

6.4. Related Works . 110

6.5. Conclusions . 112

Appendix . 113

6.6. Arbitrary matrix can recover full rank post-softmax 113

6.7. How softmax scales the rank of the matrix? 113

6.7.1.Analysis . 114

6.8. Supplementary Figures . 116

Bibliography 120

10

1. Introduction

Deep learning has revolutionized many fields in recent years, driving un-

precedented advancements and achieving remarkable milestones. Systems

powered by deep learning now dominate coding competitions [1, 2, 3] and

outperform human experts in complex games such as go [4, 5], chess [5, 6],

and poker [7]. Beyond gaming, these methods have proven transformative

in scientific research [8], enabling breakthroughs in material design [9] and

protein folding [10]. What’s particularly intriguing is their ability to excel in

inherently less structured and predictable tasks, such as natural language

understanding [11, 12], human-like conversational interactions [13, 14], and

generating images [15, 16], videos [17], and music [18, 19].

Continuous innovations in neural network architectures [20, 21], training

methodologies [22, 23], and optimization techniques [24, 25] have propelled

the rapid progress in deep learning. These advancements have expanded what

deep learning can achieve, enabling increasingly sophisticated and ambitious

applications [10, 12, 1]. However, despite these impressive achievements, all

deep learning systems share a fundamental dependency: the need for carefully

prepared training datasets. These datasets are labor-intensive to create and

come with strict requirements imposed by the nature of deep learning algorithms.

One of the core assumptions underlying these systems is the static nature of

the training data. The dataset must be fully defined before training begins, and

the data samples are expected to be independently and identically distributed

(i.i.d.) [26, 27]. The same assumption applies to test data, meaning that a

model’s performance is only reliable within the narrow scope defined by its

training dataset. This limitation underscores a critical vulnerability of deep

learning: its inability to adapt to new or evolving situations or to generalize

beyond the specific distribution of the training data [28, 29].

This inherent constraint contrasts human learning, where individuals can

effortlessly repurpose existing knowledge [30] or continuously refine it based on

new information [31]. For deep neural networks, however, attempting to adapt to

new data often leads to a phenomenon known as catastrophic forgetting [32]. In

this scenario, the model improves its performance on the new data but loses its

ability to perform well on previously learned tasks [33]. This trade-off highlights

12

a significant challenge in the field. Without addressing this limitation, deep

learning models will remain powerful yet inherently constrained tools, limited to

narrow domains defined by their training datasets. Overcoming this challenge

is widely regarded as one of the key milestones in achieving artificial general

intelligence (AGI) [34], where systems can learn, adapt, and generalize in ways

that more closely resemble human cognition. Addressing this issue is crucial

for advancing the field and unlocking the full potential of deep learning in

real-world, dynamic environments.

To achieve these ambitious goals, continual learning [35] emerged as a

research community focused on designing deep learning methods tailored to the

needs of dynamic environments where models seamlessly adapt to ever-changing

data without losing previously acquired knowledge. Despite the efforts and

numerous ideas [36, 37] or workarounds [38, 39] proposed and explored by this

community, the progress in overcoming catastrophic forgetting and enabling

deep learning methods to learn continually has been moderate [40].

1.1. Research questions

This thesis is motivated by the urgent need to develop deep learning methods

capable of operating in dynamic environments. Rather than proposing new

methods, it takes a step back to investigate the root causes of catastrophic

forgetting and the limitations of models’ generalization ability. At the core of

this exploration is the idea that data representations serve as the foundational

building blocks of deep learning models. By examining these representations, we

aim to deepen our understanding of why models are vulnerable to catastrophic

forgetting and struggle to generalize beyond their training domains. The central

thesis of this work is that data representations play a critical role in determining

a model’s performance in non-stationary optimization scenarios.

To explore this hypothesis, we address the following research questions:

Research questions (RQ)

1. How do different data representations influence catastrophic forgetting?

Can we learn data representations that inherently make models more

resistant to catastrophic forgetting?

2. Are all data representations equally susceptible to catastrophic forgetting?

3. How do training dynamics affect the learned representations and their

ability to generalize outside the training distribution?

The remainder of this thesis is organized into chapters, each representing a

13

distinct publication. The initial works [41, 42, 43] focus on the first question

(RQ1). More specifically, works [41, 42] demonstrate that it is indeed possible

to learn data representations that significantly reduce a model’s vulnerabil-

ity to catastrophic forgetting. Specifically, work [41] employs meta-learning

to generate synthetic data samples for use in continual learning scenarios,

while work [42] introduces a surrogate reconstruction loss that encourages

the learning of task-invariant representations, thereby mitigating catastrophic

forgetting. Additionally, work [43] investigates how even minimal manipulations

of data representations can trigger catastrophic forgetting, even in models that

achieve perfect accuracy on the same dataset.

The second part of the thesis addresses the second (RQ2) and third questions

(RQ3). Works [44, 45] introduce and explore the origins of the Tunnel Effect.

The Tunnel Effect Hypothesis posits that neural networks implicitly divide

into two distinct components, each contributing differently to the model’s

overall performance. Importantly, this division aligns with the model’s ability to

generalize beyond its training distribution and its susceptibility to catastrophic

forgetting. These studies provide new insights into the relationship between

data representations, generalization, and catastrophic forgetting, offering a

pathway toward more robust and adaptable deep learning systems.

14

1.2. Thesis contributions

1.2.1. Reducing catastrophic forgetting with learning on synthetic data

In the first work [41], presented in Chapter ??, we begin our exploration

of how data representations influence catastrophic forgetting by addressing

a key question: Can data representations be modified in advance (a priori) so

that a simple fine-tuning strategy does not suffer from catastrophic forgetting

as severely as when trained on standard data representations? To answer this

question, we proposed a generative model that uses meta-learning to create a

sequence of synthetic data samples. When trained on these synthetic samples,

a model performs similarly on a held-out dataset while exhibiting significantly

reduced susceptibility to catastrophic forgetting.

Interestingly, as illustrated in Figure 1.2.1, the synthetic samples generated

by the model (top row) do not visually resemble the original data samples

(bottom row). Despite this, training on these synthetic representations yields

performance on the held-out dataset comparable to training on the original

data. Furthermore, as shown in the right plot of Figure 1.2.1, training on

a sequence of these synthetic representations results in a final model that

experiences much less catastrophic forgetting than the models trained on

standard representations.

Generator

Dataset

Figure 1.2.1. We propose a method to meta-learn a generative network capable of
generating synthetic data representations that are learned in a sequence, resulting in
reduced catastrophic forgetting compared to the sequence of tasks composed of original
data samples.

This finding provides a clear affirmative answer to our initial question, demon-

strating that it is indeed possible to meta-learn data representations that miti-

gate catastrophic forgetting. However, the practical application of this method

is limited due to two significant challenges. First, the meta-learning process is

computationally expensive, leading to high computational costs. Second, the

15

method requires access to the held-out test dataset during the meta-learning

phase, which usually violates the constraints imposed by continual learning

scenarios.

As the primary author of this work, the PhD candidate was responsible for

identifying the motivation behind the experiment, designing and implementing

the method, and conducting all experiments and ablation studies included in the

paper. The second author served as a mentor, providing guidance throughout

the research process and assisting with writing and structuring the manuscript.

1.2.2. On robustness of generative representations against catastrophic

forgetting

The second work [42], presented in Chapter ??, builds on the findings of

the first publication [41] and further investigates the first research question

while addressing the limitations of the previously proposed method. Having

demonstrated that data representations can be manipulated to reduce catas-

trophic forgetting, this work aims to develop a more computationally feasible

and scalable approach for creating representations that are inherently robust

to catastrophic forgetting, particularly for larger datasets.

To achieve this, we hypothesize that representations learned by discrimi-

native models exhibit minimal, if any, similarities across different tasks. In

contrast, we posit that representations learned by generative models, especially

for natural images, are likely to share significant similarities between tasks.

This leads to the central hypothesis of this work: Representations learned by

generative models are less prone to catastrophic forgetting than those learned by

discriminative models.

To test this hypothesis, we design experiments comparing representations

learned by discriminative models with those learned by generative models,

specifically Autoencoders (AEs) and Variational Autoencoders (VAEs), in a con-

tinual learning scenario. In both cases, we evaluate the utility of the learned

representations for classification tasks. The results, illustrated in Figure 1.2.2,

confirm our hypothesis, showing that representations learned by AEs and VAEs

are indeed more robust to catastrophic forgetting when trained on a sequence

of five tasks. These findings are consistent across multiple datasets, including

MNIST, FashionMNIST, and CIFAR-10.

Further analysis of representation similarities reveals that generative models

produce significantly more consistent representations than those learned by

discriminative models, which tend to change drastically between consecutive

tasks. Additionally, the computational cost of using a surrogate loss is minimal,

16

Figure 1.2.2. The results demonstrate that representations learned by generative
models are significantly more robust to catastrophic forgetting. We hypothesize and
confirm through additional experiments that this robustness stems from generative
models learning more versatile and transferable representations across tasks.

as it primarily involves training an additional classifier head on top of the learned

representations—a negligible cost compared to the overall training process. This

approach also opens the possibility of combining discriminative and generative

losses during training, where the generative loss could implicitly regularize the

model’s representations, making them more robust to catastrophic forgetting.

As the primary author of this work, the PhD candidate formulated the

main hypothesis, designed and implemented the method, and conducted all

experiments and ablation studies included in the paper. The second and third

authors were mentors, guiding the research process and assisting with writing

and structuring the manuscript.

1.2.3. On consequences of finetuning on data with highly discriminative

features

The next work [43], presented in Chapter ??, explores an orthogonal per-

spective from the previous studies. Rather than developing methods to enhance

robustness to catastrophic forgetting, it challenges existing assumptions about

its causes through a thought-provoking experiment. While prior research

suggests a non-monotonic relationship between data distribution similarities

and catastrophic forgetting, with the strongest forgetting occurring for similar

but distinct distributions [46], this work offers a new perspective.

The study constructs a sequence of two tasks using the same dataset,

differing only in the color value of a single pixel. In the first task, the pixel’s

color is random, while it correlates with the image’s class in the second. The

17

network is first trained on the initial task until it achieves perfect training

accuracy, then fine-tuned on the nearly identical second task for the same

number of epochs.

Figure 1.2.3. Introducing a simpler discriminative feature (green hatch area) solely
focuses the model on that feature (red curve) and abruptly erases previous knowledge
about the meaningful data representations(blue line).

As shown in Figure 1.2.3, the test accuracies on both datasets evolve unex-

pectedly during training. While the first phase shows aligned accuracies for both

tasks, training on the second task leads to severe catastrophic forgetting on the

first task, alongside a significant performance boost on the second. This reveals

two key insights: (1) catastrophic forgetting is not tied to input data similarities

(semantic or structural) but rather to differences in input-output correlations

between tasks, and (2) even models with perfect training accuracy exhibit sim-

plicity bias, favoring the most straightforward rules to achieve their objectives.

This finding is particularly relevant in fine-tuning foundational models, where

spurious correlations or small datasets can trigger similar effects.

The PhD candidate formulated the hypothesis, implemented experiments,

and collected initial results. Part of the results, as well as ablation experiments,

were designed by the third author. All authors were involved in writing the

manuscript.

18

1.2.4. The Tunnel Effect: Building data representations in deep neural

networks

Typical studies in continual learning have often treated neural networks

as monolithic entities that learn or forget uniformly. While this perspective

is not incorrect, it overlooks the nuanced influences of architecture, training

dynamics, and other subtle factors that significantly impact model performance.

To address this gap, the next two works provide a more detailed perspective.

They demonstrate that hidden data representations—those transformed by in-

termediate layers within neural networks—evolve not uniformly during training

and play a critical role in a model’s ability to learn continually and generalize

beyond its training distribution. These works collectively address the second

and third research questions of this thesis.

Specifically, work [44], presented in Chapter ??, introduces the Tunnel Effect

Hypothesis, which posits that layers in sufficiently deep networks divide into

two distinct parts, each contributing differently to the task. As illustrated in

Figure 1.2.4, the initial layers produce linearly separable representations that

enhance model performance, while the subsequent layers—referred to as the

tunnel—compress these representations, as measured by their rank, while

maintaining similar performance levels. This division between the extractor and

the tunnel directly correlates with the network’s generalization capabilities and

its performance in continual learning. The tunnel layers compress representa-

tions losslessly for data from the training distribution, but this compression

reduces the model’s ability to generalize to out-of-distribution data. Additionally,

continual learning experiments reveal that the tunnel acts as a task-agnostic

compressor under certain assumptions, remaining stable during fine-tuning

on new tasks. At the same time, catastrophic forgetting occurs exclusively in

the extractor part of the network.

Although the experiments in work [44] highlight the tunnel effect’s impor-

tance in continual learning and out-of-distribution generalization, the work

lacks a formal understanding of why and when it emerges or how it can be

induced.

The PhD candidate formulated the main hypothesis and implemented most

of the codebase required for the experiments. The second author contributed

to the experimental work and writing process, while other co-authors provided

mentorship and assisted with writing and structuring the manuscript.

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000
Nu

m
er

ica
l r

an
k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

Figure 1.2.4. The tunnel effect in VGG19 trained on CIFAR-10. In the tunnel (shaded
area), the performance of linear probes attached to each layer saturates (blue line), while
the representations are compressed, as indicated by the steep decline in representation
rank (red dashed line).

1.2.5. Unpacking Softmax: How Temperature Drives Rank Collapse,

Compression and Generalization

Building on the significant role of the tunnel effect [44] in generalization

and continual learning, the publication [45] takes a theoretical approach to

investigate the dynamics of representations. This work aims to uncover the

origins of the tunnel effect and examine how factors such as architectural

design choices influence its emergence and intensity.

The analysis reveals that the softmax function, commonly used to map

network outputs to probabilities, can increase the rank of a matrix. As pre-

sented in Figure 1.2.5, this characteristic leads to a phenomenon termed rank

deficit bias, where linear neural networks converge to solutions with a rank

substantially lower than the number of classes in the task. Despite this, the

softmax allows these solutions to achieve perfect accuracy on the training

distribution. However, further analysis aligns with findings from [44].

Additional experiments demonstrate that training dynamics in nonlinear

networks are heavily influenced by the softmax input (i.e., the norm of the

network’s logits). While various architectural choices impact this value, the

softmax temperature is a hyperparameter directly controlling it—a significant

deficit in logits norm forces the network to increase it to minimize the loss. The

analysis reveals that neural networks align singular vectors between consecutive

20

Softmax Temperature
Compressed

Model
Improved

OOD

Deficit
Rank

Low
Rank

High
Rank

Figure 1.2.5. The softmax function and temperature play a fundamental role in
shaping network representations, leading to solutions that generalize well with high
rank for small temperatures or compressed solutions with rank deficit at the other
extreme.

layers to amplify this norm, leading to collapsed representation ranks and

diminished out-of-distribution performance.

The work demonstrates that the tunnel effect is not universally present and is

influenced by architectural choices such as network depth, width, initialization

type, or normalization. These factors affect the logits norm, determining whether

the tunnel effect forms. In conjunction with the work [44], the results establish

a link between popular architectural choices and the model’s ability to generalize

outside of training distribution and its robustness to catastrophic forgetting.

The PhD candidate designed and implemented all the experiments in this

work and proved theoretical results. Second and third co-authors helped with

results analysis and interpretation of the results. All co-authors provided

guidance and assisted with writing and structuring the manuscript. The last

author suggested to use softmax temperature to steer models evolution.

21

1.3. Publications not included in the thesis

The following is a list of publications that I have co-authored but are not

included in the thesis.

1. Masarczyk Wojciech, Paweł Wawrzyński, Daniel Marczak, Kamil Deja

and Tomasz Trzciński. “Logarithmic continual learning.”, IEEE Access 10,

(2022).

2. Ostaszewski Mateusz, Trenkwalder Lea, Masarczyk Wojciech, Scerri Eleonor,

Vedran Dunjko. “Reinforcement learning for optimization of variational

quantum circuit architectures“, Advances in Neural Information Processing

Systems 34 (NeurIPS 2021), (2021)

3. Cheng Tin Sum, Zhao Jim, Masarczyk Wojciech, Lucchi Aurelien, “ From

Partial to Full Neural Collapse: Effects of Implicit Biases in Deep Neural

Networks “, Submitted to ICML, (2025)

4. Grabowski Bartosz, Masarczyk Wojciech, Głomb Przemysław, Mendys

Agata, “Automatic pigment identification from hyperspectral data“, Journal

of Cultural Heritage 31, (2018)

5. Masarczyk Wojciech, Głomb Przemysław, Grabowski Bartosz, Ostaszewski

Mateusz, “Effective Training of Deep Convolutional Neural Networks for

Hyperspectral Image Classification through Artificial Labeling “, Remote

Sensing 12, (2020)

6. Deja Kamil, Wawrzyński Paweł, Marczak Daniel, Masarczyk Wojciech,

Trzciński Tomasz, “ Binplay: A binary latent autoencoder for generative

replay continual learning“, 2021 International Joint Conference on Neural

Networks (IJCNN), (2021)

7. Deja Kamil, Wawrzyński Paweł, Masarczyk Wojciech, Marczak Daniel,

Trzciński Tomasz, “Multiband VAE: latent space alignment for knowledge

consolidation in continual learning“, Vienna: International Joint Confer-

ences on Artificial Intelligence Organization, (2022)

22

2. Reducing catastrophic forgetting with

learning on synthetic data

Abstract

Catastrophic forgetting is a problem caused by neural networks’ inability to

learn data in sequence. After learning two tasks in sequence, performance on

the first one drops significantly. This is a serious disadvantage that prevents

many deep learning applications to real-life problems where not all object classes

are known beforehand; or change in data requires adjustments to the model. To

reduce this problem we investigate the use of synthetic data, namely we answer

a question: Is it possible to generate such data synthetically which learned in

sequence does not result in catastrophic forgetting? We propose a method to

generate such data in two-step optimisation process via meta-gradients. Our

experimental results on Split-MNIST dataset show that training a model on

such synthetic data in sequence does not result in catastrophic forgetting. We

also show that our method of generating data is robust to different learning

scenarios.

2.1. Introduction

Deep learning methods have succeeded in many different domains such as:

scene understanding, image generation, natural language processing [47, 48,

49, 50]. While deep learning methods differ in architecture choice, objective

function or optimization strategy, they all assume that the training data is

independent and identically distributed (i.i.d). Methods built on this assumption

are effective for fixed environments with stationary data distributions – where

tasks to be solved do not change over time or classes present in the dataset are

known from the beginning. However, in most real-life scenarios this assumption

is violated and there is a need for methods that are able to handle such cases.

Among many examples of such scenarios, a few can be highlighted: new object

class is introduced, however the dataset used to train the baseline model is no

23

Generator

Dataset

Figure 2.1.1. Synthetic data created from generator is divided into five tasks according
to classes and learner (green) learns tasks sequentially. The same procedure is applied
to learner with real data (red). The right plot shows that accuracy at the end of each
task does not decrease on learned data in contrast to real data where it deteriorates
sharply.

longer available; the data characteristics seem to change seasonally and model

needs to change its predictions accordingly to these trends. Continual learning

[51] is a paradigm where data is presented sequentially to the algorithm without

the ability to manipulate this sequence. Additionally, there is no assumption

about the structure of the sequence. A successful continual learning algorithm

needs to be able to learn a growing number of tasks, be resistant to catastrophic

forgetting [32] and be able to adapt do distribution shifts. The memory and

computational requirements of such algorithm should scale reasonably with

the incoming data.

Although the problem of continual learning is known for many years [51, 32],

only recently has the field gained significant traction and many interesting ideas

have been proposed. Most of continual learning contributions can be divided

into three categories [52, 35]: optimization, architecture and rehersal. Meth-

ods based on optimization modifications usually add additional regularization

terms to objective function to dampen catastrophic forgetting [36, 53]. Second

category gathers methods that propose various architectural modifications e.g.

Progressive Net [54] where increasing capacity is obtained by initialising new

network for each task. The last category – rehersal based methods – consists of

methods that assume life-long presence of a subset of historical data that can

be re-used to retain knowledge about past tasks [55, 56].

This work proposes a new data-driven path that is orthogonal to existing

approaches. Specifically, we would like to explore the possibility of creating

input data artificially in a coordinated manner in such a way that it reduces the

catastrophic forgetting phenomena. We achieve this by combining two separate

neural networks connected by two-step optimisation. We use generative model

24

to create synthetic dataset and form a sequence of tasks to evaluate learner

model in continual learning scenario. The sequence of synthetic tasks is used

to train the learner network. Then, the learner network is evaluated on real

data. The loss obtained on real data is used to tune the parameters of the

generative network. In the following step, the learning network is replaced with

a new one.

Differently from existing approaches, our method is independent of training

method and task and it can be easily incorporated to above-mentioned strategies

providing additional gains.

2.2. Related Work

One line of research for continual learning focuses on optimization process.

It draws inspiration from the biological phenomena known as synaptic plasticity

[57]. It assumes that weights (connections) that are important for particular task

become less plastic in order to retain the desired performance on previous tasks.

An example of such approach is Elastic Weight Consolidation (EWC) [36], where

regularisation term based on Fisher Information matrix is used to slow down

the change of important weights. However accumulation of these constrains

prevents network from learning longer sequences of tasks. Another optimization

based method is Learning without Forgetting (LwF) [53]. It tries to retain the

knowledge of previous tasks by optimizing linear combination of current task

loss and knowledge distillation loss. LwF is conceptually simple method that

benefits from knowledge distillation phenomenon [58]. The downside of such

approach is that applying LwF requires additional memory and computation

resources for each optimization step.

Methods based on architectural modifications allow to dynamically ex-

pand/shrink networks, select sub-networks, freeze weights or create additional

networks to preserve knowledge. Authors of [54] propose algorithm that for

each new task creates a separate network (a column) that is trained to solve

particular task. Additionally, connections between previous columns and the

current column are learned to enable forward transfer of knowledge. This algo-

rithm avoids catastrophic forgetting completely and enables effective transfer

learning. However the computational cost of this approach is prohibitive for

longer sequences of tasks. Other methods [59, 60] address the problem of com-

putational cost by expanding single layers/neurons instead of whole networks,

however these methods has less capacity to solve upcoming tasks. Different

approaches that modify architectures are based on selecting sub-networks

25

used for solving current task in such a way that only a fraction of network’s

parameters relevant to current task is changed [38, 61, 62]. The challenge here

is to balance the number of frozen and active weights in such way that network

is still able to learn new tasks and preserve current knowledge.

Rehearsal methods are based on the concept of memory replay. It is as-

sumed that subset of previously processed data is stored in memory bank and

interleaved with upcoming data in such a way that neural network learns to

solve current task in addition to preserving current knowledge [55, 63, 56].

A naive rehearsal method would be to save random data samples that were

present during training. However such approach is inefficient, since samples

are not equally informative, hence the challenge of rehearsal methods is to

choose the most representative samples for a given dataset, such that minimum

storage is occupied. In [63], authors apply method of dataset distillation based

on meta-gradient optimization to reduce the size of memory bank. It is possible

to represent whole class of examples just by storing one carefully-optimized

example. Unfortunately, applying this meta-optimization method is computa-

tionally exhaustive. The biggest downside of using rehearsal based methods is

the need to store the actual data which in some cases can violate data privacy

rules or can be computationally prohibitive. To mitigate this issue solution

based on Generative Networks was proposed [64, 39]. Namely, they use dual

model architecture composed of learner network and generative network. Role

of the generative network is to model data previously experienced by the learner

network. Data sampled from the generator network is used as a rehersal data

for learner network to reduce the effect of catastrophic forgetting.

Our method is also dual architecture model based on generative network,

however the aim of generative network is radically different. In contrast to

authors [64, 39] we do not aim to capture the statistics of real data, instead we

try to generate entirely synthetic data such that when learner does learn on a

sequence of such data it does not suffer from catastrophic forgetting.

2.3. Method

The main idea of our approach is to generate data samples such that network

trained on them in sequence would not suffer from catastrophic forgetting. One

of many ways to generate artificial data is to use meta-optimization strategy

introduced in [65]. It is shown that by applying meta-learning it is possible to

use gradient optimization both to hyperparameters and to input data. However,

this approach is limited to small problems, since each data point must be opti-

26

Generator
Data

�

Inner Optimization

Learner Loss

Meta Gradient

Figure 2.3.1. Synthetic data from generator is passed to learner where the inner
optimization is performed and meta-loss is backpropagated to G.

mised separately. To overcome this bottleneck, authors of Generative Teaching

Networks (GTNs) [66] use generative network to create artificial data samples

instead of directly optimizing the data input. We adopt similar approach in our

method, namely, we use generative network – green rectangle ”Generator” in Fig.

2.3.1 – to produce synthetic data from noise vectors sampled from a random

distribution. Next, we split the data into separate tasks according to classes

and form a continual learning task for the learner network – blue rectangle

in Fig. 2.3.1. Learner network after completing whole sequence of tasks in

evaluated on real training data. The loss from real data classification after

learning all tasks in sequence is then backpropagated to generator network to

tune the parameters as shown in Fig. 2.3.1.

Our approach is similar to one proposed in work [67]. Using two step

meta-learning optimization they try to learn best representation of input data

such that the model learned in with standard optimization does not suffer from

catastrophic forgetting.

Differently from [66], we do not use curriculum based learning as our goal is

to have a realistic continual learning scenario where the order of data sequence is

not known beforehand. To ensure that the Generator network does not generate

data suitable for particular sequence of tasks at each meta-optimization we

shuffle order of tasks. Precisely, at each step we generate p samples for each

class and then randomly create a sequence of binary classification tasks with

particular data.

Precisely, let G be a generative neural network, S a standard convolutional

network for classification, t= (t1, t2, . . . tn) a sequence of tasks, where each tasks

27

is binary classification task and classes in each task form mutually disjoint

sets.

The inner training loop consists of sequence of tasks, where generated

samples from previous tasks are not replayed once the task is finished. To

achieve this, the sequence of tasks t= (t1, t2, . . . tn) must be defined a priori and

samples generated by network G are conditioned on the information of particular

task. For each task ti the network G generates two batches of samples x=G(z,yij
)

for j = 1,2, where z is a batch of noise vectors sampled from Normal distribution

and yij
is a class indicator for task ti. Note that generator networks has access

to class indicators since we aim to learn in continual learning scenario only

the learner network.

Neural network S learns sequentially on following tasks using standard SGD

optimizer with learning rate and momentum optimized through meta-gradients.

At the end of the sequence t network S is evaluated on real dataset (xr,yr)

obtaining meta-loss as shown in Fig. 2.3.1. This meta-loss is backpropagated

through all training inner-loops of model S to optimize network G. Parameters θ

of network G are updated according to the equation:

θ = θ−η∇θL(S(xr;wm),yr), (2.1)

where wm are parameters of the network S after m optimization steps, η is fixed

learning rate, L is a cross entropy loss function, xr,yr are real data samples

and labels respectively.

2.4. Experiments

To test our hypothesis we use popular continual learning benchmark Split-MNIST

[68, 69]. In first experiment, we use 5-fold split with two classes for each task

to create a moderately difficult sequence of tasks. Network G generates 250

samples per each class. During inner optimisation learner network is optimized

on batch size formed with 40 generated images (20 samples per class drawn

randomly from the pool of 250 samples per class). We train the learner network

on each task for 5 inner steps with batch size 40. Once the task is over,

samples from this task are not shown to the network to the end of training.

At test time, after learning on each task the network is evaluated on part of a

test set composed of classes seen in previous taks. Both networks are simple

convolutional neural networks with two convolutional layers with addition of

28

Figure 2.4.1. Samples generated by network G at the end of meta-optimisation. Starting
from zero (leftmost), each sample to the right represents the following class.

one and two fully connected layers for classification and generative network

respectively. Each layer is followed by a batch normalisation layer.

As a baseline to compare with, we use simple fully connected network pro-

posed in [70] (’MLP’ – red – in Fig. 2.4.2). To further investigate the impact of

generated data we use the same network architectures and optimizer settings

with learning rate and momentum optimized with by a meta learning process

as described in Section 2.3 but for optimizing the learner network we use real

data (’Real Data’ – yellow – in Fig. 2.4.2). We also compare our results with

GAN-based data samples. In this scenario we follow the setting of ’Real Data’

scenario except for the source of data. We use Conditional-GAN [71] to model

the original data distribution and then sample 250 samples per each class

(’GAN based’ – blue – in Fig. 2.4.2).

We implement experiments in PyTorch library, which is well suited for com-

puting higher-order gradients [72].

Results – obtained results support our hypothesis, that it is possible to

generate synthetic data such that, even if networks learns this data in sequence

(one time per sample), the learning process does not result in castastrophic

forgetting.

Figure 2.4.2 shows how learning on synthetic data in sequence results in less

catastrophic forgetting compared to learning on a sequence of real data samples.

Note that additional performance could be gained with careful hyperparameter

tuning, however we did not want to compete for best performance and rather

29

show the potential of this approach. Higher accuracy of ’Real data’ scenario

over ’MLP’ can be attributed to the effectiveness of optimised learning rate and

momentum parameters, however the main advantage comes from using meta

learned data samples. Results obtained with data generated with GAN are

almost identical to ones obtained with real data. This result is expected as the

data modeled by a GAN resembles original data closely.

An example batch of generated samples is shown in Figure 2.4.1. The

samples are ordered according to classes (starting from 0). In contrast to [66]

the data samples are abstract blobs, rather than interpretable images. We verify

experimentally that the reason for the lack of structure in generated samples

is the lack of curriculum learning in our scenario. We skip it intentionally to

provide more realistic continual learning scenario for the learner network.

Fig. 2.4.3 shows the impact of change of learning scenario of network S after

network G is trained. In this experiment data generated by a network G in first

experiment is used. Here, we investigate how the final accuracy after learning

five consecutive tasks changes with the number of inner optimization steps.

Note that G was optimised to create samples that are robust to catastrophic

forgetting with inner optimization loop of 5 steps. As we can see, in case of

longer learning horizon, network learned on synthetic (green plot Fig. 2.4.3)

data suffers significantly less than the same network learned on real data

(yellow plot Fig. 2.4.3). Even though accuracy of the networks drops with

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0 Meta Learned
GAN based
Real Data
MLP

Figure 2.4.2. Overall accuracy measured on test data subset. After learning each task,
test data subset is made of samples only from classes seen during recent and previous
tasks.

30

10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Meta Learned
Real Data
MLP

Figure 2.4.3. Overall accuracy measured on test set after learning network S with
synthetic data for x inner steps on each task.

increasing number of inner steps, the drop is smoother in case of synthetic

data.

2.5. Conclusions

The aim of this work was to answer a question, whether it is possible to create

data that would dampen the effect of catastrophic forgetting. Experiments

show that this hypothesis is true – it is possible to generate such samples,

however usually they do not visually resemble real data. Surprisingly, even

applying the method alone can result in high performing network. Additional

interesting advantage of this synthetic data is the robustness to changes of

inner optimisation parameters – increasing 15-fold size of a batch and length on

training still results in compelling performance. We believe that our experiments

open a new and exciting path in continual learning research. As a future work

we plan to adjust current method to datasets of higher complexity and test its

effectiveness in online learning scenario.

31

3. On robustness of generative

representations against catastrophic

forgetting

Catastrophic forgetting of previously learned knowledge while learning new

tasks is a widely observed limitation of contemporary neural networks. Although

many continual learning methods are proposed to mitigate this drawback, the

main question remains unanswered: what is the root cause of catastrophic

forgetting? In this work, we aim at answering this question by posing and vali-

dating a set of research hypotheses related to the specificity of representations

built internally by neural models. More specifically, we design a set of empirical

evaluations that compare the robustness of representations in discriminative

and generative models against catastrophic forgetting. We observe that repre-

sentations learned by discriminative models are more prone to catastrophic

forgetting than their generative counterparts, which sheds new light on the

advantages of developing generative models for continual learning. Finally, our

work opens new research pathways and possibilities to adopt generative models

in continual learning beyond mere replay mechanisms.

3.1. Introduction

Neural networks are widely used across many real-life applications, ranging

from image recognition [73] to natural language processing [74]. Nevertheless,

neural models used in those applications assume identical and independently

distributed training data - the assumption rarely met in practice. As a result,

contemporary neural network models are prone to catastrophic forgetting [33]

- a well-known limitation of neural networks that results in the erosion of

previously learned knowledge. Continual learning is a field of machine learning

that aims at addressing this pitfall of neural models by constant adaption to

new data. The majority of works in this field focus on developing methods

for mitigating the effects of catastrophic forgetting [75]. These methods can

32

Figure 3.1.1. A schematic overview of our main experiment. Representations learned
by the generative model are less susceptible to catastrophic forgetting than discrimina-
tive ones. Results of the main experiment and details can be found at Sec. 3.3.1.

.
be grouped into three categories – regularization based [37, 76], rehearsal

methods [77, 78, 79, 80, 81, 82] and methods using dynamic architectures [83,

84, 85, 86, 87, 88, 89]. Nevertheless, recent findings [40, 90] show that it is

possible to surpass well-established continual learning methods across popular

benchmarks with heuristic-based baselines. The surprising effectiveness of

these baselines indicates that the root cause of catastrophic forgetting is yet to

be discovered, and we follow this intuition in our work.

We investigate the catastrophic forgetting with methodological rigor; we

state and empirically validate research hypotheses that shed new light on this

phenomenon. We build upon the works of [91, 92] where the roots of forgetting

are analyzed and the findings of [90, 93] that analyze the effectiveness of intuitive

solutions to this problem. Here, contrary to previous works, we postulate to

look at the continual learning from the perspective of internal representations

of neural networks and analyze its impact on the final performance of the

continually learned model. Inspired by [90], we argue that the dynamics of

catastrophic forgetting depends on the task at hand, yet contrary to this work, we

analyze this observation from the perspective of internal neural representations

rather than peculiarities of continual learning tasks.

To summarize, the main contribution of our work is the statement of the

following research hypotheses, along with their empirical validation:

Hypothesis 1 – Representations learned by autoencoders and variational au-

toencoders are less prone to catastrophic forgetting than representations of dis-

criminative models.

Hypothesis 2 – Autoencoders and variational autoencoders learn more transfer-

able features than discriminative models.

Moreover, the results from our experiments provide an explanation for the

effect observed in [90], where the authors argue that continual reconstruction

tasks do not suffer from catastrophic forgetting. Our experiments show that

33

this observation can be explained from the perspective of generative representa-

tions 1. This suggests that the lack of catastrophic forgetting is not exclusively

linked to the continual reconstruction task.

Last but not least, our experiments show that it is possible to achieve the

performance of over 90% average accuracy on popular continual learning bench-

marks without any specific mechanism to overcome catastrophic forgetting. This

raises the question of whether these datasets and currently used evaluation

protocols should be used for benchmarking novel continual learning methods

as they no longer pose any significant challenge, as the results in Table 3.3.1

show.

3.2. Related works

Following [75], continual learning methods can be grouped into three cate-

gories: regularization, dynamic architectures, and rehearsal.

Regularization These methods typically train a single model on the subsequent

tasks and impose specifically defined regularization techniques which penalize

the change of important parameters of the model [37, 76].

Dynamic architectures Here, the solution comprises many substructures,

which are usually trained in isolation for specific tasks. On top of these struc-

tures, a separate mechanism decides which substructure to use during evalua-

tion. In [88, 89, 94] new structural elements are added to the model for each new

task which requires growing memory for the whole model. In [83, 84, 85, 86, 87]

a large model is considered from which independent submodels are selected for

subsequent tasks.

Rehearsal Methods in this group try to prevent forgetting by retraining the

model with a combination of new and previous data examples. Methods pre-

sented in [82, 95] employ a memory buffer to store all or possibly most relevant

previous data examples. To overcome the scalability issues of the standard

buffer approach, authors [81] propose to replace the buffer with a generative

1 Throughout this work, we refer to the hidden representations of autoencoders or variational
autoencoders as generative representations. Similarly, we refer to the reconstruction task as
the generative task. Although autoencoders are not strictly generative models, we use this
term to highlight the difference in the objective of the particular model. In the case of the
reconstruction task, the aim is to generate a sample, while in the case of classification, the aim
is to discriminate samples.

34

model. This method introduced a general schema that was further extended in

several new approaches with various generative models [77, 78, 79, 80].

While most of the works develop new methods that are more robust to catas-

trophic forgetting, only several works investigate the actual phenomenon [91, 96,

97, 92]. Specifically, in [92] authors analyze the relationship between semantic

similarity of tasks and magnitude of catastrophic forgetting. In [91] authors

show that the effect of catastrophic forgetting diminishes with the prolonged

exposure to the domain, which suggests that catastrophic forgetting could be an

artifact of immature systems. Another approach [96] investigates the problem

with the tools of Explainable Artificial Intelligence (XAI), comparing the effects

of catastrophic forgetting for different layers of CNN.

Our work is directly influenced by Thai et al. [90], where authors claim

that networks trained in continual reconstruction tasks do not suffer from

catastrophic forgetting. We show that different dynamics of forgetting in re-

construction and classification tasks are linked to the representations of the

data constructed by the neural networks. Specifically, we argue that learning

representations through generative modeling is naturally more aligned with

continual learning.

3.3. Methodology

To examine and compare representations from different models, we need

to design a fair method to learn these models and collect respective represen-

tations. To that end we consider three types of models: discriminative – D,

generative based on Autoencoder – GAE and generative based on Variational

Autonecoder [98] – GV AE. To make a fair comparison, these networks share the

same architecture, except for the last layer, defined by the model’s objective.

In the case of the discriminative task, the last layer has output neurons to

discriminate between classes. In the generative task, the final layer outputs

vectors of equal size as input data. Depending on the model, we train the net-

works with different objective functions. D model is trained with CrossEntropy,

GAE minimizes the MSE and the GV AE uses ELBO. As shown in Fig. ,3.3.1 we

train all models on the same training sequence TN but with different objectives.

The index of particular task is denoted by k, where k = 1, . . . , N. To obtain the

representations of data for a particular model, we feed the data to the model

and collect the representations from the penultimate layer of the model. We

35

Figure 3.3.1. Schematic overview describing the process of learning and collecting
discriminative and generative representations.

use At
D

(xk), to denote activations from model D after finishing task t for input

data 〈xk〉 from task k.

Datasets We use three commonly used continual learning benchmarks to create

a continuous sequence of tasks: splitMNIST, splitFashionMNIST, splitCIFAR.

We follow the typical formulation of the continual learning task and split the

datasets to 5 disjoint subsets with two classes for each task.

Architectures We use simple autoencoder architecture composed of three

encoding fully connected layers and three decoding fully connected layers for

all the tasks, followed by ReLU activations except for the last layer. For the

generative task, the output layer is a single fully connected layer that maps the

penultimate layer’s activations to the vector of equal size with input data. For

the classification task, we use a multi-head output layer with two neurons per

task. For MNIST and FashionMNIST datasets, we use architecture with (512,

256, 8, 256, 512) neurons on each hidden layer. For the CIFAR dataset, we use

the same architecture with a bottleneck of 128 neurons.

3.3.1. Hypothesis 1

Discriminative abilities of representations

First, to test our hypothesis, we look at the problem of catastrophic forgetting

from the accuracy perspective, as it is the most widely adopted measure of the

36

catastrophic forgetting phenomenon. To measure the robustness of representa-

tions to the catastrophic forgetting, we train the models D, GAE and GV AE on

identical data sequences TN and collect their representations from penultimate

layer for all data splits. These representations are used to train a set of linear

classifiers. Although we collect the representations for all data splits throughout

the training, we train respective classifiers only when the corresponding task is

active. This means that we train only the first classifier during the first task,

and the rest remain untrained. After finishing the first task, we freeze the first

classifier for the rest of the training. This way, degradation of its performance

can be attributed exclusively to forgetting the representations for the first task,

and we can directly measure the amount of forgetting in the model.

More precisely, after each epoch of training, for task data of the form 〈xk,yk〉,

where k denotes the respective data split, we collect the representations for

model D from its penultimate layer Ak
D

(x j) for j = k and train softmax regression

classifier CD j on dataset of the form 〈Ak
D

(xk),yk〉, where k denotes the present

task. Next, the trained softmax classifiers are evaluated on the validation

dataset after extracting features with respective backbones. Note that in the

above approach, classifiers CD j for j > k, remain untrained. Since the classifiers

CD j are frozen after completing j-th task, the loss of performance may only be

attributed to the drift of representations from the penultimate layer. Therefore,

the smaller the loss of the classifier’s performance, the more resilient the

features are to the catastrophic forgetting. The same procedure is applied to

the models GAE and GV AE as shown in Fig 3.3.1.

Figure 3.3.2. Results of the first experiment. Each curve represents the average
accuracy on specific task with respect to the finished tasks in the continual training.
The dashed line is for the reference presenting the performance of a random classifier.
Columns represent results for representations of D, GAE and GV AE respectively. Top
row – MNIST, middle - FashionMNIST, bottom – CIFAR-10.

37

Fig. 3.3.2 depicts the results of this experiment. Columns represent results

for D, GAE, GV AE respectively. Starting from the top, the rows present the results

for MNIST, FashionMNIST, and CIFAR. Different colors present the accuracy

for different tasks. As one can see in the left column of Fig. 3.3.2, for all

three benchmarks, the classifier’s performance trained with representations of

discriminative model suddenly drops after introducing new tasks and degrades

further to the region of random guessing (depicted as dashed line). In contrast,

for the generative case for both models, the performance is stable throughout

the whole sequence of training, suggesting that the representations of tested

generative models are almost immune to the problem of catastrophic forgetting,

especially in the case of simpler datasets as MNIST and FashionMNIST. In the

case of CIFAR-10, the amount of forgetting is considerable for the case of GAE.

However, the degradation of the performance is more stable than in the case of

the discriminative model. This suggests that forgetting in generative models

has different nature than forgetting in discriminative models. The right column

shows that the representations of GV AE model suffer the least in the case of

CIFAR-10. Explaining this difference requires further analysis, and we foresee

it as future work.

Surprisingly, in MNIST and FashionMNIST, achieving an average accuracy

above 90% without any dedicated mechanism to overcome catastrophic for-

getting is possible. This raises the question of whether these datasets and

evaluation protocols should be used to benchmark novel methods in continual

learning.

The above experiment proves the validity of the first hypothesis through the

lenses of accuracy as it is a widely adopted measure to estimate catastrophic

forgetting. However, such an approach may not be fully informative as gener-

ative representations can have poor discriminative abilities. To address this

limitation, we propose to measure catastrophic forgetting through the index of

representations similarity.

Centered Kernel Alignment (CKA)

To further examine the validity of our hypothesis that representations learned

by generative models are less susceptible to catastrophic forgetting, we in-

vestigate the evolution of network representations in time. Since the above

experiment is directly linked to the discriminative abilities of the representa-

tions, here we use a task-agnostic measure to directly estimate the drift of the

representations in continual learning training. For that purpose, we use the

38

well-established method of Centered Kernel Alignment (CKA) [99], defined as:

CKA(X ,Y)=

∥

∥X TY
∥

∥

2

F
∥

∥X T X
∥

∥

F

∥

∥Y TY
∥

∥

F

, (3.1)

where X ∈Rn×mx and Y ∈Rn×my. CKA takes values from 0 to 1, where 1 means

identical representations. Using CKA, it is possible to estimate the similarity of

representations obtained for different datasets or different dimensionality. We

measure the similarity between representations of the same network collected

at different moments of the training of the neural network. Specifically, to

analyze the evolution of representations from model D, we collect the reference

representations Ak
D

(xk) just after finishing task k. Then, to measure the relative

drift of representations on task k, we compute the CKA index between the

reference and current representations CKA(Ak
D

(xk),A
j

D
(xk)), for j ≥ k. We follow

this procedure for each task in training sequence TN. The analogous procedure

is applied to the representations of models GAE and GV AE.

Fig. 3.3.3 presents the results of the experiment. In the case of discriminative

representations (top row), we can see an abrupt change of representations just

after introducing the new task on all tested datasets. This is in line with the

results from the previous experiment, which show that most of the performance

is lost during the next task. In the following tasks, the representations stabilize,

but these representations are no longer valuable since classifying with them is

not better than random guessing (see Fig. 3.3.2). The results from the middle

row of Fig. 3.3.3 show that representations from GAE slightly evolve during the

training on consecutive tasks and remain similar to the reference represen-

tations. These results directly support hypothesis 1. The representations of

GV AE changes significantly on the first two tasks of simpler datasets (MNIST

and FashionMNIST). These results indicate that it takes more time for the

VAE model to learn stable features. In CIFAR-10, the amount of forgetting

on VAE representations is almost equal to the amount of forgetting on AE

representations which in both cases is almost negligible. This may suggest that

the more complex the data is, the more general features the generative models

learn.

Additionally, the dynamics of changes are less chaotic for the generative

model, as the similarity of representations monotonically degrades with each

task. This is in stark contrast to the discriminative representations which evolve

chaotically. For instance, in the FashionMNIST dataset (middle column, top

row), representations of the first task drastically change during the second and

39

Figure 3.3.3. Illustration of the evolution of representations similarity measure with
CKA index. Starting from top the rows represent results of different models: D, GAE

and GV AE respectively. Columns represent results on different datasets (from left to
right) – MNIST, FashionMNIST, CIFAR-10.

third task, then stabilize on the fourth task and unexpectedly become more

similar during the last task. This may suggest that although the forgetting

occurs in the generative case, it has a gradual form and is more predictable

than in the discriminative part.

40

Model MNIST FashionMNIST CIFAR-10

D 76.8 ±12.0 74.3 ±11.5 69.2 ±6.4

GAE 96.8 ± 5.4 92.1 ± 7.2 80.5 ± 2.0

GV AE 88.9 ± 6.7 94.2 ± 5.5 78.9 ± 3.0

Table 3.3.1. Average accuracy (in %± std) over all tasks after finishing the first task.

Model MNIST FashionMNIST CIFAR-10

D 31.4 ±3.1 36.0 ±3.0 23.3 ±2.3

GAE 82.9 ± 2.4 74.6 ± 1.6 44.4 ± 1.0

GV AE 58.6 ± 5.2 61.1 ± 0.9 37.4 ± 0.2

Table 3.3.2. Average accuracy (in %± std) for classification on the whole validation
dataset (without splitting for tasks).

3.3.2. Hypothesis 2

To validate the second hypothesis, which states that autoencoders and

variational autoencoders learn more transferable features than discriminative

models, we change the experimental protocol and learn the models D, GAE and

GV AE only on the first task in the learning sequence TN. We adopt this approach

as we are interested in measuring the transferability of learned features in the

context of future tasks.

After the training for the first task is finished, we follow the procedure

visualized in Fig 3.3.1 and collect representations for all data splits. Next, we

train all classifiers on respective data splits. Then, we evaluate these classifiers

on the validation datasets. Because the backbone of the neural network is

trained only for the first task, we measure this way the transferability of the

features learned during the first task to other tasks (results of this experiment

are presented in the Table 3.3.1). To gain further insights, we train a single

classifier on all collected representations. This way, for each dataset, the task is

a full 10-way classification. The results of this experiment tell us how general

and useful are the features learned during the first task in the context of

classifying the whole dataset. Results of this experiment are in the Table 3.3.2.

The superiority of the generative representations in terms of transferability

is visible on all considered benchmarks. Although classifiers learned on GV AE

representations from the VAE model performs worse than classifiers trained

41

on GAE representations, both of these approaches obtain significantly better

results than classifiers trained of model D representations. In the case of the

model GAE for MNIST and FashionMNIST datasets, the classifiers have a nearly

perfect average accuracy of 96.8% and 92.1%, respectively. The results of the

classifiers trained on joint datasets (displayed in the brackets in Table 3.3.1)

are even more surprising. It turns out that the representations learned by the

GAE model on one task generalize well beyond that one task, which is proved

by average accuracy of 82.9%, 74.6%, and 44.36% in 10-way classification

tasks on MNIST, FashionMNIST, and CIFAR-10 respectively. On the other

hand, the poor performance of classifiers trained with the representations

learned by the discriminative model confirms that representations learned this

way do not generalize beyond the current task. This poor performance using

representations of discriminative models is expected as the discriminative model

aims to find the set of features that only separate the current data, resulting in

useless features for upcoming tasks. We postulate that this poor transferability

of features for upcoming tasks is the main reason for the catastrophic forgetting

in discriminative models.

Guided by the above results, we create an additional experiment where we

analyze how the training on the first task impacts the reconstruction quality

on other tasks. To that end, we carry out experiments only with the generative

models GAE and GV AE. During training on the first task, we evaluate the model

on the reconstruction task with data samples from other tasks. In contrast

to previous experiments, we do not perform any additional finetuning before

evaluating the model. To evaluate the model on different tasks, we feed the

data from this task and compute the corresponding reconstruction loss.

Fig. 3.3.4 presents the results of this experiment. The top row presents

the results for GAE for MNIST, FashionMNIST, and CIFAR-10, respectively. The

bottom row presents results for GV AE with the same dataset ordering. In each

plot, the blue curve represents the loss on the first task – the one that the model

learns. All the plots have the same interesting tendency – the reconstruction

loss on all tasks decreases proportionally with the loss of the first task. This

shows that the unvisited tasks directly benefit from the training on the first

task. In other words, the representations learned during the first task are

useful for the following tasks.

In MNIST and FashionMNIST, there is a significant gap between the loss on

the current task (blue curve) and other tasks. The gap is more significant in

the case of GV AE, which is in line with the results from previous experiments

suggesting that VAE based models need more complex datasets to develop gen-

42

Figure 3.3.4. Reconstruction loss on different tasks for SplitMNIST (left), FashionM-
NIST (middle) and CIFAR-10 (right) with respect to training epochs on first task. Top
row – model GAE, bottom row – GV AE. Results are averaged over 5 independent runs.
The shaded area represents the standard deviation.

eral features. This is clearly visible in the rightmost column presenting results

for CIFAR-10, where this gap does not exist. This may seem counter-intuitive

as CIFAR-10 is the most challenging dataset in this group. However, the more

complex the training data is, the more general the features learned by the

generative model are.

With these experiments, we provide an intuitive explanation to the phe-

nomenon observed by Thai et al. [90], where authors suggest that the continual

reconstruction task does not suffer from catastrophic forgetting. We argue that

this is thanks to the generality of features learned by the generative model

during the first task since the features learned by the autoencoder during

the first task are also useful for the upcoming tasks. As can be observed in

Fig 3.3.4) the model directly benefits from the learned features on previous

tasks, and thus there is no interference between them, which results in the

lack of catastrophic forgetting.

3.4. Discussion

In this work, we stated two hypotheses concerning different representations

and their impact on catastrophic forgetting. We carried out experiments to

empirically validate our hypotheses. From the performed experiments, it follows

that the dynamics of the catastrophic forgetting for discriminative and generative

representations are different. In particular, results from Fig. 3.3.3 show that

43

the forgetting of generative representations is gradual and monotonic. These

properties suggest that it might be possible to model the effect of catastrophic

forgetting in generative models precisely. However, to that end, one has to

measure the effects of catastrophic forgetting exactly. Currently used proxy

tasks for that purpose, such as classification tasks, hinder the analysis. Since

it becomes more evident that catastrophic forgetting is not a homogeneous

phenomenon and its character depends on the task or learning paradigm, we

foresee the need for task agnostic measures of catastrophic forgetting. Such

work would greatly benefit the community and give us unprecedented insights

into the nature of the phenomenon.

From the practical point of view, this paper offers a new understanding of

the dynamics of autoencoders and variational autoencoders learning in the

continual scenario and their ability to generalize obtained knowledge to future

tasks. These results can be directly adapted to the currently used generative

rehearsal methods making them more robust or even immune to catastrophic

forgetting.

Last, this work is the first step towards a deeper understanding of the

similarities and dissimilarities of generative and discriminative representations.

While several papers discuss this relation, e.g., [100] many questions remain

unanswered, especially in the context of continual learning. How can one

use the mechanisms of generative learning to obtain better representations for

discrimination tasks in continual learning? Is the generic nature of generative

representations the only explanation for the lack of catastrophic forgetting?

Answering these and other questions, we left as future work.

44

4. On consequences of finetuning on data

with highly discriminative features

4.1. Introduction

Deep learning has witnessed remarkable advancements in various domains,

driven by the ability of neural networks to learn intricate patterns from data.

One key aspect contributing to their success is the process of transfer learning,

where pre-trained models are fine-tuned on specific tasks, leveraging knowledge

acquired from previous training [101, 102]. This technique is especially im-

portant in the advent of training ever-growing models such as Large Language

Models (LLMs) [11, 103, 104] or massive ViTs [105, 106]. However, while transfer

learning is a powerful tool, it is not without its nuances.

Figure 4.1.1. Feature erosion for VGG-19 on
CIFAR-10. Introducing a simpler discrimina-
tive feature (green hatch area) solely focuses the
model on that feature (red curve) and abruptly
erases previous knowledge about the data (blue
line).

This work presents a thought-provoking

experiment exposing a net-

work’s tendency to greedily fol-

low the simplest discrimina-

tive features present in the

data. This phenomenon was

observed in multiple works and

is commonly called simplicity

bias [107, 108, 109]. Here, we

take a step further and inves-

tigate the implications of this

behavior in the realms of trans-

fer learning.

To investigate this effect, we

train the network on CIFAR-10

to perfect training accuracy (error-free). Next, we introduce a highly discrimina-

tive, class-correlated pattern to the corner of each dataset image and proceed

with the training. Surprisingly, as shown in Fig. 6.1.1, despite the model’s

perfect accuracy, finetuning it on the oversimplified task causes an abrupt

45

performance loss (blue curve) and pushes the model to focus solely on the novel

pattern. We call this phenomenon feature erosion. Our analysis shows that

during the fine-tuning phase, the pretrained model greedily abandons salient,

generalizing features in favor of the new discriminative ones.

In Section 4.2, we define details of the experiments and investigate the

breadth of the phenomenon 4.1.2, presenting that all tested contemporary

neural networks exhibit this behavior. Next, we investigate the detrimental

effect of feature erosion on the model’s representation formation, transfer

learning, and plasticity. Section 4.3 discusses the phenomenon’s implications,

its novelty concerning related works, and its hazards to real-world applications.

(a) ResNet 18 - CIFAR-10 (b) ResNet 50 - ImageNet (c) VGG-19 - ImageNet

Figure 4.1.2. Feature erosion effect for ResNet18 trained on CIFAR-10 (left) ResNet50
trained of ImageNet (middle) and VGG-19 trained on ImageNet (right). ImageNet
models used pretrained weights provided by PyTorch. ResNet18 reached 100% training
accuracy before introducing the discriminative pattern to the dataset.

4.2. Experiments and results

In this section, we explore the phenomenon we introduced in the previous

section, aiming to understand its severity and impact on network behavior.

We initiate our investigation by examining the robustness of feature erosion

across different network architectures and datasets (Fig. 4.1.2). Next, we assess

the detrimental effect of the phenomenon on the network’s representations

(Fig. 4.2.1) and show that pursuing simpler, discriminative patterns collapse

the network’s rank (Fig. 5.2.1). We hypothesize that this effect is linked with

the loss of plasticity observed in further training of that network (Fig. 4.2.3).

Experimental setup We will now delve into feature erosion using ResNet-18,

ResNet-50, and VGG-19 models trained on either the CIFAR-10 or ImageNet

dataset. For CIFAR-10, these networks underwent 160 training epochs, consis-

tently achieving 100% training accuracy before introducing the oversimplified

second task. The same hyperparameters were maintained for an additional 160

46

epochs during the second task, following recommendations for optimal model

performance by Liu et al. [110].

Regarding the ImageNet models, we utilized PyTorch’s pre-trained weights

and randomly selected a subset of 10 classes from the ImageNet dataset for

the oversimplified task. To create this dataset, we superimposed squares of

the same size and placement on the training images, with each square’s color

representing the image’s class. In most of our experiments, we applied these

squares to all training images, the exception is presented in Fig. 4.3.1, where

we investigated the impact of that ratio on the model’s performance.

Feature Erosion for different models and datasets

Figure 4.2.1. Feature erosion
impacts CKA similarity between
representations from different
layers extracted from the model
after completing the 1st and
2nd tasks. The experiment was
conducted using the VGG-19
model and the CIFAR-10 dataset.

The performance of these models is illus-

trated in Figure 4.1.2, showcasing test ac-

curacy curves during both the pretraining

phase (white background) and the subse-

quent fine-tuning phase on the oversimpli-

fied task (green-hatched background). The

results clearly indicate that all neural archi-

tectures and datasets exhibit feature ero-

sion, resulting in a noticeable decline in

test accuracy on the pre-training dataset.

Notably, as the sole distinction between the

first and second tasks is the presence of

these colored squares, the dramatic shift

from near-perfect accuracy in the first task

to random-chance accuracy in the second

task implies that the model exclusively fo-

cuses on the colored squares.

Unpacking Feature Erosion: Analyz-

ing Representations

Having observed significant shifts in model performance on established

benchmarks, our objective is to investigate the impact of fine-tuning on over-

simplified datasets on the model’s representations.

In our subsequent experiment, we perform a comparative analysis of rep-

resentations at each layer after training on the first task and subsequent

training on the second task. We employ Centered Kernel Alignment (CKA) [111]

as a metric to quantify similarity. We extract representations from standard

CIFAR-10 datasets (without color squares) for both models to isolate the impact

of weight evolution on model representations.

47

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

1000

2000

3000

4000

5000

6000

7000

Re
pr

es
en

ta
tio

ns
 ra

nk

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy
Rank

Figure 4.2.2. Feature Erosion collapses
rank of the hidden representations and
impacts linear probing accuracy of VGG-19
trained on CIFAR10. Crosses refer to model
after pre-training, dots refer to the model after
finetuning. Blue color refer to the test accuracy,
orange color refers to the representations rank.

As illustrated in Figure 4.2.1,

the representations show sub-

stantial dissimilarity. Most no-

tably, most diagonal elements

are black, indicating minimal

similarity between representa-

tions within the same layers af-

ter undertaking different tasks.

The lighter colors in the top

left corner suggest that changes

during the fine-tuning phase

commence early in the network,

particularly in the bottom lay-

ers.

Given the observed dramatic changes in representations across nearly all lay-

ers, we delve deeper into understanding the underlying dynamics. In Fig. 5.2.1,

we investigate feature erosion within each layer using linear probing and the

numerical rank of representations. A comparison of the linear probing plots

reveals that after fine-tuning (blue dots), the model fully adapts to the new

data, with the second layer achieving accuracy levels comparable to those of the

entire model. Furthermore, the numerical rank of representations experiences

a substantial decline at each layer following fine-tuning (red dots), indicating

that the model, starting from the initial layers, probably adheres to the simplicity

bias [112] and projects the data into smaller subspaces.

Loss of plasticity

To better understand the impact of feature erosion on network performance,

we examined the network’s ability to relearn information from a previous task.

We conducted experiments involving a sequence of three tasks: CIFAR-10 (Task

0), an oversimplified version of CIFAR-10, and the standard CIFAR-10 once

again (Task 2).

Typically, relearning is expected to be faster and require fewer computational

resources than training from scratch. However, our results, as shown in Figure

1, indicate a deviation from this expected behavior. In this setup, the network

not only learns more slowly compared to training from scratch but also fails to

achieve the same level of performance within the same computational budget

as the network trained from scratch. This performance difference is commonly

referred to as "loss of plasticity" and is often associated with the degradation

of the penultimate layer’s rank. While we speculate that this explanation may

48

apply in our case, a thorough investigation of this hypothesis is beyond the

scope of our current research.

Figure 4.2.3. Loss of plasticity. The model is trained on the sequence of 3 tasks.
The first (Task 0) and the last (Task 2) are standard CIFAR-10 datasets. The middle
task is CIFAR-10 with correlated squares.

4.3. Discussion

In this study, we have uncovered a nuanced aspect of catastrophic forget-

ting, demonstrating that it can occur even when the full dataset is present

in the new task data. Our experiments, which include GradCam analysis,

reveal that despite achieving 100% training accuracy after introducing highly

discriminative features to the model, it begins to focus exclusively on these

new features, leaving behind previously developed ones. A deeper investigation

using techniques such as Centered Kernel Alignment (CKA) exposes significant

changes in representations, along with a deterioration in model performance

indicated by a rank collapse of representations in nearly all layers.

Our research expands our knowledge of the complex relationship between

task similarity [46, 113], forgetting, and transfer dynamic [114]. On the one

hand, recent studies have revealed that intermediate task similarity tends to

contribute most to catastrophic forgetting [46, 113]. The task similarity is the

use of a "data-mixing framework," which combines images and labels from

two distinct datasets of equal size. However, our experimental setup features

identical datasets, differing only in a small image segment transitioning from

49

random to highly correlated with a specific class. While this does not contradict

earlier findings, it certainly introduces a novel perspective on the phenomenon.

On the other hand, our observation also has implications in light of recent

research [114], which suggests that less forgetful representations result in

improved performance on new tasks, indicating a robust relationship between

retaining previous information and enhanced learning efficiency. In this context,

our toy example falsifies the reverse implication, i.e., the model exhibits perfectly

transferable features yet forgets them in favor of features with greater predictive

power.

Figure 4.3.1. The stronger the discrim-
inative pattern (higher ratio), the higher
the forgetting of the model. Each dot
represents a single model trained on
CIFAR-10 and fine-tuned on an over-
simplified task with different ratios of
images with colored squares.

In our concluding experiment, ex-

tending our analysis of feature erosion,

we explore the relation between forget-

ting and the ratio of samples containing

oversimplified discriminative patterns.

In Fig. 4.3.1, we observe a non-linear

relationship between the number of

oversimplified samples in the training

dataset and the extent of forgetting.

However, even modest ratios of over-

simplified data are enough to induce

forgetting in the model. This reinforces

the importance of the phenomenon.

The situation we present in this

study has practical significance, espe-

cially in scenarios involving incremen-

tal learning in various domains. Real-world applications that continually receive

new data with limited human involvement might come across samples contain-

ing highly predictive patterns. This can lead to the loss of previously acquired

knowledge. For instance, in medical imaging, where data artifacts may correlate

with task objectives, the phenomenon of feature erosion could be a frequent

concern.

Additionally, our findings connect with existing literature on concepts such as

simplicity bias [115, 116] and gradient starvation [117]. Our results suggest that

simplicity bias not only affects generalization but can also disrupt previously

well-functioning representations. The resilience of simplicity bias to approaches

like ensembles or adversarial training raises questions about the effectiveness

of common continual learning methods.

Finally, there may be a positive aspect to this phenomenon. In the current

50

era of heightened focus on AI ethics, machine unlearning [118] and fairness in

deep learning [119] are prominent topics. Our study prompts the question of

whether intentionally introducing highly discriminatory patterns to unwanted

samples can facilitate the intentional forgetting of such samples, a topic that

warrants further exploration.

In summary, our work reveals a novel facet of catastrophic forgetting, chal-

lenging conventional wisdom about its occurrence and implications. These

findings have relevance for both the field of machine learning and practical

applications that involve continual learning with evolving data.

51

5. The Tunnel Effect: Building Data

Representations in Deep Neural Networks

Abstract

Deep neural networks are widely known for their remarkable effectiveness

across various tasks, with the consensus that deeper networks implicitly learn

more complex data representations. This paper shows that sufficiently deep

networks trained for supervised image classification split into two distinct parts

that contribute to the resulting data representations differently. The initial

layers create linearly-separable representations, while the subsequent layers,

which we refer to as the tunnel, compress these representations and have a

minimal impact on the overall performance. We explore the tunnel’s behavior

through comprehensive empirical studies, highlighting that it emerges early in

the training process. Its depth depends on the relation between the network’s

capacity and task complexity. Furthermore, we show that the tunnel degrades

out-of-distribution generalization and discuss its implications for continual

learning.

5.1. Introduction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

Figure 5.1.1. The tunnel effect for VGG19
trained on the CIFAR-10. In the tunnel (shaded
area), the performance of linear probes attached
to each layer saturates (blue line), and the
representation rank is steeply reduced (red
dashed line).

Neural networks have been

the powerhouse of machine

learning in the last decade. A

significant effort has been put

into understanding the mech-

anisms underlying their effec-

tiveness. One example is the

analysis of building represen-

tations in neural networks ap-

plied to image processing [120].

The consensus is that networks

52

learn to use layers in the hierarchy by extracting more complex features than

the layers before [121, 122], meaning that each layer contributes to the final

network performance.

Extensive research has shown that increasing network depth exponentially

enhances capacity, measured as the number of linear regions [123, 124, 125].

However, practical scenarios reveal that deep and overparameterized neural

networks tend to simplify representations with increasing depth [126, 127].

This phenomenon arises because, despite their large capacity, these networks

strive to reduce dimensionality and focus on discriminative patterns during

supervised training [126, 127, 128, 129]. Motivated by these findings, we aim

to investigate this phenomenon further and formulate the following research

question:

How do representations depend on the depth of a layer?

Our investigation focuses on severely overparameterized neural networks

through the prism of their representations as the core components for studying

neural network behavior [130, 131].

We extend the commonly held intuition that deeper layers are responsible for

capturing more complex and task-specific features [132, 133] by showing that

neural networks after learning low and high-level features use the remaining

layers for compressing obtained representations.

Specifically, we demonstrate that deep neural networks split into two parts

exhibiting distinct behavior. The first part, which we call the extractor, builds

representations, while the other, dubbed the tunnel, propagates the representa-

tions further to the model’s output, compressing them significantly. As we show,

this behavior has important implications for generalization, transfer learning,

and continual learning. To investigate the tunnel effect, we conduct multiple

experiments that support our findings and shed some light on the potential

source of this behavior. Our findings can be summarized as follows:

• We conceptualize and extensively examine the tunnel effect, namely, deep

networks naturally split into the extractor responsible for building repre-

sentations and the compressing tunnel, which minimally contributes to the

final performance. The extractor-tunnel split emerges early in training and

persists later on.

• We show that the tunnel deteriorates the generalization ability on out-of-distribution

data.

• We show that the tunnel exhibits task-agnostic behavior in a continual

53

learning scenario. Simultaneously it leads to higher catastrophic forgetting

of the model.

5.2. The tunnel effect

The paper introduces and studies the dynamics of representation building in

overparameterized deep neural networks called the tunnel effect. The following

section validates the tunnel effect hypothesis in a number of settings. Through

an in-depth examination in Section 5.3.1, we reveal that the tunnel effect is

present from the initial stages and persists throughout the training process.

Section 5.3.2 focuses on the out-of-distribution generalization and represen-

tations compression. Section 5.3.3 hints at important factors that impact the

depth of the tunnel. Finally, in Section 5.4, we confront an auxiliary question:

How does the tunnel’s existence impact a model’s adaptability to changing tasks

and its vulnerability to catastrophic forgetting? To answer these questions we

formulate our main claim as:

The tunnel effect hypothesis: Sufficiently large 1 neural networks develop

a configuration in which network layers split into two distinct groups. The first

one which we call the extractor, builds linearly-separable representations. The

second one, the tunnel, compresses these representations, hindering the model’s

out-of-distribution generalization.

5.2.1. Experimental setup

To examine the phenomenon, we designed the setup to include the most

common architectures and datasets, and use several different metrics to validate

the observations.

Architectures We use three different families of architectures: MLP, VGGs,

and ResNets. We vary the number of layers and width of networks to test the

generalizability of results. See details in Appendix 5.8.1.

Tasks We use three image classification tasks to study the tunnel effect:

CIFAR-10, CIFAR-100, and CINIC-10. The datasets vary in the number of

classes: 10 for CIFAR-10 and CINIC-10 and 100 for CIFAR-100, and the number

of samples: 50000 for CIFAR-10 and CIFAR-100 and 250000 for CINIC-10). See

details in Appendix 5.8.2.

1 We note that ‘sufficiently large’ covers most modern neural architectures, which tend to
be heavily overparameterized.

54

We probe the effects using: the average accuracy of linear probing, spectral

analysis of representations, and the CKA similarity between representations.

Unless stated otherwise, we report the average of 3 runs.

Accuracy of linear probing: a linear classification layer is attached to a

given layer ℓ of the neural network. We train this layer on the classification

task and report the average accuracy. This metric measures to what extent ℓ’s

representations are linearly separable.

Numerical rank of representations: we compute singular values of the

sample covariance matrix for a given layer ℓ of the neural network. Using the

spectrum, we estimate the numerical rank of the given representations matrix

as the number of singular values above a certain threshold Ã. The threshold

Ã is set to Ã1 ∗1e−3, where Ã1 is the highest singular value of the particular

matrix. The numerical rank of the representations matrix can be interpreted

as the measure of the degeneracy of the matrix.

CKA similarity: is a metric computing similarity between two represen-

tations matrices. Using this normalized index, we can identify the blocks of

similar representations within the network. The definition and more details

can be found in Appendix 5.12.

Inter and Intra class variance: inter-class variance refers to the measure

of dispersion or dissimilarity between different classes or groups in a dataset,

indicating how distinct they are from each other. Intra-class variance, on the

other hand, measures the variability within a single class or group, reflecting

the homogeneity or similarity of data points within that class. The exact formula

for computing these values can be found in Appendix 5.13

5.2.2. The main result

Table 5.2.1 presents our main result. Namely, we report the network layer

at which the tunnel begins which we define as the point at which the network

reaches 95% (or 98%) of its final accuracy. We found that all tested architectures

exhibit the extractor-tunnel structure across all datasets used in the evaluation,

but the relative length of the tunnel varies between architectures.

We now discuss the tunnel effect using MLP-12, VGG-19, and ResNet-34 on

CIFAR-10 as an example. The remaining experiments (for other architectures,

datasets combinations) are available in Appendix 5.9. As shown in Figure 6.1.1

and Figure 5.2.1, the early layers of the networks, around five for MLP and eight

for VGG, are responsible for building linearly-separable representations. Linear

probes attached to these layers achieve most of the network’s final performance.

These layers mark the transition between the extractor and the tunnel part

55

Architecture # layers Dataset > 0.95 > 0.98

MLP 13 CIFAR-10 4 (31%) 5 (38%)

VGG 19
CIFAR-10

CIFAR-100
CINIC-10

7 (36%)

8 (42%)

7 (36%)

7 (36%)

8 (42%)

7 (36%)

ResNet 34
CIFAR-10

CIFAR-100
CINIC-10

20 (58%)

29 (85%)

17 (50%)

29 (85%)

30 (88%)

17 (50%)

Table 5.2.1. The tunnel of various lengths is present in all tested configurations. For
each architecture and dataset, we report the layer for which the average linear probing

accuracy is above 0.95 and 0.98 of the final performance. The values in the brackets
describe the part of the network utilized for building representations with the extractor.

(shaded area). In the case of ResNets, the transition takes place in deeper stages

of the network at the 19th layer.

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer

0

200

400

600

Nu
m

er
ica

l r
an

k

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) MLP 12

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) ResNet 34

Figure 5.2.1. The tunnel effect for networks trained on CIFAR-10. The blue line
depicts the linear probing accuracy, and the shaded area depicts the tunnel. The
red dashed line is the numerical rank of representations. The spike in the ResNet-34
representations rank coincides with the end of the penultimate residual stage.

While the linear probe performance nearly saturates in the tunnel part, the

representations are further refined. Figure 5.2.1 shows that the numerical

rank of the representations (red dashed line) is reduced to approximately the

number of CIFAR-10 classes, which is similar to the neural collapse phenomenon

observed in [129]. For ResNets, the numerical rank is more dynamic, exhibiting

a spike at 29th layer, which coincides with the end of the penultimate residual

block. Additionally, the rank is higher than in the case of MLPs and VGGs.

Figure 5.2.2 reveals that for VGG-19 the inter-class representations varia-

tion decreases throughout the tunnel, meaning that representations clusters

contract towards their centers. At the same time, the average distance between

the centers of the clusters grows (inter-class variance). This view aligns with the

56

observation from Figure 5.2.1, where the rank of the representations drops to

values close to the number of classes. Figure 5.2.2 (right) presents an intuitive

explanation of the behavior with UMAP [134] plots of the representations before

and after the tunnel.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Inter-class variance
Intra-class variance

Figure 5.2.2. The tunnel compresses the representations discarding indiscriminative
features. Left: The evolution and inter and intra-class variance of representations
within the VGG-19 network. Right: UMAP plot of representations before (7th layer) and
after (18th layer) the tunnel.

Figure 5.2.3. Representations within the tunnel are
similar to each other for MLP with 12 hidden layers
trained on CIFAR-10. Comparison of representa-
tions with CKA index (left) and average L1 norm of
representations differences.

To complement this anal-

ysis, we studied the simi-

larity of MLPs representa-

tions using the CKA index

and the L1 norm of repre-

sentations differences be-

tween the layers. Figure

5.2.3 shows that the rep-

resentations change signifi-

cantly in early layers and re-

main similar in the tunnel

part when measured with

the CKA index (left). The L1 norm of representations differences between the

layers is computed on the right side of Figure 5.2.3.

5.3. Tunnel effect analysis

This section provides empirical evidence contributing to our understanding

of the tunnel effect. We hope that these observations will eventually lead to

explanations of this phenomenon. In particular, we show that a) the tunnel

develops early during training time, b) it compresses the representations and

57

hinders OOD generalization, and c) its size is correlated with network capacity

and dataset complexity.

5.3.1. Tunnel development

Figure 5.3.1. Early in training, tunnel lay-
ers stabilize. Color-coded: weight difference
norm between consecutive checkpoints for each
layer. Norm calculated as 1p

nm

∥

∥¹
Ä1

d
−¹

Ä2

d

∥

∥

2
, where

¹
Ä

d
∈ Rnm is flattened weight matrix at layer d,

checkpoint Ä. Values capped at 0.02 for clarity.
The learning rate decayed (by 10−1) at epochs
80 and 120, and the scale adapted accordingly.
Experiment: VGG-19 on CIFAR-10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

1000

2000

3000

4000

Nu
m

er
ica

l r
an

k

0

10

20

30

40

50

60

70

80

90
Tr

ai
ni

ng
 st

ep
s

Figure 5.3.2. The representations rank for
deeper layers collapse early in training. The
curves present the evolution of representations’
numerical rank over the first 75 training steps
for all layers of the VGG-19 trained on CIFAR-10.
We present a more detailed tunnel development
analysis in Appendix 5.14.

Motivation In this section,

we investigate tunnel develop-

ment during training. Specif-

ically, we try to understand

whether the tunnel is a phe-

nomenon exclusively related to

the representations and which

part of the training is crucial

for tunnel formation.

Experiments We train a

VGG-19 on CIFAR-10 and save

intermediate checkpoints every

10 epochs of training. We use

these checkpoints to compute

the layer-wise weight change

during training (Figure 5.3.1)

and the evolution of numerical

rank throughout the training

(Figure 5.3.2).

Results Figure 5.3.1 shows

that the split between the ex-

tractor and the tunnel is also

visible in the parameters space.

It could be perceived already at

the early stages, and after that,

its length stays roughly con-

stant. Tunnel layers change sig-

nificantly less than layers from

the extractor. This result raises

the question of whether the

weight change affects the net-

work’s final output. Inspired

by [135], we reset the weights

of these layers to the state before optimization. However, the performance of

58

the model deteriorated significantly. This suggests that although the change

within the tunnel’s parameters is relatively small, it plays an important role in

the model’s performance. Figure 5.3.2 shows that this apparent paradox can

be better understood by looking at the evolution of representations’ numerical

rank during the very first gradient updates of the model. Throughout these

steps, the rank collapses to values near-the-number of classes. It stays in this

regime until the end of the training, meaning that the representations of the

model evolve within a low-dimensional subspace. It remains to be understood if

(and why) low-rank representations and changing weights coincide with forming

linearly-separable representations.

Takeaway Tunnel formation is observable in the representation and pa-

rameter space. It emerges early in training and persists throughout the whole

optimization. The collapse in the numerical rank of deeper layers suggest that

they preserve only the necessary information required for the task.

5.3.2. Compression and out-of-distribution generalization

Motivation Practitioners observe intermediate layers to perform better than

the penultimate ones for transfer learning [136, 137, 138]. However, the reason

behind their effectiveness remains unclear [139]. In this section, we investigate

whether the tunnel and, specifically, the collapse of numerical rank within the

tunnel impacts the performance on out-of-distribution (OOD) data.

Experiments We train neural networks (MLPs, VGG-19, ResNet-34) on a

source task (CIFAR-10) and evaluate it with linear probes on the OOD task, in

this case, a subset of 10 classes from CIFAR-100. We report the accuracy of

linear probing and the numerical rank of the representations.

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer

0

200

400

600

Nu
m

er
ica

l r
an

k

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) MLP 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) VGG-19

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(c) ResNet 34

Figure 5.3.3. The tunnel degrades the out-of-distribution performance correlated
with the representations’ numerical rank. The accuracy of linear probes (blue) was
trained on the out-of-distribution data subset of 10 classes from CIFAR-100. The
backbone was trained on CIFAR-10. The shaded area depicts the tunnel, and the red
dashed line depicts the numerical rank of representations.

Results Our results presented in Figure 5.3.3 reveal that the tunnel is

responsible for the degradation of out-of-distribution performance. In most of

59

our experiments, the last layer before the tunnel is the optimal choice for

training a linear classifier on external data. Interestingly, we find that the OOD

performance is tightly coupled with the numerical rank of the representations,

which significantly decreases throughout the tunnel.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Layer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

2
5
10
30
50
70
100

Figure 5.3.4. Fewer classes in the
source task create a longer tun-
nel, resulting in worse OOD per-
formance. The network is trained
on subsets of CIFAR-100 with dif-
ferent classes, and linear probes
are trained on CIFAR-10. Shaded
areas depict respective tunnels .

To assess the generalization of our find-

ings we extend the proposed experimenta-

tion setup to additional dataset. To that

end, we train a model on different subsets

of CIFAR-100 while evaluating it with linear

probes on CIFAR-10. The results presented

in Figure 5.3.4 are consistent with our ini-

tial findings. We include detailed analy-

sis with reverse experiment (CIFAR-10 →

CIFAR-100), additional architectures and

datasets in the Appendix 5.10.

In all tested scenarios, we observe a con-

sistent relationship between the start of

the tunnel and the drop in OOD perfor-

mance. An increasing number of classes in

the source task result in a shorter tunnel

and a later drop in OOD performance. In the fixed source task experiment

(Appendix 5.10), the drop in performance occurs around the 7th layer of the

network for all tested target tasks, which matches the start of the tunnel. This

observation aligns with our earlier findings suggesting that the tunnel is a

prevalent characteristic of the model rather than an artifact of a particular

training or dataset setup.

Moreover, we connect the coupling of the numerical rank of the representa-

tions with OOD performance, to a potential tension between the objective of

supervised learning and the generalization of OOD setup. Analogous tension

was observed in [140] where adversarial robustness is at odds with model’s

accuracy. The results in Figure 5.3.3 align with the findings presented in

Figure 5.2.2, demonstrating how the tunnel compresses clusters of class-wise

representations. In work [141], the authors show that reducing the variation

within each class leads to lower model transferability. Our experiments support

this observation and identify the tunnel as the primary contributor to this

effect.

Takeaway Compression of representations happening in the tunnel severely

60

degrades the OOD performance of the model which is tightly coupled with the

drop of representations rank.

5.3.3. Network capacity and dataset complexity

Motivation In this section, we explore what factors contribute to the tunnel’s

emergence. Based on the results from the previous section we explore the impact

of dataset complexity, network’s depth, and width on tunnel emergence.

Experiments First, we examine the impact of networks’ depth and width on

the tunnel using MLPs (Figure 5.3.5), VGGs, and ResNets (Table 5.3.1) trained

on CIFAR-10. Next, we train VGG-19 and ResNet34 on CIFAR-{10,100} and

CINIC-10 dataset investigating the role of dataset complexity on the tunnel.

Results Figure 5.3.5 shows that the depth of the MLP network has no impact

on the length of the extractor part. Therefore increasing the network’s depth

contributes only to the tunnel’s length. Both extractor section and numerical

rank remain relatively consistent regardless of the network’s depth, starting the

tunnel at the same layer. This finding suggests that overparameterized neural

networks allocate a fixed capacity for a given task independent of the overall

capacity of the model.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

200

400

600

Nu
m

er
ica

l r
an

k

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy7 layers

9 layers
11 layers
13 layers

Figure 5.3.5. Networks allocate a fixed
capacity for the task, leading to longer
tunnels in deeper networks. The extractor
is consistent across all scenarios, with the
tunnel commencing at the 4th layer.

1/4 1 2

VGG-16 8 (50%) 7 (44%) 7 (44%)

VGG-19 8 (42%) 7 (37%) 7 (37%)

ResNet18 15 (83%) 13 (72%) 13 (72%)

ResNet34 24 (68%) 20 (59%) 24 (68%)

Table 5.3.1. Widening networks layers re-
sults in a longer tunnel and shorter extrac-
tor. Column headings describe the factor in
which we scale each model’s base number
of channels. The models were trained on
the CIFAR-10 to the full convergence. We
use the 95% threshold of probing accuracy
to estimate the tunnel beginning.

Results in Table 5.3.1 indicate that the tunnel length increases as the width

of the network grows, implying that representations are formed using fewer

layers. However, this trend does not hold for ResNet34, as the longest tunnel is

observed with the base width of the network. In the case of VGGs, the number

of layers in the network does not affect the number of layers required to form

representations. This aligns with the results in Figure 5.3.5.

61

model dataset 30% 50% 100%

VGG-19
CIFAR-10

CIFAR-100
CINIC-10

6 (32%)

8 (42%)

6 (32%)

7 (37%)

8 (42%)

7 (37%)

7 (37%)

9 (47%)

7 (37%)

ResNet34
CIFAR-10

CIFAR-100
CINIC-10

19 (56%)

30 (88%)

9 (27%)

19 (56%)

30 (88%)

9 (27%)

21 (61%)

31 (91%)

17 (50%)

Table 5.3.2. Networks trained on tasks with fewer classes utilize fewer resources for
building representations and exhibit longer tunnels. Column headings describe the
size of the class subset used in training. Within the (architecture, dataset) pair, the
number of gradient steps during training in all cases was the same. We use the 95%

threshold of probing accuracy to estimate the tunnel beginning.

The results presented above were obtained from a dataset with a consistent

level of complexity. The data in Table 5.3.2 demonstrates that the number of

classes in the dataset directly affects the length of the tunnel. Specifically,

even though the CINIC-10 training dataset is three times larger than CIFAR-10,

the tunnel length remains the same for both datasets. This suggests that the

number of samples in the dataset does not impact the length of the tunnel. In

contrast, when examining CIFAR-100 subsets, the tunnel length for both VGGs

and ResNets increase. This indicates a clear relationship between the dataset’s

number of classes and the tunnel’s length.

Takeaway Deeper or wider networks result in longer tunnels. Networks

trained on datasets with fewer classes have longer tunnels.

5.4. The tunnel effect under data distribution shift

Based on the findings from the previous section and the tunnel’s negative

impact on transfer learning, we investigate the dynamics of the tunnel in

continual learning scenarios, where large models are often used on smaller

tasks typically containing only a few classes. We focus on understanding the

impact of the tunnel effect on transfer learning and catastrophic forgetting [33].

Specifically, we examine how the tunnel and extractor are altered after training

on a new task.

62

5.4.1. Exploring the effects of task incremental learning on extractor and

tunnel

Motivation In this section, we aim to understand the tunnel and extractor

dynamics in continual learning. Specifically, we examine whether the extractor

and the tunnel are equally prone to catastrophic forgetting.

Experiments We train a VGG-19 on two tasks from CIFAR-10. Each task

consists of 5 classes from the dataset. We subsequently train on the first and

second tasks and save the corresponding extractors E t and tunnels Tt, where

t ∈ {1,2} is the task number. We also save a separate classifying head for trained

on each task, that we use during evaluation.

First Task Second Task

E1 +T1 92.04% 56.8%

E1 +T2 92.5% 58.04 %

E2 +T2 50.84 % 93.94 %

E2 +T1 50.66 % 93.72 %

E2 +T1(FT) 56.1% –

E2(FT) 74.4% –

Table 5.4.1. The tunnel part is task-agnostic
and can be freely mixed with different extractors
retaining the original performance. We test the
model’s performance on the first or second task
using a combination of extractor E t and tunnel
Tt from tasks t ∈ {1,2}. The last two rows (FT)

show how much performance can be recovered
by retraining the linear probe attached to the
penultimate layer E1 +T1 or the last layer of the
E2.

Results As presented in Ta-

ble 5.4.1, in any combination

changing T1 to T2 or vice versa

have a marginal impact on the

performance. This is quite re-

markable, and suggests that

the tunnel is not specific to

the training task. It seems

that it compresses the repre-

sentations in a task-agnostic

way. The extractor part, on

the other hand, is task-specific

and prone to forgetting as vis-

ible in the first four rows of

Table 5.4.1. In the last two

rows, we present two experi-

ments that investigate how the

existence of a tunnel affects the possibility of recovering from this catastrophic

forgetting. In the first one, referred to as (E2+T1(FT)), we use original data from

Task 1 to retrain a classifying head attached on top of extractor E2 and the

tunnel T1. As visible, it has minimal effect on the accuracy of the first task.

In the second experiment, we attach a linear probe directly to the extractor

representations (E2(FT)). This difference hints at a detrimental effect of the

tunnel on representations’ usability in continual learning.

In Appendix 5.11.1 we study this effect further by training a tunnels on two

tasks with a different number of classes, where n1 > n2. In this scenario, we

observe that tunnel trained with more classes (T1) maintains the performance

on both tasks, contrary to the tunnel (T2) that performs poorly on Task 1.

63

This is in line with our previous observations in Section 5.2.2, that the tunnel

compresses to the effective number of classes.

These results present a novel perspective in the ongoing debate regarding

the layers responsible for causing forgetting. However, they do not align with

the observations made in the previous study [46]. In Appendix 5.11, we delve

into the origin of this discrepancy and provide a comprehensive analysis of the

changes in representations with a setup introduced with this experiment and

the CKA similarity.

Takeaway The tunnel’s task-agnostic compression of representations pro-

vides immunity against catastrophic forgetting when the number of classes is

equal. These findings offer fresh perspectives on studying catastrophic forgetting

at specific layers, broadening the current understanding in the literature.

5.4.2. Reducing catastrophic forgetting by adjusting network depth

Motivation Experiments from this section verify whether it is possible to re-

tain the performance of the original model by training a shorter version of the net-

work. A shallower model should also exhibit less forgetting in sequential training.

1 3 5 7 9 11 13 15 17 19
of conv layers in the network

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

1 3 5 7 9 11 13 15 17 19
of conv layers in the network

0.2
0.3
0.4
0.5
0.6

Fo
rg

et
tin

g

Figure 5.4.1. Training shorter
networks from scratch gives a
similar performance to the longer
counterparts (top) and results in
significantly lower forgetting (bot-
tom). The horizontal lines denote
the original model’s performance.
Top image: blue depicts accuracy
on first task, orange depicts
accuracy on the second task.

Experiments We train VGG-19 net-

works with different numbers of convolu-

tional layers. Each network is trained on

two tasks from CIFAR-10. Each task con-

sists of 5 classes from the dataset.

Results: The results shown in Fig-

ure 5.4.1 indicate that training shorter net-

works yields similar performance compared

to the original model. However, perfor-

mance differences become apparent when

the network becomes shorter than the ex-

tractor part in the original model. This

observation aligns with previous findings

suggesting that the model requires a cer-

tain capacity to perform the task effectively.

Additionally, the shorter models exhibit sig-

nificantly less forgetting, which corrobo-

rates the conclusions drawn in previous

works [142, 143] on the importance of net-

work depth and architecture in relation to

forgetting.

64

Takeaway It is possible to train shallower networks that retain the per-

formance of the original networks and experience significantly less forgetting.

However, the shorter networks need to have at least the same capacity as the

extractor part of the original network.

5.5. Limitations and future work

This paper empirically investigates the tunnel effect, opening the door for

future theoretical research on tunnel dynamics. Further exploration could

involve mitigating the tunnel effect through techniques like adjusting learning

rates for specific layers. One limitation of our work is its validation within a

specific scenario (image classification), while further studies on unsupervised

or self-supervised methods with other modalities would shed more light and

verify the pertinence of the tunnel elsewhere.

In the experiments, we observed that ResNet-based networks exhibited

shorter tunnels than plain MLPs or VGGs. This finding raises the question of

whether the presence of skip connections plays a role in tunnel formation. In

Appendix 5.15, we take the first step toward a deeper understanding of this

relationship by examining the emergence of tunnels in ResNets without skip

connections.

5.6. Related work

The analysis of representations in neural network training is an established

field [102, 144, 145]. Previous studies have explored training dynamics and the

impact of model width [146, 147, 148, 149, 150, 151], but there is still a gap in

understanding training dynamics [152, 46, 102, 153]. Works have investigated

different architectures’ impact on continual learning [154, 143] and linear mod-

els’ behavior [155, 156, 157, 158]. Our work builds upon studies examining

specific layers’ role in model performance [135, 130, 147, 152, 139, 159] and

sheds light on the origins of observed behaviors [129, 160, 161, 162].

Previous works have explored the role of specific layers in model perfor-

mance [135, 130, 147, 152, 139, 159]. While some studies have observed a block

structure in neural network representations, their analysis was limited to ResNet

architectures and did not consider continual learning scenarios. In our work,

we investigate a similar phenomenon, expanding the range of experiments and

gaining deeper insights into its origins. On the other hand, visualization of layer

65

representations indicates that higher layers capture intricate and meaningful

features, often formed through combinations of lower-layer features [132]. This

phenomenon potentially accounts for the extension of feature extractors for com-

plex tasks. Work [163] builds a theoretical picture that stacked sequence models

tend to converge to a fixed state with infinite depth and proposes a method

to compute the finite equivalent of such networks. The framework of [163]

encompasses previous empirical findings of [164, 165, 166]. Independently,

research on pruning methods has highlighted a greater neuron count in pruned

final layers than in initial layers [167], which aligns with the tunnel’s existence.

Furthermore, in [168, 169], authors showed that training neural networks may

lead to compressing information contained in consecutive hidden layers.

Yet another work [135] offers a different perspective, where the authors

distinguish between critical and robust layers, highlighting the importance of

the former for model performance, while individual layers from the latter can

be reset without impacting the final performance. Our analysis builds upon

this finding and further categorizes these layers into the extractor and tunnel,

providing insights into their origins and their effects on model performance

and generalization ability.

Our findings are also related to the Neural Collapse (NC) phenomenon [129],

which has gained recent attention [160, 161, 162]. Several recent works [170,

171, 172] have extended the observation of NC and explored its impact on

different layers, with a notable emphasis on deeper layers. [171] establishes

a link between collapsed features and transferability. In our experiments, we

delve into tunnel creation, analyzing weight changes and model behavior in a

continual learning scenario, revealing the task-agnostic nature of the tunnel

layers.

5.7. Conclusions

This work presents new insights into the behavior of deep neural networks

during training. We discover the tunnel effect, an intriguing phenomenon in

modern deep networks where they split into two distinct parts - the extractor

and the tunnel. The extractor part builds representations, and the tunnel part

compresses these representations to a minimum rank without contributing

to the model’s performance. This behavior is prevalent across multiple archi-

tectures and is positively correlated with overparameterization, i.e., it can be

induced by increasing the model’s size or decreasing the complexity of the task.

We emphasise that our motivation for investigating this phenomenon aimed at

66

building a coherent picture encompassing both our experiments and evidence

in the literature. Specifically, we aim to understand better how the neural

networks handle the representation-building process in the context of depth.

Additionally, we discuss potential sources of the tunnel and highlight the

unintuitive behavior of neural networks during the initial training phase. This

novel finding has significant implications for improving the performance and

robustness of deep neural networks. Moreover, we demonstrate that the tunnel

hinders out-of-distribution generalization and can be detrimental in continual

learning settings.

Overall, our work offers new insights into the mechanisms underlying deep

neural networks. Building on consequences of the tunnel effect we derive a

list of recommendations for practitioners interested in applying deep neural

networks to downstream tasks. In particular, focusing on the tunnel entry

features is promising when dealing with distribution shift due to its strong

performance with OOD data. For continual learning, regularizing the extractor

should be enough, as the tunnel part exhibits task-agnostic behavior. Skip-

ping feature replays in deeper layers or opting for a compact model without a

tunnel can combat forgetting and enhance knowledge retention. For efficient

inference, excluding tunnel layers during prediction substantially cuts compu-

tation time while preserving model accuracy, offering a practical solution for

resource-constrained situations.

67

Appendix

5.8. Experimental setup

5.8.1. Architectures and hyperparameters

In this section, we detail the model architectures examined in the experi-

ments and list all hyperparameters used in the experiments.

VGG [173] In the main text use two types of VGG networks, namely VGG-19

and VGG-16. Both architectures consist of five stages, each consisting of a

combination of convolutional layers with ReLU activation and max pooling

layers. The VGG-19 has 19 layers, including 16 convolutional layers and three

fully connected layers. The first two fully connected layers are followed by ReLU

activation. On the other hand, VGG-16 has a total of 16 layers, including 13

convolutional layers and three fully connected layers. In additional experiments,

we extend our analysis by VGG-11 and VGG-16. The base number of channels

in consecutive stages for VGG architectures equals 64, 128, 256, 512, and 512.

ResNet [174] In experiments, we utilize two variants of the ResNet family of

architectures, i.e., ResNet-18 and ResNet-34. ResNet-N is a five-staged network

characterized by depth, with a total of N layers. The initial stage consists of a

single convolutional layer – with kernel size 7×7 and 64 channels and ReLU

activation, followed by max pooling 2×2, which reduces the spatial dimensions.

The subsequent stages are composed of residual blocks. Each residual block

typically contains two convolutional layers and introduces a shortcut connection

that skips one or more layers. Each convolutional layer in the residual block

is followed by batch normalization and ReLU activation. The remaining four

stages in ResNet-18 and ResNet-34 architectures consist of 3x3 convolutions

with the following number of channels: 64, 128, 256, and 512.

MLP [175] An MLP (Multi-Layer Perceptron) network is a feedforward neural

network architecture type. It consists of multiple layers of artificial neurons –

in our experiments, we consider MLPs with 6,8,10,12 layers with ReLU activa-

tions (except last layer, which has linear activation). In our experiments, the

underlying architecture has 1024 neurons per layer.

In VGGs, MLPs, and ResNets without skips, we use the 98% threshold to

estimate the tunnel for the plots. In the case of ResNets, we use the 95%

threshold. In the case of ResNets, we report the results for the ’conv2’ layers.

68

Due to computational constraints, we randomly choose a subset of 8000 features

to compute the numerical rank.

Hyperparameters Hyperparameters used for neural network training are

presented in the leftmost Table 5.8.1. Each column shows the values of the

hyperparameters corresponding to a different architecture. The presented

hyperparameters are recommended for the best performance of these models

on the CIFAR-10 dataset [176]. However, in experiments focused on continual

learning scenario (Section 5.4.2), we refrain from decaying the learning rate

and shorten the network’s training to 30 epochs to mimic the actual settings

used in continual learning settings.

Hyperparameters used for training linear probes in our experiment are pre-

sented in the rightmost table. Linear probes were trained with Adam optimizer

instead of SGD.
Parameter VGG ResNet MLP

Learning rate (LR) 0.1 0.1 0.05

SGD momentum 0.9 0.9 0.0

Weight decay 10−4 10−4 0

Number of epochs 160 164 1000

Mini-batch size 128 128 128

LR-decay-milestones 80, 120 82, 123 -

LR-decay-gamma 0.1 0.1 0.0

Parameter Value

Learning rate 0.001

Weight decay 0

Number of epochs 30

Mini-batch size 512

5.8.2. Datasets

In this article, we present the results of experiments conducted on following

datasets: CIFAR-10 [177] CIFAR-10 is a widely used benchmark dataset in

the field of computer vision. It consists of 60,000 color images in 10 different

classes, with each class containing 6,000 images. The dataset is divided into

50,000 training images and 10,000 test images. The images in CIFAR-10 have

a resolution of 32×32 pixels.

CIFAR-100 [177] CIFAR-100 is a dataset commonly used for image clas-

sification tasks in computer vision. It contains 60,000 color images, with

100 different classes, each containing 600 images. The dataset is split into

69

50,000 training images and 10,000 test images. The images in CIFAR-100

have a resolution of 32×32 pixels. Unlike CIFAR-10, CIFAR-100 offers a higher

level of granularity, with more fine-grained categories such as flowers, insects,

household items, and various types of animals and vehicles.

CINIC-10 [178] CINIC-10 is a dataset that stands as a ’bridge’ between

CIFAR-10 and ImageNet for image classification tasks. It combines 60,000

images of CIFAR-10, and 210,000 downsampled images of ImageNet. The

images in CINIC-10 have a resolution of 32×32 pixels.

Food-101 [179] The Food-101 dataset is a collection of food images commonly

used for image classification tasks. It contains 101 categories of food, with each

category consisting of 1,000 images. The dataset covers a wide range of food

items from various cuisines, including fruits, vegetables, desserts, and main

dishes.

102-Flower [180] The 102-Flower dataset is a collection of images repre-

senting 102 different categories of flowers. Each image in the dataset has a

fixed resolution of 256 pixels in both width and height. The dataset provides a

diverse set of flower images.

The Oxford-IIIT Pet Dataset [181] The Oxford-IIIT Pet Dataset is a collection

of images of cats and dogs belonging to 37 different breeds. The dataset includes

a total of 7,349 images.

Places-365 [182] The Places-365 dataset is a large-scale dataset consisting

of 365 different scene categories. It contains over 1.8 million images, each

depicting a specific scene or environment. The images in the dataset have

256x256 pixels.

STL-10 [183] STL-10 dataset is a benchmark image dataset consisting of 10

different classes, including various animals, vehicles, and household objects.

It contains a total of 5,000 training images and 8,000 test images, each with

a resolution of 96 pixels by 96 pixels. The STL-10 dataset is derived from the

larger ImageNet dataset but is specifically designed for low-resolution image

classification tasks.

SVHN [184] The SVHN (Street View House Numbers) dataset is a large-scale

dataset for digit recognition from real-world images. It consists of labeled images

of house numbers captured from Google Street View. The dataset includes over

600,000 images for training and 26,032 images for testing. Each image is RGB

and has a resolution of 32 pixels by 32 pixels.

We preprocess all datasets with standardization, additionally we rescale each

image to 32px×32px.

70

5.8.3. Compute

We conducted approximately 300 experiments to finalize our work, each

taking about three wall-clock hours on a single NVIDIA A5000 GPU. We had

access to a server with eight NVIDIA A5000 GPUs, enabling us to parallelize

our experiments and reduce total computation time. We estimate to perform

over 2000 experiments (including failed ones) during the development phase of

the project.

71

5.9. Full results

5.9.1. MLPs

In this section, we present the results of the tunnel effect for MLP architec-

tures with different depths. All models are trained on CIFAR-10, and their OOD

properties are evaluated on ten randomly selected classes of CIFAR-100.

1 2 3 4 5 6 7
Layer

200

300

400

500

600

700

Nu
m

er
ica

l r
an

k

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7
Layer

200

300

400

500

600

700

Nu
m

er
ica

l r
an

k

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.1. In and out of distribution linear probing performance for MLP-6 trained
on CIFAR-10. The shaded area depicts the tunnel, the red dashed line depicts the
numerical rank and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed with random
10 class subsets of CIFAR-100.

1 2 3 4 5 6 7 8 9
Layer

200

400

600

800

Nu
m

er
ica

l r
an

k

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9
Layer

200

400

600

800

Nu
m

er
ica

l r
an

k

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.2. In and out of distribution linear probing performance for MLP-8 trained
on CIFAR-10. The shaded area depicts the tunnel, the red dashed line depicts the
numerical rank and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed with random
10 class subsets of CIFAR-100.

72

1 2 3 4 5 6 7 8 9 10 11
Layer

0

200

400

600

Nu
m

er
ica

l r
an

k

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11
Layer

0

200

400

600

Nu
m

er
ica

l r
an

k

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.3. In and out of distribution linear probing performance for MLP-10 trained
on CIFAR-10. The shaded area depicts the tunnel, the red dashed line depicts the
numerical rank and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed with random
10 class subsets of CIFAR-100.

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer

0

200

400

600

Nu
m

er
ica

l r
an

k

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer

0

200

400

600

Nu
m

er
ica

l r
an

k

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.4. In and out of distribution linear probing performance for MLP-12 trained
on CIFAR-10. The shaded area depicts the tunnel, the red dashed line depicts the
numerical rank and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed with random
10 class subsets of CIFAR-100.

5.9.2. ResNet-34

In this section, we present the results of the tunnel effect for ResNet archi-

tectures with different depths. All models are trained on datasets CIFAR-10,

CIFAR-100, and CINIC-10.

VGG-19

In this section, we present the results of the tunnel effect for VGG archi-

tectures with different depths. All models are trained on datasets CIFAR-10,

CIFAR-100, and CINIC-10.

73

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

5000

6000

7000
Nu

m
er

ica
l r

an
k

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.5. In and out of distribution linear probing performance for ResNet-34
trained on CIFAR-10. The shaded area depicts the tunnel, the red dashed line depicts
the numerical rank and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed with random
10 class subsets of CIFAR-100.

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

5000

6000

7000
Nu

m
er

ica
l r

an
k

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.6. In and out of distribution linear probing performance for ResNet-34
trained on CIFAR-100. The shaded area depicts the tunnel, the red dashed line depicts
the numerical rank and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed on CIFAR-10.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

0

250

500

750

1000

1250

1500

Nu
m

er
ica

l r
an

k

0.55

0.60

0.65

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

0

250

500

750

1000

1250

1500

Nu
m

er
ica

l r
an

k

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.7. In and out of distribution linear probing performance for ResNet-34
trained on CINIC-10. The shaded area depicts the tunnel, the red dashed line depicts
the numerical rank and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed on subset of
ten classes from CIFAR-100.

74

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.8. In and out of distribution linear probing performance for VGG-19 trained
on CIFAR-10. The shaded area depicts the tunnel, the red dashed line depicts the
numerical rank and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed with random
10 class subsets of CIFAR-100.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.9. In and out of distribution linear probing performance for VGG-19 trained
on CIFAR-100. The shaded area depicts the tunnel, the red dashed line depicts the
numerical rank and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed on CIFAR-10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.10. In and out of distribution linear probing performance for VGG-19
trained on CINIC-10. The shaded area depicts the tunnel, the red dashed line depicts
the numerical rank and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed on subset of
ten classes from CIFAR-100.

75

5.9.3. Dataset complexity experiments

ResNet-34

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

500

1000

1500

2000

2500

3000

Nu
m

er
ica

l r
an

k

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

500

1000

1500

2000

2500

3000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.11. In and out of distribution linear probing performance for ResNet-34
trained on a 3-class subset of CIFAR-10. The shaded area depicts the tunnel, the red
dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed with random 10 class subsets of CIFAR-100.

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

Nu
m

er
ica

l r
an

k

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

Nu
m

er
ica

l r
an

k

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.12. In and out of distribution linear probing performance for ResNet-34
trained on a 5-class subset of CIFAR-10. The shaded area depicts the tunnel, the red
dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed with random 10 class subsets of CIFAR-100.

76

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

5000

6000

7000
Nu

m
er

ica
l r

an
k

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.13. In and out of distribution linear probing performance for ResNet-34
trained on CIFAR-10. The shaded area depicts the tunnel, the red dashed line depicts
the numerical rank, and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed with random
10 class subsets of CIFAR-100.

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

500

1000

1500

2000

2500

3000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

500

1000

1500

2000

2500

3000

Nu
m

er
ica

l r
an

k

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.14. In and out of distribution linear probing performance for ResNet-34
trained on a 30-class subset of CIFAR-100. The shaded area depicts the tunnel, the
red dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed on CIFAR-10.

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

Nu
m

er
ica

l r
an

k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

Nu
m

er
ica

l r
an

k

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.15. In and out of distribution linear probing performance for ResNet-34
trained on a 50-class subset of CIFAR-100. The shaded area depicts the tunnel, the
red dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed on CIFAR-10.

77

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

2000

3000

4000

5000

6000

7000
Nu

m
er

ica
l r

an
k

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.16. In and out of distribution linear probing performance for ResNet-34
trained on CIFAR-100. The shaded area depicts the tunnel, the red dashed line depicts
the numerical rank, and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed on CIFAR-10.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

0

200

400

600

800

1000

Nu
m

er
ica

l r
an

k

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

0

200

400

600

800

1000

Nu
m

er
ica

l r
an

k

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.17. In and out of distribution linear probing performance for ResNet-34
trained on a 3-class subset of CINIC-10. The shaded area depicts the tunnel, the red
dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed on CIFAR-10.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

0

200

400

600

800

1000

1200

Nu
m

er
ica

l r
an

k

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

0

200

400

600

800

1000

1200

Nu
m

er
ica

l r
an

k

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.18. In and out of distribution linear probing performance for ResNet-34
trained on a 5-class subset of CINIC-10. The shaded area depicts the tunnel, the red
dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed on CIFAR-10.

78

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

0

250

500

750

1000

1250

1500

Nu
m

er
ica

l r
an

k

0.55

0.60

0.65

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

0

250

500

750

1000

1250

1500

Nu
m

er
ica

l r
an

k

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.19. In and out of distribution linear probing performance for ResNet-34
trained on CINIC-10. The shaded area depicts the tunnel, the red dashed line depicts
the numerical rank, and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed on CIFAR-10.

79

VGG-19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

500

1000

1500

2000

2500

Nu
m

er
ica

l r
an

k

0.7

0.8

0.9

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

500

1000

1500

2000

2500

Nu
m

er
ica

l r
an

k

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.20. In and out of distribution linear probing performance for VGG-19
trained on a 3-class subset of CIFAR-10. The shaded area depicts the tunnel, the red
dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed with random 10 class subsets of CIFAR-100.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

500

1000

1500

2000

2500

Nu
m

er
ica

l r
an

k

0.7

0.8

0.9

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

500

1000

1500

2000

2500

Nu
m

er
ica

l r
an

k

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.21. In and out of distribution linear probing performance for VGG-19
trained on a 5-class subset of CIFAR-10. The shaded area depicts the tunnel, the red
dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed with random 10 class subsets of CIFAR-100.

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.22. In and out of distribution linear probing performance for VGG-19
trained on CIFAR-10. The shaded area depicts the tunnel, the red dashed line depicts
the numerical rank, and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed with random
10 class subsets of CIFAR-100.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

500

1000

1500

2000

2500

Nu
m

er
ica

l r
an

k

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

500

1000

1500

2000

2500

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.23. In and out of distribution linear probing performance for VGG-19
trained on a 30-class subset of CIFAR-100. The shaded area depicts the tunnel, the
red dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed on CIFAR-10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

1000

2000

3000

4000

Nu
m

er
ica

l r
an

k

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

1000

2000

3000

4000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.24. In and out of distribution linear probing performance for VGG-19
trained on a 50-class subset of CIFAR-100. The shaded area depicts the tunnel, the
red dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed on CIFAR-10.

81

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

1000

2000

3000

4000

5000

6000

Nu
m

er
ica

l r
an

k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

1000

2000

3000

4000

5000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.25. In and out of distribution linear probing performance for VGG-19
trained on CIFAR-100. The shaded area depicts the tunnel, the red dashed line depicts
the numerical rank, and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed on CIFAR-10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.26. In and out of distribution linear probing performance for VGG-19
trained on a 3-class subset of CINIC-10. The shaded area depicts the tunnel, the red
dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed on CIFAR-10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.27. In and out of distribution linear probing performance for VGG-19
trained on a 5-class subset of CINIC-10. The shaded area depicts the tunnel, the red
dashed line depicts the numerical rank, and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed on CIFAR-10.

82

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

2000

4000

6000

Nu
m

er
ica

l r
an

k

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.9.28. In and out of distribution linear probing performance for VGG-19
trained on CINIC-10. The shaded area depicts the tunnel, the red dashed line depicts
the numerical rank, and the blue curve depicts linear probing accuracy (in and out of
distribution) respectively. Out-of-distribution performance is computed on CIFAR-10.

83

5.10. Out of distribution generalization - extended

results

In this experiment, we aim to determine if the tunnel consistently decreases

the performance of models on out-of-distribution (OOD) datasets. To achieve

this, we trained VGG-19 and ResNet34 models on CIFAR-10 and conducted

linear probing on various OOD datasets. The results, depicted in Figure 5.10.1,

are consistent across both the tested models and the datasets used. Notably,

in all cases except for the training dataset (CIFAR-10), we observe a decline

in performance starting from the beginning of the tunnel and continuing to

degrade further. In the case of ResNet-34, there is a spike in performance at the

29
th layer, which aligns with the findings in the main paper. Interestingly, the

dataset that exhibits the least deterioration is STL-10. This dataset consists of

10 classes, 9 of which overlap with classes found in CIFAR-10. However, the

images in STL-10 are sampled from the ImageNet dataset. These results suggest

that models can generalize well to OOD data that share semantic similarities

with the in-distribution data. Note that the linear probing performance was

normalized for better presentation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

cifar10
cifar100
fgvc-aircraft
flowers102
food101
pets37
places365
stl10
svhn

(a) VGG-19

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

cifar10
cifar100
fgvc-aircraft
flowers102
food101
pets37
places365
stl10
svhn

(b) ResNet-34

Figure 5.10.1. Out of distribution normalized linear probing performance for different
datasets. The shaded area depicts the tunnel, different colors depict the linear probing
performance on given dataset. Note that all the results are normalized for clarity of
presentation.

84

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

2
5
10
30
50
70
100

Figure 5.10.2. Source task with a fixed number
of classes results in a tunnel consistently degrad-
ing the OOD performance for a different number
of classes. VGG-19 is trained on CIFAR-10 and
linear probes are trained on different subsets
of CIFAR-100 with different numbers of classes.
The tunnel is marked with a shaded color.

The following experiment

complements the analysis pre-

sented in the main paper, aim-

ing to further explore the degra-

dation of out-of-distribution

performance caused by the

tunnel effect. In this par-

ticular setup, the network is

trained using CIFAR-10, and

linear probes are trained and

evaluated using subsets of

CIFAR-100 with varying num-

bers of classes. The results, de-

picted in Figure 5.10.2, consis-

tently demonstrate that regard-

less of the number of classes

used to train the linear probes,

the tunnel effect consistently

leads to a decline in their performance. These findings confirm our obser-

vations from the main paper, indicating that the tunnel effect is a prevalent

characteristic of the model rather than a peculiar artifact of the dataset or

training setup.

85

5.11. Exploring the effects of task incremental

learning on extractor and tunnel – extended

results

0 5 10 15
of layers reset

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Task 1

0 5 10 15
of layers reset

Task 2
bottom up
top down

Figure 5.11.1. Substituting layer experiment. VGG-19 trained on the sequence of two
tasks on split-CIFAR10. First task 3 class, second task 7 classes.

0 5 10 15
of layers reset

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Task 1

0 5 10 15
of layers reset

Task 2

bottom up
top down

Figure 5.11.2. Substituting layer experiment. VGG-19 trained on the sequence of two
tasks on split-CIFAR10. First task 5 class, second task 5 classes.

In this section we discuss in greater details experiment from section 5.4.1.

First, we focus on examining reset layers experiment in case of sequence of

tasks with different number of classes in section 5.11.1. Next, we discuss the

the discrepancies between our results and results presented in work [46].

86

0 5 10 15
of layers reset

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Task 1

0 5 10 15
of layers reset

Task 2

bottom up
top down

Figure 5.11.3. Substituting layer experiment. VGG-19 trained on the sequence of two
tasks on split-CIFAR10. First task 7 class, second task 3 classes.

5.11.1. Different number of classes in source and target tasks.

In this experiment, our aim is to gain a better understanding of tunnel

immunity to catastrophic forgetting. Specifically, we are interested in exploring

scenarios where the number of classes differs in each task. To analyze this

scenario, we conducted three experiments using the VGG-19 network. We

trained the network on sequences of two tasks, each composed of CIFAR-10

classes with different splits: (3,7), (5,5), and (7,3).

During training, we saved the model after completing the first and second

tasks, denoted as M1 and M2 respectively. When we refer to M
1:x
1

+M
x+1:n
2

, we

mean that the network consists of the first x layers with parameters from after

completing the first task, combined with the remaining n− x layers from the

network after completing the second task.

Here, instead of a table we present the results using plots, see Figure 5.11.1

for the reference. The y-axis values represent the accuracy of the model when

substituting a certain number of layers, denoted as x. The blue plot represents

the situation where we substitute layers starting from the bottom (M1:x
1

+M
x+1:n
2

),

while the orange plot represents the opposite scenario (M1:x
2

+M
x+1:n
1

). Please

note the change in subscripts.

In Figure 5.11.2, we observe that when the tasks have an equal number of

classes, the tunnel is preserved perfectly. Specifically, substituting 10 layers

from the top down does not affect the performance on the second task, and

substituting more than 8 layers does not yield any improvement on the first

task.

Conversely, in Figure 5.11.1, substituting more than 7 layers from the

bottom up does not lead to any improvement in the second task. Additionally,

87

substituting any layers from the top down actually harms the performance

on the second task. This suggests that while the network encountered more

classes in the second task, it built upon the existing tunnel, maintaining its

performance on the first task.

In the opposite scenario, where the second task involves fewer classes,

a reverse situation is observed. Substituting any layers from the top down

negatively impacts the performance on the first task, while substituting 10

layers from the top down does not affect the performance on the second task.

This suggests that the network successfully reused a portion of the tunnel from

the first task while discarding the unnecessary part.

5.11.2. On the primary source of catastrophic forgetting on

split-CIFAR10 task.

There is an ongoing discussion surrounding the layers responsible for driving

the phenomenon of forgetting. In a study [46], authors claim that "Higher

layers are the primary source of catastrophic forgetting on split CIFAR-10

task." However, our findings present a different perspective compared to the

conclusions drawn in that research. Specifically, the results presented in

Section 5.4.1 and Section 5.11.1 indicate that there exist continual learning

scenarios where the deeper layers do not contribute to catastrophic forgetting.

Instead, we show that in certain scenarios the earlier layers are responsible

for performance degradation, while the deeper layers remain unaffected due to

their task-agnostic nature. This insight is of particular significance because

many studies have built upon the assumption that mainly deeper layers are

responsible for catastrophic forgetting, potentially leading to inadequate or

inefficient continual learning mechanisms [185, 186].

It is important to note that the tunnel hypothesis effect holds for overpa-

rameterized networks. In contrast, the authors of [46] evaluated their claims

using the VGG-13 network, with the width of the layers reduced by a factor of

four. This discrepancy plays a crucial role in tunnel formation, as it reduces

the model’s capacity. Figures 5.11.4- 5.11.9 illustrate the disparity between

these models in the reset experiment.

From this comparison, the main conclusion emerges that the question of

"which layers are the primary source of catastrophic forgetting?" is nuanced

and contingent upon multiple factors.

88

0 2 4 6 8 10 12
of layers reset

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy
Task 1

0 2 4 6 8 10 12
of layers reset

Task 2
bottom up
top down

Figure 5.11.4. Substituting layer experiment. VGG-13, width factor = 0.25, trained
on the sequence of two tasks on split-CIFAR10.

0 2 4 6 8 10 12
of layers reset

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Task 1

0 2 4 6 8 10 12
of layers reset

Task 2
bottom up
top down

Figure 5.11.5. Substituting layer experiment. VGG-13, width factor = 1, trained on
the sequence of two tasks on split-CIFAR10.

0 2 4 6 8 10 12
of layers reset

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Task 1

0 2 4 6 8 10 12
of layers reset

Task 2
bottom up
top down

Figure 5.11.6. Substituting layer experiment. VGG-13, width factor = 2, trained on
the sequence of two tasks on split-CIFAR10.

89

0 5 10 15
of layers reset

0.4

0.6

0.8

Ac
cu

ra
cy

Task 1

0 5 10 15
of layers reset

Task 2
bottom up
top down

Figure 5.11.7. Substituting layer experiment. VGG-19, width factor = 0.25, trained
on the sequence of two tasks on split-CIFAR10.

0 5 10 15
of layers reset

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Task 1

0 5 10 15
of layers reset

Task 2
bottom up
top down

Figure 5.11.8. Substituting layer experiment. VGG-19, width factor = 1, trained on
the sequence of two tasks on split-CIFAR10.

0 5 10 15
of layers reset

0.4

0.6

0.8

Ac
cu

ra
cy

Task 1

0 5 10 15
of layers reset

Task 2
bottom up
top down

Figure 5.11.9. Substituting layer experiment. VGG-19, width factor = 2, trained on
the sequence of two tasks on split-CIFAR10.

90

5.12. CKA similarity

The Centered Kernel Alignment (CKA) similarity is a measure commonly

used in machine learning and neuroscience to quantify the similarity between

two representations or feature spaces. It provides a way to assess the sim-

ilarity of representations learned by different models or layers, even when

the representations may have different dimensionalities. CKA is invariant to

orthogonal transformations, such as isotropic scaling, permutations, reflections

and rotations. This invariance property is particularly valuable when comparing

representations that have undergone different preprocessing or normalization

steps. By accounting for the underlying relationships between representations

while being insensitive to orthogonal transformations, CKA enables a more

meaningful and reliable assessment of similarity, aiding in tasks such as model

comparison, representation learning, and understanding the neural code. For

computational reasons, we use a modification of CKA index given by the following

formula.

CKA similarity: Let Xi ∈ R
m×p1, Yi ∈ R

m×p2 be the representations matrices

from ith minibatch of two layers of m samples and p1 and p2 number of features

respectively. Similarly to [130], we estimate CKA index by averaging over k

mini-batches:

sCKA=

1
k

∑k
i=1

HSIC
(

XiX
¦
i

,YiY
¦
i

)

√

1
k

∑k
i=1

HSIC
(

XiX
¦
i

,XiX
¦
i

)

√

1
k

∑k
i=1

HSIC
(

YiY
¦
i

,YiY
¦
i

)

, (5.1)

where HSIC is an unbiased estimate or of the HSIC score [130]:

HSIC(K,L)=
1

n(n−3)

(

tr(K̃L̃)+
1
¦

K̃11
¦

L̃1

(n−1)(n−2)
−

2

n−2
1
¦

K̃L̃1

)

, (5.2)

where L̃=L−diag(L).

CKA is a normalized similarity index, hence value 1 means that representa-

tions matrices are identical.

In Figure 5.12.1, we present the plots of representations similarity for

ResNet-18 and VGG-19 networks.

5.13. Inter and Intra class variance

Understanding the concepts of inter-class and intra-class variance is partic-

ularly important in the context of deep neural network representations anal-

91

(a) ResNet-34 (b) VGG-19

Figure 5.12.1. CKA-similarity across network’s layers for ResNet-34 and VGG-19.

ysis for classification tasks. In this context, inter-class variance refers to the

variability between different classes or categories of data. On the one hand,

they capture the representation of the linear separability of a given task [187].

On the other hand, intra-class variance is an indicator of representations

transferability [188, 189].

Let X j ∈ R
t j×p be the representations matrix for samples from jth class.

1
C

∑C
j=1

(

1
t j

∑

xi∈X j

∥

∥fi −µ
(

X j

)∥

∥

2
)

is the intra-class variance, where fi is a representa-

tion of sample xi, µ
(

X j

)

is the mean representation of representations matrix X j,

and C is the number of classes. Then 1
C(C−1)

∑C
j=1

∑C
k=1,k ̸= j

∥µ
(

X j

)

−µ (Xk)∥2 is the

inter-class variance.

92

5.14. Tunnel development

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

Ep
oc

h

Figure 5.14.1. Evolution of numerical rank of VGG-19 rep-
resentations throughout the training on CIFAR-10.

In this section,

we provide a more

detailed analysis of

the evolution of nu-

merical rank in VGG-19

dataset. In this ex-

periment, we save

the checkpoint of

the network every

epoch and calcu-

late its numerical

rank. The results

are depicted in Fig-

ure 5.14.1.

Initially, during

the early epochs, the rank collapses primarily in the deeper layers. Throughout

the training process, two distinct patterns can be observed. Firstly, the numer-

ical rank of representations from the earlier layers tends to increase. Secondly,

the numerical rank of representations from the deeper layers decreases. Inter-

estingly, the place of this transition aligns with the beginning of the tunnel in

the network. Once the numerical rank in deeper layers collapsed in the first

gradient steps, as shown in Figure 5.3.2, it remained collapsed throughout the

whole training.

5.15. ResNets without skip connections

In this section, we delve into the impact of skip connections on the forma-

tion of the tunnel effect. To investigate this relationship, we trained ResNet

models (ResNet-18 and ResNet-34) without skip connections on CIFAR-10 and

conducted the same analysis used in the main paper. Specifically, we examined

the linear probing performance for both in-distribution and out-of-distribution

data and estimated the representations’ numerical rank. The results, depicted

in Figure 5.15.1 and Figure 5.15.2, highlight the significance of skip connec-

tions in the formation of the tunnel effect. Firstly, in the absence of skip

connections (Plainnets), the tunnel effect is slightly more pronounced, with

the model’s performance saturating two layers earlier than standard ResNet

93

networks. Secondly, the rank of the representations exhibits a more predictable

pattern without the spike at 29th layer. This suggests that the spike in the

numerical rank and in OOD performance is related to the skip connections.

Interestingly, the numerical rank in both networks is higher than in the case

of VGGs. The reason for this difference needs a further investigation. Lastly,

the presence or absence of skip connections does not alter the degradation of

out-of-distribution performance. However, in the absence of skip connections,

the deterioration is more severe, aligning with the observation that it correlates

with the numerical rank of the representations.

3 5 7 9 11 13 15 17
Layer

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0.6

0.7

0.8
Ac

cu
ra

cy

Numerical rank
Linear probing ACC

(a) In distribution

3 5 7 9 11 13 15 17
Layer

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.15.1. In and out of distribution linear probing performance for ResNet-18
without skip connections trained on CIFAR-10. The shaded area depicts the tunnel, the
red dashed line depicts the numerical rank and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed with random 10 class subsets of CIFAR-100.

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Numerical rank
Linear probing ACC

(a) In distribution

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

1000

2000

3000

4000

5000

6000

7000

Nu
m

er
ica

l r
an

k

0.45

0.50

0.55

0.60

0.65

0.70
Ac

cu
ra

cy

Numerical rank
Linear probing ACC

(b) Out of distribution

Figure 5.15.2. In and out of distribution linear probing performance for ResNet-34
without skip connections trained on CIFAR-10. The shaded area depicts the tunnel, the
red dashed line depicts the numerical rank and the blue curve depicts linear probing
accuracy (in and out of distribution) respectively. Out-of-distribution performance is
computed with random 10 class subsets of CIFAR-100.

94

6. Unpacking softmax: How temperature

drives rank collapse, generalization and

compression

Abstract

The softmaxfunction is a fundamental building block of deep neural net-

works, commonly used to define output distributions in classification tasks

or attention weights in transformer architectures. Despite its widespread use

and proven effectiveness, its influence on the model’s learning dynamics and,

therefore, learned representations remains poorly understood. This paper

studies the pivotal role of the softmaxfunction in shaping the model’s represen-

tation. We introduce the concept of rank deficit bias — a phenomenon in which

softmax-based deep networks converge to lower-rank solutions compared to

shallow counterparts or architecture that do not rely on the softmaxactivation.

We show that this effect is due to the impact of the activation on learning and

demonstrate that the softmaxtemperature explicitly regulates this behavior.

Furthermore, we demonstrate how to exploit the softmaxdynamics to learn com-

pressed representations or to enhance their performance on out-of-distribution

data. We validate our findings across multiple architectures and real-world

datasets, highlighting the broad applicability of temperature tuning. We believe

this work sheds light on the underlying mechanisms of softmaxand its impact

on deep learning models.

6.1. Introduction

The softmaxfunction defined in Equation 6.1, with a hyperparamter T > 0

as the temperature, is a cornerstone of deep learning and is primarily used in

tasks such as classification and text generation to transform raw model outputs

into probability distributions with maximum entropy. By amplifying the largest

values and diminishing smaller ones, softmaxenables models to make confident

95

Softmax Temperature
Compressed

Model
Improved

OOD

Deficit
Rank

Low
Rank

High
Rank

Figure 6.1.1. The softmaxfunction and temperature play a fundamental role in shaping
network representations leading to well generalizing solutions with high rank for small
temperatures or compressed solutions with rank deficit at the other extreme.

predictions, making it essential for decision-making among multiple options.

However, its "winner-takes-all" nature [190, 191, 192] can sometimes lead to

training challenges [193, 194, 195, 196].

softmaxT(e)=
[

exp(e1/T)
∑

k exp(ek/T)
· · · exp(en/T)

∑

k exp(ek/T)

]

(6.1)

Originally, softmaxwas employed as the final layer in classification tasks.

However, with the advent of the self-attention mechanism [74], it became a

common feature in intermediate layers, particularly for text generation and

later for image classification [197]. Despite numerous proposed alternatives

for self-attention layers [198, 199], softmaxbased attention remains the most

widely used choice in attention-based models.

This enduring popularity has spurred extensive research into the implicit

trade-offs of using softmax, such as its impact on the sharpness of output

distributions [200] and its role in normalizing activations and gradients [198].

Yet, the deeper effects of softmaxon model behavior—particularly its influence

on learned representations and generalization—remain poorly understood. This

gap motivates our central research question:

How does softmaxshape neural network representations?

Our answer to this question unfolds in three key insights presented in

Figure 6.1.1:

First, we introduce the concept of rank-deficit bias – a novel phenomenon

96

– where neural networks trained with softmax(magenta curve) converge to

solutions with rank significantly lower than the number of classes, a solution

found by neural networks trained without softmax(blue curve) as illustrated in

Figure 6.2.1. While both solutions achieve perfect performance on the training

data, the rank-deficient solution generalizes poorly on out-of-distribution data,

as demonstrated in Figure 6.2.2.

Second, we demonstrate that carefully adjusting the softmaxtemperature

provides a robust mechanism to control the network’s ability to compress data

representation and it affects its out-of-distribution performance (Section 6.3).

In section 6.3.2 we explain why training deep networks at high temperatures

leads to compressed models.

Finally, building on this explanation, we identify architectural choices that

steer the network toward either compactness or improved generalization (Sec-

tion 6.3.4). These insights offer a novel perspective on some popular building

blocks in deep learning.

These findings deepen our understanding of how softmaxshapes neural

network representations and provide actionable insights for optimizing model

design and performance.

6.2. Rank deficit bias

This section introduces the rank deficient bias through a toy example model

enabling us to explain the phenomenon without confounding factors. Sec-

tion 6.2.2, explores the consequences of the rank deficit bias of the softmax-

functions and its consequences on the model’s generalization. Lastly, in Sec-

tion 6.2.3, we provide a sketch of the theoretical analysis of the bias explaining

the softmaxsurprising ability to increase the rank of the matrix. The complete

analysis can be found in Appendix 6.7.

Experimental setup To build intuition, we begin by experimenting with a

simple task to learn an identity mapping between X=Y= I ∈Rd×d. Thus, each

data sample is a vector from the canonical basis assigned to a different class. We

set d = 5 and use a deep linear network with three layers W ∈Rd×d. The network is

trained with full-batch GD and Mean Squared Error (MSE) or CrossEntropy (CE)

loss. During training, we measure the rank of the representation at the output

layer of the network. In the case of networks trained with softmax, we consider

representations before applying the softmaxfunction. We use the PyTorch [201]

implementation of rank, which is defined as the number of singular values

greater than the threshold based on the top singular value.

97

rank(A) :=Σn
i=11σi(A)>η, (6.2)

where A=W3W2W1X, and σi(A) is the i-th singular value of the A matrix and

η is a predefined threshold.

6.2.1. Results

Figure 6.2.1. Despite similarities during the first phase, models trained with soft-
maxexhibit different training dynamics during the second training phase, yielding
lower-rank representations compared to counterparts trained without softmax. Both
models solve the task with 100% accuracy.

The analysis compares two identical neural networks trained with either

MSE or CE loss. Although both networks start with full-rank representations,

their training trajectories and final representations diverge. As illustrated in

Figure 6.2.1, the training process can be divided into two phases based on the

evolution of the rank:

Phase 1 Both models exhibit similar behavior in the initial phase, starting

with full-rank representations that eventually collapse to rank-1 by the end of

this phase. This phenomenon of representation collapse has been explored in

recent theoretical studies [202, 203].

Phase 2 As predicted by the Saddle-to-Saddle dynamics model [202], net-

works trained with MSE follow a trajectory of expanding saddle points, reflected

98

Figure 6.2.2. Accuracy of low-rank and full-rank models for simplified
out-of-distribution dataset.

in the gradual increase in rank (blue curve) until a full rank is restored by the end

of training. In contrast, networks trained with the softmaxfunction (magenta

curve) maintain low-rank representations despite achieving perfect performance.

This raises the question: Which model learns better data representations?

6.2.2. Consequences

To assess whether the rank of the final solution affects model performance,

we designed a series of simple out-of-distribution (OOD) datasets. For each test

dataset, we sampled k = 1000 points from an isotropic Gaussian distribution

centered at each training sample (canonical vector), with increasing variance σ.

Repeating this process for different σ values, we generated a sequence of test

datasets to evaluate all models.

Figure 6.2.2 demonstrates that full-rank solutions consistently outperform

low-rank solutions across all test datasets. The sharp accuracy drop for

softmax-trained models suggests their solutions are brittle and vulnerable

to small perturbations. Despite the simplicity of this test, it clearly shows that

representation rank influences a network’s generalization ability.

This stark difference motivates us to investigate the mechanisms behind

rank collapse and explore ways to mitigate it. Specifically, we aim to identify the

99

Figure 6.2.3. The evolution of singular values of representations extracted from the
last layer of a deep linear model trained on the toy dataset without (left) and with (right)
softmax.

factors in the softmaxfunction that hinder rank recovery, unlike in networks

trained with MSE.

6.2.3. Analysis

To explore the differences in learning dynamics between the networks, we

revisit the classic analysis of deep linear network dynamics from [204]. Ac-

cording to their results, when trained with MSE, the singular values of the

network’s weight product should converge to those of the input-output correla-

tion matrix—an identity matrix in our toy model. Figure 6.2.3 (left) confirms

this, showing all singular values converging to 1. Once the final singular

value converges, the model achieves 100% accuracy, resulting in full-rank

representations.

However, as shown in Figure 6.2.3 (right), the singular value evolution for net-

works trained with softmaxdiffers significantly. First, singular values converge

to magnitudes much larger than those of the input-output correlation matrix.

Second, only two of the expected five singular values grow substantially during

training, aligning with the low-rank representations observed in Figure 6.2.1.

To understand why training halts when the second singular value grows, we

analyze the first 50k iterations and compute singular values both before and

after the softmax. Figure 6.2.4 reveals a key insight: the growth of the first

pre-softmaxsingular value triggers the growth of all post-softmaxsingular values.

Subsequently, the growth of the second pre-softmaxsingular value stabilizes all

post-softmaxsingular values at 1 (as predicted in [204]), ending training and

causing the rank-deficient bias.

The next section outlines a theoretical explanation for the softmax’s ability

to alter the matrix spectrum, with a full analysis in Appendix 6.7.

100

Figure 6.2.4. Evolution of the spectrum of representations during training at the
output layer pre-softmax (top) and post-softmax (bottom).

101

6.2.4. Can softmaxincrease matrix’s rank?

Proposition 3 answers this for arbitrary matrices:

Proposition 1. There exists B ∈Rn×n and c ∈R such that rank(B)= 2 and rank(softmax(cB))=

n.

The proof of the Proposition 3 is in the Appendix 6.6. Since it shows that

one can trivially construct a low-rank matrix with arbitrarily high post-softmax

rank, we study the impact of applying the softmaxfunction on a random rank-1

matrix scaled by a constant c. We will use this model to approximate the

dynamics observed from the training as shown in Figure 6.2.4 when only the

top singular values of the pre-softmax matrix increase sharply.

One can notice that scaling a pre-softmax matrix by a constant c can be

understood as computing a softmaxfunction with temperature T = 1
c
. It is a

known fact that in the temperature limits, the softmaxfunction converges to

either the argmax function (T → 0) or the uniform function (T →∞). However,

Figure 6.2.5 reveals unexpected behavior – applying softmaxwith intermediate

temperature increases matrix rank the most.

Figure 6.2.5. The evolution of singular values and rank of the post-softmax matrix
scaled by a constant c (inverse of temperature). The matrix B := xy¦ ∈Rn×n is the outer
product of two random vectors, xi, yi ∼U(−1,1) and therefore rank(B)= 1. The behavior is
consistent across different samples.

102

To formally analyze this effect, we propose the following upper bound on the

difference between top (σ1(M)) and bottom (σn(M)) singular values of matrix M,

where M= softmax(A) for any real A ∈Rn×n:

Proposition 2. For any matrix M ∈Rn×n with each column m j ∈Rn as a probability

vector. Then the gap between the largest σ1(M) and the smallest singular value

σn(M) is bounded by the following tight inequality:

0fσ1(M)−σn(M)f
p

1+ r−

√

max

{

1

n
− r,0

}

where r :=maxi

∑

j ̸=i+mi,m j,.

The Proof is in the Appendix 6.7.

Intuitively, the bound shows that decreasing the inner product between ma-

trix columns shrinks the gap between its singular values. Thus, the remaining

question is how applying softmaxwith different temperatures impacts the inner

products between matrix columns. Formal analysis would be cumbersome due

to the high-dimensional nature of the problem. Instead, Figure 6.8.1 (bottom)

provides an empirical answer showing that applying softmaxcolumn-wise on

low-rank matrix with various temperatures decreases the inner products be-

tween the columns with different indices of the highest element and increases

the inner products between the columns with the same indices. The temperature

at which the bifurcation of inner products happens aligns with the temperature

that shrinks the difference σ1(M)−σn(M) and results in increased rank as shown

in Figure 6.8.1 (top).

6.2.5. Avoiding rank deficit bias

The previous section highlighted that the growth of top singular values

drives the observed rank-deficient bias. Leveraging this insight, we propose

a dynamically tuned temperature to counteract the low-rank bias. The idea

is that if the network cannot exploit the rank-increasing property of softmax,

it should converge to a full-rank solution. To achieve this, we dynamically

set the softmaxtemperature equal to the Frobenius norm of the logits. As

shown in Figure 6.2.2 (the green curve is almost invisible as it aligns with

the blue curve showing the generalization of models trained without softmax),

this approach successfully prevents rank-deficient bias, enabling networks

to achieve full-rank solutions with generalization capabilities similar to those

trained without softmax.

103

6.3. The role of the softmaxtemperature

The previous section examined why networks struggle to recover their rank

after the initial collapse of representations. However, this analysis assumed

that models initially collapse, as illustrated in Figure 6.2.1. This section delves

into the causes of this initial collapse, identifying the norm of the logits as

the primary driver. While numerous architectural factors influence this norm

(discussed in Section 6.3.4), we emphasize that the simplest way to control it

is by applying a softmaxtemperature. To understand how training with a high

softmaxtemperature leads to collapsed representations, Section 6.3.2 introduces

a simplified model describing the training dynamics of neural networks under

such conditions. Section 6.3.3 then explores the implications of collapsed rank

representations. This demonstrates that adjusting the softmaxtemperature al-

lows control over the learning trajectory and model representations, significantly

affecting model compression and out-of-distribution generalization.

6.3.1. Experiments

We trained ResNet-18, ResNet-34, ResNet-50 on CIFAR-10 and ImageNet-1k.

Baseline models (temperature = 1) used recommended hyperparameters for

optimal performance. To isolate the effect of the softmaxtemperature, all hyper-

parameters remained fixed except for the learning rate, which was adjusted to

compensate for slower training at higher temperatures.

Figure 6.3.1 shows that training the same randomly initialized model with

different temperatures yields distinct representations, despite similar perfor-

mance. The green dashed lines represent the rank of representations in the

randomly initialized model. For models trained with temperature = 1, the rank

increases during training, especially in deeper layers. In contrast, models

trained with high temperatures maximize rank in initial layers (reaching an

upper bound, red dashed line) but sharply reduce it in deeper layers, nearing

zero.

To explain how a single scalar change produces such divergent outcomes, we

propose a simplified model of MLP training dynamics in the following section.

6.3.2. Analysis

High temperature creates loss symmetry

To understand the impact of the softmaxtemperature on the learning dynam-

ics, recall that increasing the temperature in the softmaxfunction results in more

uniform output distributions, maximizing entropy and approaching equally

104

Figure 6.3.1. Training model with high temperature leads to the collapse of represen-
tations in deeper layers of the model. MLP with 8 layers trained on CIFAR-10.

probable outputs in the limit [200]. From the perspective of CrossEntropy loss,

this creates a symmetric loss landscape where each sample incurs an equal

loss of ln(1
n

), where n is the number of classes for each sample. This symmetry

poses a challenge for learning.

Breaking loss symmetry requires increasing logits norm

Equation 6.1 illustrates the relationship between the logits norm e and the

temperature T. To break the symmetry and reduce the entropy of the soft-

maxdistribution, one can either decrease the temperature (as shown in [200])

or increase the norm of the logits. Since we assume training with a fixed high

temperature, the only viable option for networks to break the symmetry is to

increase the logit norm. As shown in Figure 6.3.2, models trained with high

temperature exhibit an increasing logit norm, unlike those trained with temper-

ature = 1 (Figure 6.8.2), which maintain or even reduce the norm throughout

training.

Two ways of increasing logits norm

The representations at the i-th layer of an MLP network can be described

recursively as Ai := ReLU(WiAi−1), where A0 := X (the input data) and Wi is the

weight matrix for the i-th layer.

Let us simplify and assume that W is the last weight matrix and A is the

representations matrix from the penultimate layer. Then to maximize the

Frobenius norm of the logits, we can use the singular value decomposition

(SVD) of W and A:

105

Figure 6.3.2. High-temperature training forces network to produce high-norm logits.
The plot shows the relationship between the norm of representations, rank of represen-
tations, and norm of weights matrices.

∥WA∥ = ∥UWΣWV¦
WUAΣAV¦

A∥

= ∥ΣWV¦
WUAΣA∥ f ∥ΣWΣA∥,

(6.3)

where UWΣWV¦
W
=W and UAΣAV¦

A
=A are the SVDs of W and A, respectively.

The second equality holds because singular vectors are orthonormal. This

inequality shows that the norm of the product of two matrices can be increased

in two ways:

1) Increasing the norm of W and A individually: This increases the diagonal

values of ΣW and ΣA, effectively scaling up the singular values of each matrix.

2) Aligning singular vectors: The norm is maximized when V¦
W

UA = I, meaning

the right singular vectors of W align with the left singular vectors of A. Since

both matrices are orthonormal, their product achieves its maximum norm when

they are perfectly aligned. Note that the argument can be applied recursively

across all layers, with W=Wi (weights) and A=Ai−1 (representations).

To determine which of these two mechanisms is exploited during training, we

track the alignment of the top 15 singular vectors of weight and representation

matrices across consecutive layers during the initial epochs.

Figure 6.3.3 demonstrates that networks trained with high-temperature

exhibit early alignment of the top singular vectors of weights and representa-

tions in consecutive layers. Additionally, Figure 6.3.2 shows that while the

weights’ norms are higher in the collapsed model compared to the model trained

106

Figure 6.3.3. High-temperature training aligns top singular vectors from consecutive
layers. Figure 6.8.3 presents the alignment formation in greater detail.

with temperature = 1, the collapsed layers contribute most significantly to the

increase in representations’ norms despite having smaller individual norms.

This suggests that alignment, rather than individual scaling, plays a critical

role in increasing the logits norm under high-temperature training.

Aligned layers increase norm exponentially

When the top singular vectors across all layers are maximally aligned, the

top singular value of the logits, σL
1
, can be expressed as the product of the top

singular values of each layer and lower bounded: σL
1
=

∏L−1
i=1

σi
1
g (σk

1
)L, where σi

1

is the top singular value of the i-th layer and k = argmini σ
i
1

is the layer with the

smallest top singular value. If σk
1
> 1, this results in exponential growth of the

top logit singular value as the network depth L increases.

The same reasoning applies to subsequent singular values, as their corre-

sponding singular vectors also become aligned across layers. This alignment

not only amplifies the singular values of the logits but also affects the gradients.

Since gradients depend on the activations, increased alignment (and the result-

ing skewness in the spectra of representations) similarly skews the spectra of

the gradients. This demonstrates how alignment in deep networks can lead to

exponential scaling and significant spectral changes in both activations and

gradients.

6.3.3. Consequences

Training with high temperatures not only impacts the rank of learned repre-

sentations but also fundamentally alters how efficiently a model utilizes its lay-

ers. This enables models to achieve comparable performance with fewer layers,

while significantly influencing their ability to generalize to out-of-distribution

107

(OOD) data. Figure 6.3.4 illustrates this by showing the performance of linear

probes attached to each layer of a ResNet-18 model trained on CIFAR-10 and

evaluated on a 10-class subset of CIFAR-100 as the OOD dataset. Notably,

the model trained with high temperature achieves its peak performance at the

12th layer out of 18, resulting in a compression ratio of κ= 12
18

= 67%. Here, κ

measures layer utilization efficiency and is computed by identifying the first

layer where the linear probe achieves at least η (99% for CIFAR-10 or 95% for

ImageNet-1k) of the highest accuracy across all layers, thus the lower the value,

the more efficiently the network utilizes its layers. However, this compression

comes at a cost: Figure 6.3.4 (bottom) shows that out-of-distribution (OOD)

accuracy peaks around the same layer and then declines. We quantify this OOD

generalization decrease using ρ, defined as the normalized difference between

the best OOD accuracy and the accuracy at the final layer. Thus, the value is

non-negative, and the smaller the value, the better.

To explore the broader implications, we analyze compressibility (κ) and OOD

generalization loss (ρ) across various architectures and datasets. Results on

CIFAR-10 (Table 6.3.1) and ImageNet-1k (Table 6.3.2) reveal consistent trends:

high-temperature training enhances compressibility but often at the expense of

OOD generalization. Notably, models trained on ImageNet-1k require higher

temperatures to exhibit this effect. These findings highlight a trade-off between

layer efficiency and model robustness, with temperature serving as a key control

parameter.

Our results partially align with the tunnel effect hypothesis [205, 206],

which suggests that deeper layers in over-parameterized models act as lossless

compressors for in-distribution data but hinder OOD performance. However,

Figure 6.3.4 shows that tunnel compression is not always lossless and that the

strength of the tunnel effect can be directly modulated by the softmaxtempera-

ture. This offers a new mechanism for controlling model behavior, balancing

efficiency and generalization.

6.3.4. What factors implicitly change the temperature?

The previous section highlighted the critical role of the softmax temperature

in shaping neural network representations. Although the potential advantages

of manipulating the softmax temperature were discussed in Section 6.3.3, this

approach has not been popularized. However, this section outlines architectural

choices and experimental designs that have gained popularity across various

domains. We demonstrate that these choices implicitly influence the norm of

108

Figure 6.3.4. ResNet-18 trained on CIFAR-10 with different softmaxtemperatures and
evaluated on a 10-class subset of CIFAR-100 as the OOD dataset. Top: In-distribution
accuracy across layers. Bottom: OOD accuracy across layers.

Table 6.3.1. Training the model at higher temperature compresses the model. The
values in the table present κ and ρ for different models trained with CIFAR-10 and
evaluated with SVHN dataset as an out of distribution task.

Dataset CIFAR-10

Temperature 1 1e1 1e2 1e3

MLP-8 75%/67% 50%/67% 38%/71% 38%/78%
ResNet-18 94%/17% 83%/56% 72%/54% 67%/67%
ResNet-20 90%/10% 85%/28% 80%/36% 60%/50%

109

Table 6.3.2. Training the model at higher temperature compresses the model. The
values in the table present κ and ρ for different models trained with ImageNet-1k and
evaluated with the CIFAR-100 dataset as an out-of-distribution task.

Dataset ImageNet-1k

Temperature 1 1e1 1e2 1e3

ResNet-34 94%/5% 94%/2% 94%/11% 82%/23%
ResNet-50 96%/5% 96%/2% 90%/14% 78%/22%

the logits (or the softmaxtemperature), thereby biasing the models toward one

of the previously discussed regimes.

Weights initialization impacts activation scales and early training dynamics.

In Contrastive Reinforcement Learning (RL), the final layer weights are initialized

from U(−α,α), where α= 10−12 keeping representations tightly clustered at the

start of training [207]. This stabilizes optimization but may slow early learning.

The width of a network affects representation learning in various ways. In

Self-Supervised Learning (SSL), the projection head used in contrastive frame-

works is typically much wider than the backbone [208]. This significantly

impacts representation learning. Empirical studies show that training SimCLR

with and without a projector reveals that the representation space spectrum

collapses without it, reducing feature expressivity and degrading downstream

performance [209].

Normalization layers can mitigate the growth of the logits’ norm. As Sec-

tion 6.2.5 mentions, dividing the logits by their Frobenius norm helps prevent

rank deficit. This dynamic rescaling can, at some point, be viewed as dividing by

the standard deviation of the logits, a key operation in Layer Normalization [210].

Moreover, [211] demonstrated that batch normalization stabilizes training and

mitigates rank collapse, preserving a more diverse representation across layers.

6.4. Related Works

Our work intersects with several research areas, including implicit biases in

deep learning, the role of softmaxin neural networks, representation collapse,

and the interplay between out-of-distribution (OOD) generalization and model

compression. Below, we contextualize our contributions within these fields.

110

The implicit biases of gradient descent in deep linear networks have been

extensively studied. [212] and [213] demonstrated that gradient descent tends to

align layers in deep linear networks, leading to low-rank solutions. [202] further

explored saddle-to-saddle dynamics in such networks, highlighting the role of

initialization and symmetry in shaping learned representations. These studies

provide a foundation for understanding how optimization dynamics influence

model behavior; however, none of them explored the effect of softmaxfunction on

the dynamics. Our work extends this perspective by introducing the evidence

for softmax-induced rank-deficit bias.

The role of softmaxin deep neural networks is still poorly understood, and

several works have examined its limitations and dynamics. [200] highlighted

issues with softmaxin sharp OOD predictions, while [198] proposed polynomial

activations as alternatives to softmaxin self-attention. [214] addressed entropy

collapse in transformer attention, emphasizing the need for stable training

dynamics. Our work builds on these insights by uncovering how softmaxtem-

perature regulates rank-deficit bias and influences representation learning.

Representation collapse, where learned features lose discriminative power,

has been studied in various contexts. [215] identified neural collapse in the

terminal phase of training, where features converge to a simplex structure. [205]

explored the "tunnel effect," where deep networks build data representations

through iterative compression. [206] investigated factors affecting the strength

of the tunnel effect in pretrained models. Our findings on rank-deficit bias

contribute to this literature by linking softmaxdynamics to representation

collapse and generalization.

The trade-off between model compression and OOD generalization has been

a focus of recent research [206, 205]. [139, 205, 206] demonstrated how in-

termediate representations can improve transfer learning. On the other hand

[216] introduced the information bottleneck principle to explain deep learning

dynamics. Later [217] explored the complexity dynamics of grokking, where

models generalize after prolonged training and link this ability with the simplicity

of learned functions. Our work extends these ideas by showing how softmaxtem-

perature can be tuned to balance compression and OOD performance, offering

a practical mechanism for controlling representation rank.

By synthesizing insights from these areas, our work provides a unified

perspective on the role of softmaxin shaping neural network representations,

offering new directions for understanding and improving deep learning models.

111

6.5. Conclusions

In this work, we explored the role of the softmaxfunction in shaping deep neu-

ral network representations. We identified a rank-deficit bias, where softmax-trained

networks converge to lower-rank solutions, affecting their generalization, espe-

cially on out-of-distribution data. We showed that the softmaxtemperature is a

key control mechanism, allowing practitioners to balance compressed represen-

tations and improved generalization. By tuning the temperature, we demon-

strated how to achieve either compact models or enhanced out-of-distribution

performance. Our analysis also provided insights into architectural choices,

offering a unified framework to understand and better leverage the properties

of the softmaxfunction in deep learning.

While focused on supervised image classification, our findings may extend

to other domains. Future research directions include:

• Investigate the use of the softmaxtemperature in NLP and reinforcement

learning. In NLP, understanding its impact on transformer attention mecha-

nisms could improve tasks like machine translation and text generation. In

reinforcement learning, studying its role in exploration-exploitation trade-offs

could enhance policy optimization or prevent representation collapse [218].

• Study softmaxin non-stationary optimization, where data distributions or

objectives change over time. Understanding how temperature influences

adaptation and convergence in dynamic environments could lead to more

robust models.

• Develop adaptive temperature schedulers to adjust softmaxtemperature dur-

ing training dynamically. This could enable models to transition between

high-rank and low-rank solutions, optimizing for generalization and compres-

sion at different stages.

• By pursuing these directions, future work can build on our insights to advance

the understanding of softmaxand its role in deep learning, fostering more

effective and interpretable models across diverse applications.

112

Appendix

6.6. Arbitrary matrix can recover full rank

post-softmax

Proposition 3. There exists B ∈Rn×n and c ∈R such that rank(B)= 2 and rank(softmax(cB))=

n.

Proof. Let A ∈Rn×2 be an arbitrary random matrix with normalized rows. Then,

B = AA¦ ∈ Rn×n and one can easily observe that ∀i, j ∈ {1, . . . ,n},bi j f bii. Then,

applying a softmaxfunction with temperature c → 0, we obtain: l imc→∞σc(B)= I

and rank(I)= n. At the same time rank(B)= 2.

6.7. How softmax scales the rank of the matrix?

The results from Section 6.2.1 shows that deep linear networks trained

with softmax successfully minimize the loss and solve the task despite the

rank-deficient representations at the output layer.

Minimizing the loss in the toy dataset requires approximating the target

matrix Y ∈ R5×5 being the rank five identity matrix I5. This implies that the

column/row-wise application of the softmax on a matrix alters its spectrum

and potentially increases its rank. As shown in Figure 6.2.4, the softmax

function alters the spectrum in a non-trivial way, producing equal singular

values in the post-softmax matrix at the end, unlike the pre-softmax matrix,

which is dominated by two singular values. Comparing both plots in Figure 6.2.4

reveals that the sharply increasing magnitude of singular values pre-softmax

raises the magnitude of all singular values in the post-softmax matrix.

To understand whether this is a coincidence, we design an experiment when

we randomly sample rank one matrix A ∈ R32×32 and compute its rank after

applying a softmax function. To mimic the growth of the top singular value,

we repeat the process by scaling the base matrix A with different constant

c ∈ [1e−5,1e9]. Scaling rank 1 matrix by a scalar has no effect on the rank of

a matrix and ∀c ∈R+ rank(cA)= 1, however as shown in Figure 6.2.5 applying a

softmax on a scaled rank one matrix indeed increases its rank. Besides that, one

can observe that limc→0 rank(σ(cA)) = 1 and limc→∞ rank(σ(cA)) = rank(argmax(A)),

where argmax() is applied column-wise and returns one-hot vector. These are

113

the properties of the temperature-softmax for limit values of the temperature;

in our case, c is the inverse of the temperature parameter. Thus, in some sense,

the sharp rise of the first singular value pre-softmax loosely approximates

increasing the temperature of the softmax function applied to a rank-1 matrix.

The following section aims to explain the phenomenon formally.

6.7.1. Analysis

This section aims to understand how applying softmax on a matrix A

column-wise changes the spectrum of the matrix and its rank. To this end, we

apply the following theorems:

Theorem 4 (Gershgorin Circle Theorem). Every eigenvalue of any real, symmetric

matrix S lies within at least one of the Gershgorin discs D(sii,Ri), where Ri =

Σ j ̸=i|si j|.

Proposition 5. For any matrix M ∈Rn×n with each column m j ∈Rn as a probability

vector. Then the gap between the largest σ1(M) and the smallest singular value

σn(M) is bounded by the following tight inequality:

0fσ1(M)−σn(M)f
p

1+ r−

√

max

{

1

n
− r,0

}

where r :=maxi

∑

j ̸=i+mi,m j,.

Proof. Consider the matrix G :=M¦M. By Jensen’s inequality and Cauchy-Schwartz

inequality, we have

1

n
= n

(

∑n
i=1

Mi j

n

)2

fG j j =
n
∑

i=1

M2
i j f

(

n
∑

i=1

Mi j

)2

= 1.

By definition, R j :=
∑

k ̸= j |+mk,m j,| =
∑

k ̸= j+mk,m j, =
∑

k ̸= j Gk j is the radius of the

j-th Gershgorin disc. Hence, Theorem 4, the eigenvalues of G lie on ∪ j[G j j −

R j,G j j + R j] ¢
[

max
{

1
n
− r,0

}

,1+ r
]

, since G is positive semidefinite. Note that

σ1(M) =
√

λmax(G) and σn(M) =
√

λmin(G), we obtain the bound. The bound is

tight by considering M= In for the lower bound and M= (1,0, ...,0) for the upper

bound.

114

Intuitively, Proposition 5 shows that reducing the inner products between

columns of M= softmax(A) decreases the gap between its largest and smallest

singular values. In particular, the numerical rank of the post-softmax matrix

M can remain high even if the pre-softmax matrix A is of low rank. Figure 6.8.1

illustrates that the smallest spectral gap occurs at an intermediate temperature.

115

6.8. Supplementary Figures

Figure 6.8.1. Applying softmaxcolumn-wise on rank-1 matrix A ∈ R5×5 with various
temperatures decreases the inner products between the columns with different indices
of the highest element and increases the inner products between the columns with the
same indices (bottom). The temperature at which the bifurcation of inner products
happens aligns with the temperature that shrinks the gap between the top and bottom
singular values of the matrix and increases its rank (top).

116

Figure 6.8.2. The plot shows the relationship between the norm of representations,
rank of representations, and norm of weights matrices for the model trained with
temperature = 1.

117

Figure 6.8.3. High-temperature training aligns top singular vectors from consecutive
layers.

118

Figure 6.8.4. Training with normal temperature does not align singular vectors between
layers.

119

Bibliography

[1] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yura Burda, Nicholas

Joseph, Greg Brockman, et al. Evaluating large language models trained

on code. arXiv preprint arXiv:2107.03374, 2021.

[2] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya

Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay

Kale, Juliette Love, et al. Gemma: Open models based on gemini research

and technology. arXiv preprint arXiv:2403.08295, 2024.

[3] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,

Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi,

Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao,

Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu,

Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,

Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun

Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li,

H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian

Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei

Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.

Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang

Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,

Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua

Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,

Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du,

Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,

Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng

Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li,

Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu

Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang,

Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong

Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu,

Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng

Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun,

Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan,

Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao,

Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong,

Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu,

Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia

He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,

Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,

Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren,

Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen

Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,

Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu,

Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning

capability in llms via reinforcement learning, 2025.

[4] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,

Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with

deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[5] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan

Kumaran, Thore Graepel, et al. Mastering chess and shogi by

self-play with a general reinforcement learning algorithm. arXiv preprint

arXiv:1712.01815, 2017.

[6] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-

maran, Thore Graepel, et al. A general reinforcement learning algo-

rithm that masters chess, shogi, and go through self-play. Science,

362(6419):1140–1144, 2018.

[7] Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer

poker. Science, 365(6456):885–890, 2019.

[8] Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and

Aron Walsh. Machine learning for molecular and materials science. Nature,

559(7715):547–555, 2018.

[9] Jonathan Schmidt, Márcio RG Marques, Silvana Botti, and Miguel AL

Marques. Recent advances and applications of machine learning in

solid-state materials science. npj Computational Materials, 5(1):1–36,

2019.

[10] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael

Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Au-

121

gustin vZídek, Anna Potapenko, et al. Highly accurate protein structure

prediction with alphafold. Nature, 596(7873):583–589, 2021.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understand-

ing, 2019.

[12] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and

Ilya Sutskever. Language models are unsupervised multitask learners.

OpenAI blog, 1(8):9, 2019.

[13] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv

Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,

et al. Lamda: Language models for dialog applications. arXiv preprint

arXiv:2201.08239, 2022.

[14] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex

Ray, et al. Training language models to follow instructions with human

feedback. arXiv preprint arXiv:2203.02155, 2022.

[15] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark

Chen. Hierarchical text-conditional image generation with clip latents.

arXiv preprint arXiv:2204.06125, 2022.

[16] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,

and Björn Ommer. High-resolution image synthesis with latent diffusion

models. arXiv preprint arXiv:2112.10752, 2022.

[17] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Moham-

mad Norouzi, and David J Fleet. Video diffusion models. arXiv preprint

arXiv:2204.03458, 2022.

[18] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec

Radford, and Ilya Sutskever. Jukebox: A generative model for music.

arXiv preprint arXiv:2005.00341, 2020.

[19] Andrea Agostinelli, Timo Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti,

Antoine Caillon, Qingqing Huang, Aren Jansen, Adam Roberts, Marco

Tagliasacchi, et al. Musiclm: Generating music from text. arXiv preprint

arXiv:2301.11325, 2023.

[20] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.

2016.

[22] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, et al. Language models are few-shot learners.

122

Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

[23] Li Shen et al. On efficient training of large-scale deep learning models: A

literature review. arXiv preprint arXiv:2304.03589, 2023.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[25] Léon Bottou. Large-scale machine learning with stochastic gradient

descent. Proceedings of COMPSTAT’2010, pages 177–186, 2010.

[26] Pedro Domingos. A few useful things to know about machine learning.

Communications of the ACM, 55(10):78–87, 2012.

[27] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learn-

ing: From theory to algorithms. 2014.

[28] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol

Vinyals. Understanding deep learning requires rethinking generalization.

Communications of the ACM, 64(3):107–115, 2021.

[29] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[30] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J

Gershman. Building machines that learn and think like people. Behavioral

and Brain Sciences, 40, 2017.

[31] Douglas Markant and Todd M Gureckis. Active learning as a means

to distinguish among alternative learning strategies. Proceedings of the

Annual Meeting of the Cognitive Science Society, 36, 2014.

[32] Michael Mccloskey and Neil J. Cohen. Catastrophic interference in con-

nectionist networks: The sequential learning problem. The Psychology of

Learning and Motivation, 24:104–169, 1989.

[33] Robert M. French. Catastrophic forgetting in connectionist networks.

Trends in cognitive sciences, 1999.

[34] Raia Hadsell, Dushyant Rao, Andrei Rusu, and Razvan Pascanu. Em-

bracing change: Continual learning in deep neural networks. Trends in

Cognitive Sciences, 24:1028–1040, 12 2020.

[35] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and

Stefan Wermter. Continual lifelong learning with neural networks: A

review. Neural Networks, 113:54 – 71, 2019.

[36] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guil-

laume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ra-

malho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath,

Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forget-

ting in neural networks. Proceedings of the National Academy of Sciences,

114(13):3521–3526, 2017.

123

[37] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual Learning

Through Synaptic Intelligence. In ICML, 2017.

[38] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting

a single network to multiple tasks by learning to mask weights. In

Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss,

editors, Computer Vision - ECCV 2018 - 15th European Conference, Munich,

Germany, September 8-14, 2018, Proceedings, Part IV, volume 11208 of

Lecture Notes in Computer Science, pages 72–88. Springer, 2018.

[39] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual

learning with deep generative replay. In I. Guyon, U. V. Luxburg, S. Ben-

gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems 30, pages 2990–2999.

Curran Associates, Inc., 2017.

[40] Ameya Prabhu, Philip Torr, and Puneet Dokania. Gdumb: A simple

approach that questions our progress in continual learning. In ECCV,

2020.

[41] Wojciech Masarczyk and Ivona Tautkute. Reducing catastrophic forget-

ting with learning on synthetic data. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,

June 2020.

[42] Wojciech Masarczyk, Kamil Deja, and Tomasz Trzciński. On robustness

of generative representations against catastrophic forgetting. International

Conference on Neural Information Processing, 2021.

[43] Wojciech Masarczyk, Tomasz Trzciński, and Mateusz Ostaszewski. On

consequences of finetuning on data with highly discriminative features.

NeurIPS 2023: UniReps Workshop, 2023.

[44] Wojciech Masarczyk, Mateusz Ostaszewski, Ehsan Imani, Razvan Pas-

canu, Piotr Miłoś, and Tomasz Trzciński. The tunnel effect: Building data

representations in deep neural networks. NeurIPS, 2023.

[45] Wojciech Masarczyk, Mateusz Ostaszewski, Tin Sum Cheng, Tomasz

Trzciński, Aurelien Lucchi, and Razvan Pascanu. Unpacking softmax:

How temperature drives rank collapse, compression and generalization.

Under review at ICML 2025, 2025.

[46] Vinay Venkatesh Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy

of catastrophic forgetting: Hidden representations and task semantics.

In International Conference on Learning Representations, 2020.

[47] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of deep bidirectional transformers for language un-

124

derstanding. In Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,

Minneapolis, Minnesota, June 2019. Association for Computational Lin-

guistics.

[48] Ivona Tautkute, Tomasz Trzciński, Aleksander P. Skorupa, Łukasz Brocki,

and Krzysztof Marasek. Deepstyle: Multimodal search engine for fashion

and interior design. IEEE Access, 7:84613–84628, 2018.

[49] Wojciech Stokowiec, Tomasz Trzcinski, Krzysztof Wołk, Krzysztof Marasek,

and Przemyslaw Rokita. Shallow reading with deep learning: Predicting

popularity of online content using only its title. pages 136–145, 07 2017.

[50] Witold Oleszkiewicz, Peter Kairouz, Karol Piczak, Ram Rajagopal, and

Tomasz Trzciński. Siamese generative adversarial privatizer for biometric

data. In C.V. Jawahar, Hongdong Li, Greg Mori, and Konrad Schindler,

editors, Computer Vision – ACCV 2018, pages 482–497, Cham, 2019.

Springer International Publishing.

[51] Mark Bishop Ring. Continual Learning in Reinforcement Environments.

PhD thesis, USA, 1994.

[52] Vincenzo Lomonaco. Continual Learning with Deep Architectures. PhD

thesis, 2018.

[53] Z. Li and D. Hoiem. Learning without forgetting. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 40(12):2935–2947, 2018.

[54] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer,

James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Had-

sell. Progressive neural networks, 2016.

[55] David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory

for continual learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems 30, pages 6467–6476. Curran Associates,

Inc., 2017.

[56] Tyler L. Hayes, Nathan D. Cahill, and Christopher Kanan. Memory effi-

cient experience replay for streaming learning. In International Conference

on Robotics and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24,

2019, pages 9769–9776. IEEE, 2019.

[57] Joseph Cichon and Wen-Biao Gan. Branch-specific dendritic ca2+ spikes

cause persistent synaptic plasticity. Nature, 520, 03 2015.

[58] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge

in a neural network. In NIPS Deep Learning and Representation Learning

125

Workshop, 2015.

[59] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Life-

long learning with dynamically expandable networks. In International

Conference on Learning Representations, 2018.

[60] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Growing a brain:

Fine-tuning by increasing model capacity. CoRR, abs/1907.07844, 2019.

[61] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a

single network by iterative pruning. In 2018 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June

18-22, 2018, pages 7765–7773. IEEE Computer Society, 2018.

[62] Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual learning

via neural pruning. CoRR, abs/1903.04476, 2019.

[63] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros.

Dataset distillation. CoRR, abs/1811.10959, 2018.

[64] Chenshen Wu, Luis Herranz, Xialei Liu, yaxing wang, Joost van de Weijer,

and Bogdan Raducanu. Memory replay gans: Learning to generate new

categories without forgetting. In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural

Information Processing Systems 31, pages 5962–5972. Curran Associates,

Inc., 2018.

[65] Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based

hyperparameter optimization through reversible learning. In Proceedings

of the 32nd International Conference on International Conference on Ma-

chine Learning - Volume 37, ICML’15, page 2113–2122. JMLR.org, 2015.

[66] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and

Jeff Clune. Generative teaching networks: Accelerating neural architec-

ture search by learning to generate synthetic training data, 2020.

[67] Khurram Javed and Martha White. Meta-learning representations

for continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems 32, pages 1820–1830. Curran Associates,

Inc., 2019.

[68] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and

Byoung-Tak Zhang. Overcoming catastrophic forgetting by incremental

moment matching. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems 30, pages 4652–4662. Curran Associates,

Inc., 2017.

126

[69] Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino

Gomez, and Jürgen Schmidhuber. Compete to compute. In C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems 26, pages

2310–2318. Curran Associates, Inc., 2013.

[70] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L. Hayes, and

Christopher Kanan. Measuring catastrophic forgetting in neural networks.

In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the

Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th

innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI

Symposium on Educational Advances in Artificial Intelligence (EAAI-18),

New Orleans, Louisiana, USA, February 2-7, 2018, pages 3390–3398. AAAI

Press, 2018.

[71] Mehdi Mirza and Simon Osindero. Conditional generative adversarial

nets. CoRR, abs/1411.1784, 2014.

[72] Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut,

Artem Molchanov, Franziska Meier, Douwe Kiela, Kyunghyun Cho, and

Soumith Chintala. Generalized inner loop meta-learning. arXiv preprint

arXiv:1910.01727, 2019.

[73] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, 2015.

[74] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is

all you need. In NeurIPS, 2017.

[75] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and

Stefan Wermter. Continual lifelong learning with neural networks: A

review. Neural Networks, 2019.

[76] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guil-

laume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ra-

malho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath,

Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forget-

ting in neural networks. PNAS, 2017.

[77] Gido M van de Ven and Andreas S Tolias. Generative replay with feed-

back connections as a general strategy for continual learning, 2018.

arXiv:1809.10635.

[78] Lucas Caccia, Eugene Belilovsky, Massimo Caccia, and Joelle Pineau. On-

127

line Learned Continual Compression with Adaptive Quantization Modules.

In ICML, 2020.

[79] Johannes von Oswald, Christian Henning, João Sacramento, and Ben-

jamin F Grewe. Continual learning with hypernetworks. arXiv preprint

arXiv:1906.00695, 2019.

[80] Kamil Deja, Paweł Wawrzyński, Daniel Marczak, Wojciech Masarczyk, and

Tomasz Trzciński. Binplay: A binary latent autoencoder for generative

replay continual learning. In IJCNN, 2021.

[81] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual

Learning with Deep Generative Replay. In NeurIPS, 2017.

[82] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and

Gregory Wayne. Experience Replay for Continual Learning. In NeurIPS,

2019.

[83] Nicolas Y. Masse, Gregory D. Grant, and David J. Freedman. Alleviat-

ing catastrophic forgetting using context-dependent gating and synaptic

stabilization. PNAS, 2018.

[84] Arun Mallya and Svetlana Lazebnik. Packnet: Adding Multiple Tasks to a

Single Network by Iterative Pruning. In CVPR, 2018.

[85] Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual Learning

via Neural Pruning. In Neuro AI. Workshop at NeurIPS, 2019.

[86] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a

Single Network to Multiple Tasks by Learning to Mask Weights. In ECCV,

2018.

[87] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kemb-

havi, Mohammad Rastegari, Jason Yosinski, and Ali Farhadi. Supermasks

in Superposition. In NeurIPS, 2020.

[88] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer,

James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Had-

sell. Progressive Neural Networks, 2016. arXiv:1606.04671.

[89] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong

Learning with Dynamically Expandable Networks. In ICLR, 2018.

[90] Anh Thai, Stefan Stojanov, Isaac Rehg, and James M. Rehg. Does contin-

ual learning = catastrophic forgetting? arXiv, 2021.

[91] Guy Davidson and Michael C. Mozer. Sequential mastery of multiple

visual tasks: Networks naturally learn to learn and forget to forget. In

CVPR, 2020.

[92] Vinay Venkatesh Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy

of catastrophic forgetting: Hidden representations and task semantics.

128

In ICLR, 2021.

[93] Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Rehearsal re-

vealed: The limits and merits of revisiting samples in continual learning.

2021.

[94] Ju Xu and Zhanxing Zhu. Reinforced Continual Learning. In NeurIPS,

2018.

[95] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin,

Massimo Caccia, Min Lin, and Lucas Page-Caccia. Online Continual

Learning with Maximally Interfered Retrieval. In NeurIPS, 2019.

[96] Giang Nguyen, Shuan Chen, Thao Do, Tae Joon Jun, Ho-Jin Choi, and

Daeyoung Kim. Dissecting catastrophic forgetting in continual learning

by deep visualization. arXiv, 2020.

[97] Cuong V. Nguyen, Alessandro Achille, Michael Lam, Tal Hassner, Vijay

Mahadevan, and Stefano Soatto. Toward understanding catastrophic

forgetting in continual learning. arXiv, 2019.

[98] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes.

In ICLR, 2014.

[99] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton.

Similarity of neural network representations revisited. In ICML, 2019.

[100] Ying Nian Wu, Ruiqi Gao, Tian Han, and Song-Chun Zhu. A tale of three

probabilistic families: Discriminative, descriptive and generative models,

2018.

[101] Lorien Pratt and Barbara Jennings. A survey of transfer between connec-

tionist networks. Connection Science, 1996.

[102] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-

able are features in deep neural networks? Advances in neural information

processing systems, 2014.

[103] R. Anil et al. Palm 2 technical report, 2023.

[104] OpenAI. Gpt-4 technical report, 2023.

[105] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer.

Scaling vision transformers, 2022.

[106] M. Dehghani et al. Scaling vision transformers to 22 billion parameters,

2023.

[107] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger,

Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer,

Aaron Courville, Yoshua Bengio, and Simon Lacoste-Julien. A closer look

at memorization in deep networks, 2017.

[108] Guillermo Valle-Pérez, Chico Q. Camargo, and Ard A. Louis. Deep learning

129

generalizes because the parameter-function map is biased towards simple

functions, 2019.

[109] Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Ben-

jamin L. Edelman, Fred Zhang, and Boaz Barak. Sgd on neural networks

learns functions of increasing complexity, 2019.

[110] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell.

Rethinking the value of network pruning. International Conference on

Learning Representations, 2018.

[111] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey E. Hin-

ton. Similarity of neural network representations revisited. International

Conference on Machine Learning, 2019.

[112] Depen Morwani, Praneeth Netrapalli, jatin batra, Karthikeyan Shan-

mugam, and Prateek Jain. Simplicity bias in 1-hidden layer neural

networks, 2023.

[113] Lukas Braun, Clémentine Dominé, James Fitzgerald, and Andrew Saxe.

Exact learning dynamics of deep linear networks with prior knowledge.

Advances in Neural Information Processing Systems, 2022.

[114] Jiefeng Chen, Timothy Nguyen, Dilan Gorur, and Arslan Chaudhry. Is

forgetting less a good inductive bias for forward transfer? In The Eleventh

International Conference on Learning Representations, 2022.

[115] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the

real inductive bias: On the role of implicit regularization in deep learning.

arXiv preprint arXiv:1412.6614, 2014.

[116] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and

Praneeth Netrapalli. The pitfalls of simplicity bias in neural networks.

Advances in Neural Information Processing Systems, 2020.

[117] Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville,

Doina Precup, and Guillaume Lajoie. Gradient starvation: A learning

proclivity in neural networks. Advances in Neural Information Processing

Systems, 2021.

[118] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo,

Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Pa-

pernot. Machine unlearning. In 2021 IEEE Symposium on Security and

Privacy (SP), 2021.

[119] Mengnan Du, Fan Yang, Na Zou, and Xia Hu. Fairness in deep learning:

A computational perspective. IEEE Intelligent Systems, 2020.

[120] Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian

Lemmerich. Similarity of neural network models: A survey of functional

130

and representational measures, 2023.

[121] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classi-

fication with deep convolutional neural networks. In Advances in Neural

Information Processing Systems 25. Curran Associates, Inc., 2012.

[122] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig

Schubert, Katherine Ye, and Alexander Mordvintsev. The building blocks

of interpretability. Distill, 2018.

[123] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha

Sohl-Dickstein. On the expressive power of deep neural networks. In

Proceedings of the 34th International Conference on Machine Learning.

PMLR, 2017.

[124] Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.

On the number of linear regions of deep neural networks. In Proceedings of

the 27th International Conference on Neural Information Processing Systems

- Volume 2, 2014.

[125] Matus Telgarsky. Representation benefits of deep feedforward networks,

2015.

[126] Guillermo Valle-Perez, Chico Q Camargo, and Ard A Louis. Deep learning

generalizes because the parameter-function map is biased towards simple

functions, 2018.

[127] Boris Hanin and David Rolnick. Complexity of linear regions in deep

networks, 2019.

[128] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit

Agrawal, and Phillip Isola. The low-rank simplicity bias in deep networks,

2021.

[129] Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural

collapse during the terminal phase of deep learning training. Proceedings

of the National Academy of Sciences, 2020.

[130] Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep

networks learn the same things? uncovering how neural network rep-

resentations vary with width and depth. In International Conference on

Learning Representations, 2020.

[131] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton.

Similarity of neural network representations revisited. In Proceedings of

the 36th International Conference on Machine Learning. PMLR, 2019.

[132] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visu-

alization. Distill, 2017. https://distill.pub/2017/feature-visualization.

[133] Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural

131

networks, 2019.

[134] Leland McInnes, John Healy, and James Melville. Umap: Uniform mani-

fold approximation and projection for dimension reduction, 2020.

[135] Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created

equal?, 2022.

[136] Keunwoo Choi, György Fazekas, Mark Sandler, and Kyunghyun Cho.

Transfer learning for music classification and regression tasks, 2017.

[137] Jongpil Lee and Juhan Nam. Multi-level and multi-scale feature ag-

gregation using pretrained convolutional neural networks for music

auto-tagging. IEEE Signal Processing Letters, 2017.

[138] Joel Shor, Aren Jansen, Ronnie Maor, Oran Lang, Omry Tuval, Félix

de Chaumont Quitry, Marco Tagliasacchi, Ira Shavitt, Dotan Emanuel,

and Yinnon Haviv. Towards learning a universal non-semantic represen-

tation of speech, 2020.

[139] Utku Evci, Vincent Dumoulin, Hugo Larochelle, and Michael C. Mozer.

Head2toe: Utilizing intermediate representations for better transfer learn-

ing, 2022.

[140] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner,

and Aleksander Madry. Robustness may be at odds with accuracy. In

International Conference on Learning Representations, 2019.

[141] Yizhou Wang, Shixiang Tang, Feng Zhu, Lei Bai, Rui Zhao, Donglian Qi,

and Wanli Ouyang. Revisiting the transferability of supervised pretraining:

an mlp perspective. In 2022 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2022.

[142] Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pas-

canu, Dilan Gorur, and Mehrdad Farajtabar. Wide neural networks forget

less catastrophically. In Proceedings of the 39th International Conference

on Machine Learning, 2022.

[143] Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen,

Razvan Pascanu, Dilan Gorur, and Mehrdad Farajtabar. Architecture

matters in continual learning, 2022.

[144] Alex H Williams, Erin Kunz, Simon Kornblith, and Scott Linderman.

Generalized shape metrics on neural representations. Advances in Neural

Information Processing Systems, 2021.

[145] Yizhang Lou, Chris E Mingard, and Soufiane Hayou. Feature learning and

signal propagation in deep neural networks. In International Conference

on Machine Learning, 2022.

[146] Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli,

132

and David Sussillo. Universality and individuality in neural dynamics

across large populations of recurrent networks. Advances in neural infor-

mation processing systems, 32, 2019.

[147] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein.

Svcca: Singular vector canonical correlation analysis for deep learning

dynamics and interpretability, 2017.

[148] Jessica AF Thompson, Yoshua Bengio, and Marc Schönwiesner. The effect

of task and training on intermediate representations in convolutional

neural networks revealed with modified rv similarity analysis, 2019.

[149] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent

kernel: Convergence and generalization in neural networks. Advances in

neural information processing systems, 2018.

[150] Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein,

and Guy Gur-Ari. The large learning rate phase of deep learning: the

catapult mechanism. arXiv preprint arXiv:2003.02218, 2020.

[151] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization

matters: Generalization and optimization of neural nets vs their induced

kernel. Advances in Neural Information Processing Systems, 32, 2019.

[152] Yixiong Chen, Alan Yuille, and Zongwei Zhou. Which layer is learning

faster? a systematic exploration of layer-wise convergence rate for deep

neural networks. In The Eleventh International Conference on Learning

Representations, 2023.

[153] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being

transferred in transfer learning? In H. Larochelle, M. Ranzato, R. Had-

sell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information

Processing Systems, 2020.

[154] Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pas-

canu, Dilan Gorur, and Mehrdad Farajtabar. Wide neural networks forget

less catastrophically. In International Conference on Machine Learning,

2022.

[155] Sebastian Lee, Stefano Sarao Mannelli, Claudia Clopath, Sebastian Goldt,

and Andrew M. Saxe. Maslow’s hammer in catastrophic forgetting: Node

re-use vs. node activation. In International Conference on Machine Learn-

ing, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, Proceedings

of Machine Learning Research. PMLR, 2022.

[156] Sebastian Lee, Sebastian Goldt, and Andrew Saxe. Continual learning in

the teacher-student setup: Impact of task similarity. In Proceedings of

the 38th International Conference on Machine Learning. PMLR, 2021.

133

[157] Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel

Soudry. How catastrophic can catastrophic forgetting be in linear re-

gression? In Proceedings of Thirty Fifth Conference on Learning Theory,

2022.

[158] Wesley J. Maddox, Shuai Tang, Pablo Garcia Moreno, Andrew Gordon

Wilson, and Andreas Damianou. Fast adaptation with linearized neural

networks, 2021.

[159] Thao Nguyen, Maithra Raghu, and Simon Kornblith. On the origins

of the block structure phenomenon in neural network representations.

Transactions on Machine Learning Research, 2022.

[160] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias

Sulam, and Qing Qu. A geometric analysis of neural collapse with un-

constrained features. Advances in Neural Information Processing Systems,

34, 2021.

[161] Tomer Galanti, András György, and Marcus Hutter. On the role of neural

collapse in transfer learning. In International Conference on Learning

Representations, 2022.

[162] Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural

collapse for understanding generalization in deep learning. arXiv preprint

arXiv:2202.08384, 2022.

[163] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models.

Advances in Neural Information Processing Systems, 32, 2019.

[164] Raj Dabre and Atsushi Fujita. Recurrent stacking of layers for compact

neural machine translation models. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 33, pages 6292–6299, 2019.

[165] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Trellis networks for se-

quence modeling. arXiv preprint arXiv:1810.06682, 2018.

[166] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and

Łukasz Kaiser. Universal transformers. arXiv preprint arXiv:1807.03819,

2018.

[167] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket

to win them all: generalizing lottery ticket initializations across datasets

and optimizers. Advances in neural information processing systems, 32,

2019.

[168] Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy

Kolchinsky, Brendan D Tracey, and David D Cox. On the information

bottleneck theory of deep learning. Journal of Statistical Mechanics: Theory

and Experiment, 2019(12):124020, 2019.

134

[169] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep

neural networks via information. arXiv preprint arXiv:1703.00810, 2017.

[170] Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan.

Intrinsic dimension of data representations in deep neural networks.

Advances in Neural Information Processing Systems, 32, 2019.

[171] Xiao Li, Sheng Liu, Jinxin Zhou, Xinyu Lu, Carlos Fernandez-Granda,

Zhihui Zhu, and Qing Qu. Principled and efficient transfer learning of

deep models via neural collapse. arXiv preprint arXiv:2212.12206, 2022.

[172] Akshay Rangamani, Marius Lindegaard, Tomer Galanti, and Tomaso A

Poggio. Feature learning in deep classifiers through intermediate neu-

ral collapse. In International Conference on Machine Learning, pages

28729–28745. PMLR, 2023.

[173] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-

works for large-scale image recognition. In International Conference on

Learning Representations, 2015.

[174] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[175] George Bebis and Michael Georgiopoulos. Feed-forward neural networks.

Ieee Potentials, 13(4):27–31, 1994.

[176] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell.

Rethinking the value of network pruning, 2019.

[177] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images.

Technical report, 2009.

[178] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey.

Cinic-10 is not imagenet or cifar-10. arXiv preprint arXiv:1810.03505,

2018.

[179] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 –

mining discriminative components with random forests. In European

Conference on Computer Vision, 2014.

[180] M-E. "Nilsback and A." Zisserman. "automated flower classification over

a large number of classes". In "Proceedings of the Indian Conference on

Computer Vision, Graphics and Image Processing", "2008".

[181] O. M. "Parkhi, A. Vedaldi, A. Zisserman, and C. V." Jawahar. "cats and

dogs". In "IEEE Conference on Computer Vision and Pattern Recognition",

"2012".

[182] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio

Torralba. Places: A 10 million image database for scene recognition. IEEE

135

Transactions on Pattern Analysis and Machine Intelligence, 2017.

[183] Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single Layer

Networks in Unsupervised Feature Learning. In AISTATS, 2011. https:

//cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf.

[184] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and

Andrew Y Ng. Reading digits in natural images with unsupervised feature

learning. NeurIPS, 2011.

[185] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and

Marcus Rohrbach. Adversarial continual learning, 2020.

[186] Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Davide

Maltoni. Latent replay for real-time continual learning, 2020.

[187] Suresh Balakrishnama and Aravind Ganapathiraju. Linear discriminant

analysis-a brief tutorial, 1998.

[188] Ashraful Islam, Chun-Fu Richard Chen, Rameswar Panda, Leonid Karlin-

sky, Richard Radke, and Rogerio Feris. A broad study on the transferability

of visual representations with contrastive learning. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 8845–8855,

2021.

[189] Nanxuan Zhao, Zhirong Wu, Rynson WH Lau, and Stephen Lin. What

makes instance discrimination good for transfer learning?, 2020.

[190] Shih-Chii Liu. A winner-take-all circuit with controllable soft max property.

Advances in neural information processing systems, 12, 1999.

[191] Ibrahim M Elfadel and John L Wyatt Jr. The" softmax" nonlinearity:

Derivation using statistical mechanics and useful properties as a multi-

terminal analog circuit element. Advances in neural information processing

systems, 6, 1993.

[192] Carsten Peterson and Bo Söderberg. A new method for mapping opti-

mization problems onto neural networks. International Journal of Neural

Systems, 01(01):3–22, 1989.

[193] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski.

Vision transformers need registers. arXiv preprint arXiv:2309.16588,

2023.

[194] David T. Hoffmann, Simon Schrodi, Nadine Behrmann, Volker Fis-

cher, and Thomas Brox. Eureka-moments in transformers: Multi-step

tasks reveal softmax induced optimization problems. arXiv preprint

arXiv:2310.12956, 2023.

[195] Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, Rui Wang, and Jiang

Bian. A study on relu and softmax in transformer. arXiv preprint

136

https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf

arXiv:2302.06461, 2023.

[196] Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge,

Jason Ramapuram, Yizhe Zhang, Jiatao Gu, and Josh Susskind. Stabiliz-

ing transformer training by preventing attention entropy collapse. ICML,

2023.

[197] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[198] Hemanth Saratchandran, Jianqiao Zheng, Yiping Ji, Wenbo Zhang, and

Simon Lucey. Rethinking softmax: Self-attention with polynomial activa-

tions. arXiv preprint arXiv:2410.18613, 2024.

[199] Jason Ramapuram, Federico Danieli, Eeshan Dhekane, Floris Weers,

Dan Busbridge, Pierre Ablin, Tatiana Likhomanenko, Jagrit Digani, Zijin

Gu, Amitis Shidani, et al. Theory, analysis, and best practices for sigmoid

self-attention. arXiv preprint arXiv:2409.04431, 2024.

[200] Petar Velivcković, Christos Perivolaropoulos, Federico Barbero, and Raz-

van Pascanu. softmax is not enough (for sharp out-of-distribution). arXiv

preprint arXiv:2410.01104, 2024.

[201] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, et al. Pytorch: An imperative style, high-performance deep learning

library. Advances in neural information processing systems, 32, 2019.

[202] Arthur Jacot, Franccois Ged, Berfin cSimcsek, Clément Hongler, and

Franck Gabriel. Saddle-to-saddle dynamics in deep linear networks:

Small initialization training, symmetry, and sparsity. arXiv preprint

arXiv:2106.15933, 2021.

[203] Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit

bias of gradient descent for matrix factorization: Greedy low-rank learning.

arXiv preprint arXiv:2012.09839, 2020.

[204] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions

to the nonlinear dynamics of learning in deep linear neural networks.

arXiv preprint arXiv:1312.6120, 2013.

[205] Wojciech Masarczyk, Mateusz Ostaszewski, Ehsan Imani, Razvan Pas-

canu, Piotr Miłoś, and Tomasz Trzcinski. The tunnel effect: Building data

representations in deep neural networks. Advances in Neural Information

Processing Systems, 36, 2024.

[206] Md Yousuf Harun, Kyungbok Lee, Jhair Gallardo, Giri Krishnan, and

Christopher Kanan. What variables affect out-of-distribution generaliza-

tion in pretrained models? arXiv preprint arXiv:2405.15018, 2024.

137

[207] Chongyi Zheng, Benjamin Eysenbach, Homer Rich Walke, Patrick Yin,

Kuan Fang, Ruslan Salakhutdinov, and Sergey Levine. Stabilizing con-

trastive RL: Techniques for robotic goal reaching from offline data. In The

Twelfth International Conference on Learning Representations, 2024.

[208] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.

A simple framework for contrastive learning of visual representations. In

International conference on machine learning, pages 1597–1607. PMLR,

2020.

[209] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding

dimensional collapse in contrastive self-supervised learning. In Interna-

tional Conference on Learning Representations, 2022.

[210] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normal-

ization. arXiv preprint arXiv: 1607.06450, 2016.

[211] Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and

Aurelien Lucchi. Batch normalization provably avoids rank collapse for

randomly initialised deep networks. arXiv preprint arXiv: 2003.01652,

2020.

[212] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep

linear networks. arXiv preprint arXiv:1810.02032, 2018.

[213] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep

networks: Implicit acceleration by overparameterization. In International

conference on machine learning, pages 244–253. PMLR, 2018.

[214] Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge,

Jason Ramapuram, Yizhe Zhang, Jiatao Gu, and Joshua M Susskind.

Stabilizing transformer training by preventing attention entropy collapse.

In International Conference on Machine Learning, pages 40770–40803.

PMLR, 2023.

[215] Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural

collapse during the terminal phase of deep learning training. Proceedings

of the National Academy of Sciences, 117(40):24652–24663, 2020.

[216] Naftali Tishby and Noga Zaslavsky. Deep learning and the information

bottleneck principle. In 2015 ieee information theory workshop (itw), pages

1–5. IEEE, 2015.

[217] Branton DeMoss, Silvia Sapora, Jakob Foerster, Nick Hawes, and In-

gmar Posner. The complexity dynamics of grokking. arXiv preprint

arXiv:2412.09810, 2024.

[218] Ilse CF Ipsen and Arvind K Saibaba. Stable rank and intrinsic dimension

of real and complex matrices. arXiv preprint arXiv:2407.21594, 2024.

138

	Introduction
	Research questions
	Thesis contributions
	Reducing catastrophic forgetting with learning on synthetic data
	On robustness of generative representations against catastrophic forgetting
	On consequences of finetuning on data with highly discriminative features
	The Tunnel Effect: Building data representations in deep neural networks
	Unpacking Softmax: How Temperature Drives Rank Collapse, Compression and Generalization

	Publications not included in the thesis

	Reducing catastrophic forgetting with learning on synthetic data
	Abstract
	Introduction
	Related Work
	Method
	Experiments
	Conclusions

	On robustness of generative representations against catastrophic forgetting
	Introduction
	Related works
	Methodology
	Hypothesis 1
	Hypothesis 2

	Discussion

	On consequences of finetuning on data with highly discriminative features
	Introduction
	Experiments and results
	Discussion

	The Tunnel Effect: Building Data Representations in Deep Neural Networks
	Abstract
	Introduction
	The tunnel effect
	Experimental setup
	The main result

	Tunnel effect analysis
	Tunnel development
	Compression and out-of-distribution generalization
	Network capacity and dataset complexity

	The tunnel effect under data distribution shift
	Exploring the effects of task incremental learning on extractor and tunnel
	Reducing catastrophic forgetting by adjusting network depth

	Limitations and future work
	Related work
	Conclusions
	Appendix
	Experimental setup
	Architectures and hyperparameters
	Datasets
	Compute

	Full results
	MLPs
	ResNet-34
	Dataset complexity experiments

	Out of distribution generalization - extended results
	Exploring the effects of task incremental learning on extractor and tunnel – extended results
	Different number of classes in source and target tasks.
	On the primary source of catastrophic forgetting on split-CIFAR10 task.

	CKA similarity
	Inter and Intra class variance
	Tunnel development
	ResNets without skip connections

	Unpacking softmax: How temperature drives rank collapse, generalization and compression
	Abstract
	Introduction
	Rank deficit bias
	Results
	Consequences
	Analysis
	Can softmaxincrease matrix's rank?
	Avoiding rank deficit bias

	The role of the softmaxtemperature
	Experiments
	Analysis
	Consequences
	What factors implicitly change the temperature?

	Related Works
	Conclusions
	Appendix

	Arbitrary matrix can recover full rank post-softmax
	How softmax scales the rank of the matrix?
	Analysis

	Supplementary Figures

	Bibliography

