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Abstract

With the growing demand for predictive models, the need for automation in tradi-

tional, resource-intensive machine-learning tasks has increased. Automated Data Science

(AutoDS) aims to streamline this process, making advanced algorithms more accessible

and assisting experts with complex aspects of pipeline generation. However, AutoDS

faces significant challenges in developing innovative methods for Data Exploration, Data

Engineering, Model Building, and Exploitation. Beyond creating new algorithms or frame-

works, there is a crucial necessity to build user trust in the automation system.

This thesis addresses trust improvement in AutoDS systems from two viewpoints.

The first involves clarifying and expanding the evaluation of pipeline building steps, while

the second includes incorporating domain knowledge in model building. Both issues are

frequently raised by AutoDS users.

In the first part of the thesis, we tackle the challenge of broadening the evaluation

of AutoDS stages, specifically in Data Engineering, Model Building, and Exploitation.

We introduce a unique contribution - benchmarking imputation techniques. Additionally,

we provide a methodology for employing eXplainable Artificial Intelligence (XAI) to im-

prove the validation of meta-features in meta-models for hyperparameter optimization.

The presented methods offer deeper insight into the impact of the imputation technique

and the chosen meta-measure representation on model performance. Furthermore, we

integrate the Elo-based predictive power (EPP) meta-score into the model performance

benchmark for the OpenML repository. EPP provides a probabilistic interpretation of

model performance differences, facilitating model evaluation for non-experts.

The second part of the thesis introduces methodologies for incorporating domain

knowledge into Model Building and Data Exploration. The consolidated learning method-

ology demonstrates how domain-specific hyperparameters can enhance model performance

compared to generic ones. Conversely, Semantic Feature Net (SeFNet) proposes enriching

understanding and interactions with domain experts by integrating ontologies into Data

Exploration.

The presented results and methods advance the AutoDS field comprehensively,

addressing all four subfields. This thesis is of significant research importance as user

trust building in AutoDS systems has been largely overlooked, with the focus primarily

on well-defined problems such as model selection. This dissertation aligns with the new
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paradigm of human-centered AutoDS.

Keywords: automation, machine learning, Automated Data Science (Au-

toDS), human-centered AutoDS, trustworthy AutoDS
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Streszczenie

Wraz z rosnącym zapotrzebowaniem na modele predykcyjne, wzrosła potrzeba au-

tomatyzacji tradycyjnych, zasobochłonnych zadań uczenia maszynowego. Automated

Data Science (AutoDS) ma na celu usprawnienie tego procesu, czyniąc zaawansowane al-

gorytmy bardziej dostępnymi i pomagając ekspertom w złożonych aspektach generowania

procesów. AutoDS stoi jednak przed poważnymi wyzwaniami w zakresie opracowywa-

nia innowacyjnych metod eksploracji danych, inżynierii danych, tworzenia modeli i ek-

sploatacji. Oprócz tworzenia nowych algorytmów lub frameworków, istnieje kluczowa

konieczność budowania zaufania użytkowników do systemu automatyzacji.

Niniejsza rozprawa dotyczy zwiększenia zaufania do systemów AutoDS z dwóch per-

spektyw. Pierwsza z nich obejmuje wyjaśnienie i rozszerzenie oceny etapów tworzenia

pipeline’u, podczas gdy druga obejmuje włączenie wiedzy dziedzinowej do tworzenia mod-

eli. Obie kwestie są często poruszane przez użytkowników AutoDS.

W pierwszej części rozprawy podejmujemy wyzwanie rozszerzenia oceny etapów Au-

toDS, w szczególności w dziedzinie inżynierii danych, budowania modeli i eksploatacji.

Przedstawiliśmy w niej analizę porównawczą technik imputacji. Dodatkowo zaprezen-

towano metodologię wykorzystania technik eXplainable Artificial Intelligence (XAI) w

celu poprawy walidacji meta-funkcji w meta-modelach do optymalizacji hiperparametrów.

Przedstawione metody oferują głębszy wgląd w wpływ techniki imputacji i wybranej

reprezentacji meta-miary na wydajność modelu. Ponadto, zintegrowaliśmy meta-miarę

Elo-based predictive power (EPP) w benchmark wydajności modeli dla repozytorium

OpenML. EPP zapewnia probabilistyczną interpretację różnic w wydajności modelu,

ułatwiając ocenę modelu osobom niebędącym ekspertami.

Druga część rozprawy wprowadza metodologie włączania wiedzy dziedzinowej do bu-

dowania modeli i eksploracji danych. Metodologia consolidated learning pokazuje, w

jaki sposób hiperparametry specyficzne dla domeny mogą poprawić wydajność modelu

w porównaniu z hiperparametrami ogólnymi. Z kolei Semantic Feature Net (SeFNet)

proponuje wzbogacenie zrozumienia i interakcji z ekspertami dziedzinowymi poprzez in-

tegrację ontologii z eksploracją danych.

Przedstawione wyniki i metody kompleksowo rozwijają dziedzinę AutoDS, odnosząc

się do wszystkich czterech poddziedzin. Ma to duże znaczenie badawcze, ponieważ
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budowanie zaufania użytkowników w systemach AutoDS zostało w dużej mierze po-

minięte, a skupiano się głównie na dobrze zdefiniowanych problemach, takich jak wybór

modelu. Niniejsza rozprawa wpisuje się w nowy paradygmat AutoDS skoncentrowanego

na człowieku.

Słowa kluczowe: automatyzacja, uczenie maszynowe, Automated Data Sci-

ence (AutoDS), Human-centered AutoDS, AutoDS godne zaufania
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Chapter 1

Introduction

The purpose of this thesis is to present challenges and selected methods to address the is-

sue of trust in Automated Data Science (AutoDS). In the following sections, we show

the motivation behind automatization and then move to the challenges in the field and

the research hypothesis.

1.1 Motivation behind automatization

The growth of data-driven applications and the advancement of algorithms has led to an

increased demand for predictive machine learning (ML) models. A significant hurdle is

the uncovered need for machine learning experts to keep pace with the rapidly evolving

developments in machine learning (ML). Furthermore, despite the complexity of tasks

in building an ML pipeline, a significant portion of the work tends to be repetitive. It

can consume a considerable amount of time and effort of ML experts, limiting their

resources for exploring alternative approaches [224]. Consequently, valuable resources

may be underutilized, impeding the discovery of enhanced solutions or deeper insights

from available data.

In light of these considerations, there has been a shift towards creating automated

methods for constructing machine learning pipelines. This direction is referred to as Au-

tomated Machine Learning (AutoML, [98]). The tools developed in this field are designed

to empower individuals and organizations, regardless of their technical background, by

providing greater accessibility to advanced algorithms and addressing critical aspects of

modeling with minimal human intervention. The development of AutoML also benefits

the community of machine learning experts since automated tools would permit a re-
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CHAPTER 1. INTRODUCTION

duction in the time spent on these repetitive steps, thereby enabling a greater focus on

those that require more expert knowledge and human intervention. AutoML frameworks

assist experts in fast prototyping initial models, which can serve as baselines for further

development.

AutoML frameworks primarily concentrate on training models, encompassing tasks

like selecting ML algorithms and hyperparameters optimization. Various packages adopt

diverse strategies for constructing pipelines [60, 63, 157, 57]. The initial focus was primar-

ily on generating pipelines for tabular data and the supervised machine learning problem.

One of the first frameworks, AutoWEKA [208], utilizes the extensive array of ML al-

gorithms in WEKA [83]. The entire collection of diverse approaches could be observed

in the ChaLearn Challenge, which was conducted in two editions, 2015-2016 and 2018.

The organizers summarized the results and potential of the various methods in [82], and

the winning solution evolved in an Auto-sklearn package [60, 63]. This framework is

built upon the Python library scikit-learn [161] and uses the same syntax. Auto-sklearn

employs Bayesian optimization for algorithm selection and hyperparameter tuning, sup-

plemented by meta-learning for pipeline optimization. The next popular framework is

AutoGluon [57], created by AWS. It adds new quality to generated pipelines, developing

ensembles of ML models such as multi-layer stacking. Also, other companies such as

H2O [128] and Google [76] propose commercial solutions to AutoML. The initial focus

was primarily on generating pipelines for tabular data and the supervised machine learn-

ing problem. Over time, the development of frameworks dedicated specifically to Neural

Architecture Search (NAS, [56]) also began, which have a slightly different structure than

frameworks just for tabular data, focusing on classic ML models like Extreme Gradient

Boosting (XGBoost, [36]) or random forest [26]. In the case of neural networks, we can

easily parameterize the internal structure of the model by specifying the number of layers

and neurons. The main libraries for accelerating the optimization of neural-based models

by using pretrained models are AutoKeras [108] and Auto-PyTorch [241]. The multi-

tude of available frameworks, each with different strengths, makes it difficult to make an

optimal choice [71].

However, comparing the existing AutoML frameworks with the CRISP-ML cycle [203],

we see that they primarily emphasize model building and hyperparameter optimization.

The remaining steps are not a key part of these frameworks, so there is still a place to

12



1.2. AUTOMATED DATA SCIENCE

improve them. Model selection and HPO optimization only account for 18% of the data

scientists’ time, as data engineering and development are the most time-consuming [6].

Similar conclusions are drawn from the user studies where interviewees appreciate the sup-

port from AutoML tools but also point that data mining and domain knowledge specific

to the prediction problem is also important [72, 51, 45]. Participants expressed a desire

to delve deeper into data exploration and seek guidance from domain experts. They be-

lieved this approach could have led to the development of improved models and enhanced

confidence in the generated model. One participant stated that "I should consult with

domain experts or medical professionals to grasp the data and its characteristics... I must

also consider ways to devise new features for enhancing the model" [51]. This shows that

many needs have not yet been addressed by the field of AutoML, and it is necessary to

broaden the perspective beyond model training. This is how the concept of Automated

Data Science is established.

1.2 Automated Data Science

Automated Data Science (AutoDS) involves not only the task of efficiently constructing

models but also delves into the complexity of Data Engineering, Data Exploration, and

Exploitation [47]. These subfields differ in the degree to which the problem is formalized

and defined. Some of them are more open problems and require human intervention.

AutoDS operations also differ in universality, which is understood as using algorithms

independent of the domain in which they are applied. The main characterizations and

challenges facing each of these subfields are presented below.

Data Engineering involves collecting, processing, and pre-transforming data to en-

sure it is of high quality and in a format suitable for modeling operations. There are

numerous challenges associated with this subfield. One challenge associated with data

collection is the issue of data heterogeneity and compatibility [127]. For instance, in-

tegrating data from different sources and timespans necessitates monitoring of format

consistency [205]. Another important aspect is the multitude of potential data transfor-

mation operations. Some introduce new information into the problem by creating new

variables, but some are necessary for the following ML algorithms to work properly. Ex-

amples of the latter include encoding of categorical variables, imputation of missing data,

feature selection, and dimension reduction. From this perspective, Data Engineering sig-
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CHAPTER 1. INTRODUCTION

Figure 1.1: Diagram of the AutoDS model pipeline with four subfields marked: Data Engineering,
Data Exploration, Model Building, and Exploitation. These subfields are not disjoint; some
operations can be included in two areas. Data Engineering and Model Building are more technical
and involve applying a broad class of methods. Data Exploration and Exploitation, on the other
hand, require more user intervention. Therefore, the schema indicates that these stages of pipeline
construction go beyond the sequential nature of AutoDS.

nificantly increases the potential search space of possible operations in the pipeline, as

we have to consider preprocessing techniques in addition to the algorithms considered in

Model Building [63]. Efficient exploration of these algorithms is a significant challenge.

All stages in Model Building and Data Engineering are closely interconnected and are

often performed in a loop; once the feedback is received, it is necessary to modify the pre-

vious steps. In addition, Data Engineering, despite being more technical, is closely related

to Data Exploration.

Data Exploration aims at understanding data features and interpreting their in-

teractions, especially between explanatory variables and outcomes. The foundations of

the field are often considered to have been laid by Tukey et al. [210], who emphasized

the role of visualization in exploring relationships in data. Data Exploration is a very

open-ended problem, and we can refer to any insight coming from data exploration as

a pattern [215]. The basic problem is to define what aspect of the designed system is

to explore and how it should interact with the human [184, 225]. For example, whether

the human should suggest directions for exploration or the system should do it. The next

challenge is an assessment of the pattern’s interestingness and how to inject this informa-

tion into the AutoDS system. Moreover, the Data Exploration subfield is very vulnerable

to problem specification, and navigating within the dataset may require external domain

knowledge, especially in highly specialized applications, such as medicine [2].

Model Building ranges from selecting and training suitable algorithms to optimizing

hyperparameters and evaluating their performance. It mainly involves balancing model
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1.2. AUTOMATED DATA SCIENCE

complexity and generalization for optimal performance. The greatest progress has been

made in supervised learning for tabular datasets [157, 63, 57]. In that field, Model Building

has already been automated to an advanced degree, as AutoML represents the beginning

of AutoDS development. The research goes beyond classical algorithms and also addresses

the problem of building neural network architectures [146, 241]. Other data types, such as

time series data and unsupervised learning data, still require further development. Given

the high performance of AutoML in numerous applications, future development should

also focus on utilizing these systems as sources of information regarding the potential of

models. This approach is of particular importance to researchers in the field of machine

learning.

Exploitation includes reporting, monitoring, and extracting insights from model be-

havior and predictions. This is a very open problem, and the AutoDS system can be

analyzed at different levels. Firstly, Explainable machine learning techniques give us

insight into the rules and patterns of the created decision-making system, and we can

interpret its performance and robustness. This is where domain-specific requirements are

often crucial. Another aspect is also monitoring the models and their performance. For

the results to be relevant to users, we need to remember that we need to communicate

these complex results to non-technical audiences.

Figure 1.1 shows a model workflow of preparing a decision-making system with four

areas marked. These areas overlap because some of the operations are of a mixed nature.

The first stage is Data Engineering, which includes data collection and transformation.

Some data transformations may result from the Data Exploration step. Preprocessing

Algorithm Selection in Data Engineering can also be seen as part of Algorithm Selection

included in Model Building. Analysis of trained models is based on the evaluation of their

performance. In Exploitation, it is also assessed, but often, this evaluation is deepened

by the more detailed behavior of models and their stability.

Each area mentioned above in AutoDS is a vast topic and requires many technical

and algorithmic advances to create comprehensive systems to support users. However, all

this work should be aimed at meeting the requirements of users who need to have trust

in AutoDS systems [51, 224].
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CHAPTER 1. INTRODUCTION

1.2.1 Two challenges of AutoDS to improve trust

This thesis focuses on two aspects significantly affecting user trust: extending the evalu-

ation into the AutoDS system and incorporating domain knowledge.

Evaluating a given operation in the pipeline is closely related to the interpretability

of AutoDS processing. Users report that they want to know more details about why

operations are chosen [51]. If the problem is well-defined and close-ended, we can quan-

tify the desired effect of a given process. Then, we can perform optimization and choose

the most favorable solution. Defining the objective function and conducting the optimiza-

tion is a desirable property because it allows for relatively easy pipeline construction. This

is the case in the subfield of Model Building. If quantification is not possible, the selection

process may not be objective and more difficult to implement in AutoDS. In this case,

one must focus more on helping the user evaluate different process aspects. Such a need

exists in Data Engineering. In both cases, it is worth leaning into the explanation and its

accessibility to users to increase their trust in model performance. Providing a broader

perspective during evaluation also makes it possible to increase the utility of AutoDS

tools as a source of knowledge about ML methods.

The second aspect is the need to take into account domain knowledge. This has been

challenging, leading to the predominance of domain-independent methods in AutoML

processes, as expert knowledge typically requires interaction with domain experts. While

the high universality of these operations is beneficial, users express a desire to consult

models with experts to meet specific requirements [72]. AutoDS users also anticipate

that integrating domain knowledge will enhance model performance. The solution lies in

incorporating domain knowledge and providing more support for interaction with domain

experts. Domain knowledge is valuable from the problem-understanding stage through to

reporting, ensuring the decision-making system fulfills domain-specific requirements.

It remains an open challenge to combine these two perspectives and provide additional

insight alongside AutoDS. However, it affects the willingness to use AutoDS tools and

should be addressed in the near future.
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1.3. RESEARCH HYPOTHESES

Figure 1.2: The contributions presented in the following chapters are shown in the figure. Each
was assigned to one of the four AutoDS sub-domains. All of the research hypotheses can be
categorized under one of the two challenges facing AutoDS, namely increasing perspective in
the evaluation of the various stages of AutoDS and applying domain knowledge to the AutoDS
process. This assignment is indicated in color on the figure. Grey boxes indicate hypotheses
assigned to the evaluation part, while blue boxes indicate hypotheses related to the application
of domain knowledge.

1.3 Research hypotheses

The objective of this thesis is to better address the need for trust in the Au-

toDS process. In Figure 1.2, we present five contributions to all four subfields of Au-

toDS. These contributions extend the perspective of evaluation and introduce additional

information about the domain into the system.

1.3.1 Evaluation of the individual stages of the AutoDS

The first part of the thesis focuses mainly on evaluating the components that should be

included in the final pipeline created through AutoDS tools. Three papers are included

in this part. They touch on data engineering and reporting, as well as the process of

selecting algorithms and hyperparameters used in model building. In this section, we

formulate three research hypotheses related to each of them.

Hypothesis 1. Validation of preprocessing techniques can simplify the exploration of

potential operations within Data Engineering, enhancing the efficiency of data processing

workflows.

This hypothesis is addressed in Chapter 3, corresponding to the article "Does impu-

tation matter? Benchmark for predictive models" presented at the Workshop on the Art

of Learning with Missing Values (Artemiss) at the International Conference of Machine

Learning 2020 by Katarzyna Woźnica and Przemysław Biecek.
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CHAPTER 1. INTRODUCTION

The original solution to the scientific problem is to benchmark data imputation tech-

niques in terms of their effect on the performance of different machine learning models

and to conclude that many techniques do not yield high returns compared to the baseline,

which is mean imputation.

Hypothesis 2. Leveraging explanatory machine learning techniques extends the valida-

tion process for the quality of meta-models and meta-features employed in hyperparameter

optimization for tabular data, enabling a deeper understanding of meta-feature impor-

tance and its impact on model performance.

This hypothesis is addressed in Chapter 4, corresponding to the article "Towards

explainable meta-learning" presented at the International Workshop and Tutorial on eX-

plainable Knowledge Discovery in Data Mining (XKDD Workshop) at the European Con-

ference on Machine Learning and Principles and Practice of Knowledge Discovery in

Database 2021 by Katarzyna Woźnica and Przemysław Biecek.

The original solution to the scientific problem is a methodology for studying the impact

of meta-features on the quality of the meta-model using explanatory machine learning

techniques.

Hypothesis 3. Integrating the meta-measure with probabilistic interpretation of model

performance enhances benchmark validation and provides easily comprehensible insights

into model quality, facilitating model monitoring by non-experts in the field.

This hypothesis is addressed in Chapter 5, corresponding to the article "Interpretable

Meta-Score for Model Performance" published in Nature Machine Intelligence in 2022 by

Alicja Gosiewska, Katarzyna Woźnica, and Przemysław Biecek.

The original solution to this scientific problem is the application of an Elo-based

Predictive Power (EPP) meta-score that provides a probabilistic interpretation of model

performance differences into an OpenML benchmark.

1.3.2 Integrating domain knowledge into the AutoDS

The second part is dedicated to incorporating domain knowledge into frameworks and

providing resources to develop new methods addressing this need.

Hypothesis 4. Considering the specificity of the new prediction problem may lead to a

greater transfer of hyperparameters compared to transferring from generic datasets like
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those in OpenML databases, as tailored hyperparameters can better address the unique

characteristics of the problem domain.

This hypothesis is addressed in Chapter 6, corresponding to the article "Consoli-

dated learning: a domain-specific model-free optimization strategy with validation on

metaMIMIC benchmarks" published in Machine Learning in 2023 by Katarzyna Woźnica,

Mateusz Grzyb, Zuzanna Trafas, and Przemysław Biecek.

The original solution to this scientific problem is to propose a consolidated learning

methodology for constructing a meta-train set. In consolidated learning, we take advan-

tage of the similar structure of the datasets that are included in the meta-learning for

hyperparameter optimization.

Hypothesis 5. Incorporating ontologies into Data Exploration enables the injection of

domain-specific information and modeling knowledge from diverse prediction problems,

enriching the understanding of data.

This hypothesis is addressed in Chapter 7, corresponding to the article "SeFNet:

Linking Tabular Datasets with Semantic Feature Nets" submitted to Knowledge-based

Systems in 2024 by Katarzyna Woźnica, Piotr Wilczyński, and Przemysław Biecek.

The original solution to this scientific problem is to propose the Semantic Feature Net

(SeFNet) methodology, which structures tabular datasets based on the semantic similarity

of variables included in the dataset. Semantic similarity is incorporated into the system

using domain ontology.

1.4 Structure of the thesis

This thesis is composed of eight chapters. In Chapter 1, we provide background infor-

mation and motivation behind Automated Data Science. Chapter 2 presents an overview

of methods used in AutoDS and applied in the following chapters, presenting original

contributions to the topic. Original contributions are discussed in Chapters 3-7 and are

divided into two parts. Part I focuses on the evaluation challenges and consists of three

chapters. Part II, considering injecting domain knowledge in the decision system, includes

two chapters. Chapter 8 concludes the thesis and points out future work directions.

Chapters 3-7 include publications published in journals or presented at a conference.

19



CHAPTER 1. INTRODUCTION

The relation between the presented article and the corresponding hypothesis from Sec-

tion 1.3 is outlined in the preface to every chapter.
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Chapter 2

Formalization and methods in AutoDS

This chapter presents the formalization of specific components of AutoDS and describes

the methods applied in the original contributions of this thesis.

AutoDS is difficult to define, but the concept becomes clearer when we outline the goals

set for the field. AutoDS aims to support humans in building decision-making systems

using machine learning models. Such a system should ultimately operate automatically

without human intervention. However, the construction process itself most often requires

this intervention; a human must oversee the selection of operations, their effects, and

their conclusions. Some stages of the process can be automated, mainly technical work

linking successive operations and building the decision-making system as an information

system. Other stages of building the system are more difficult to automate because they

require taking into account domain knowledge and domain-specific requirements. They

are often not expressed in mathematical form, allowing easy integration of these asperities

into the system.

2.1 Model Building in the AutoDS

In this section, we focus on formalizing the Model Building subfield. This is the closely

defined part of the AutoDS.

2.1.1 Formalization of Model Building

The critical concept in Model Building is the dataset providing information about the con-

sidered prediction problems. Because of the desired universality, we should consider
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the whole family of multivariate distributions from which datasets can be generated.

Let us indicate as D family of distributions of tabular datasets. Single dataset D =

(X, Y ) is a finite sample from the joint distribution D = (X ,Y) ∈ D, where X ⊂

Rp is the p-dimensional feature space and Y is the target variable space, categorical or

numerical. The family of distributions D is an abstract concept because, in reality, we

have no such knowledge and only observe the realization of a specific subset of data

distributions. Let D = {D1, D2, . . . , Dm} denote a finite set of datasets, where dataset

Di is the realization of a sampling from the distribution Di.

Let us denote by A the family of all algorithms creating machine learning pipelines and

single algorithm as A ∈ A. The algorithm family is very extensive and includes variety of

ML algorithms such as random forest [26], Extreme Gradient Boosting (XGBoost, [36]),

Generalized Linear Models (GLM, [143]), Support Vector Machines (SVM, [43]) and

neural networks. In machine learning, algorithm A has an encoded set of rules for finding

data patterns and returns the prediction. Finding patterns according to A is called

training and should be performed on training data, but predictions should generalize on

unseen data.

Every algorithmA is dependent on hyperparameter configuration represented as vector

λ = (λ1, . . . , λd) ∈ ΛA ⊂ Rd, where every λi hyperparameter can be discrete or numeri-

cal. Hyperparameters have an impact on internal processing and adaptable parameters.

Examples of hyperparameters are the number of trees in a random forest or the number of

layers in a neural network. The parameters of the ML model are, for instance, weights in

neural networks and coefficients in GLM. The user configures hyperparameters but does

not directly configure parameters.

In general AutoDS definition, family A can be seen as product of spaces of all pre-

processing methods and ML algorithms A = Apreproc×AML. In this thesis, we assume

that preprocessing methods Apreproc ∈ Apreproc are trained on the dataset, and they

return a modified version of the dataset. A machine learning algorithm AML takes as

input any dataset and searches for patterns in it according to the given algorithm. For

simplicity, we assume that algorithm A is a superposition of the preprocessing method

and ML algorithm for given hyperparameter vector λ, and we denote by A(λ, ·).

Predictive model trained along with A algorithm and hyperparameter configuration

λ on dataset sample D we denote as A(λ,D). A predictive model is called an already
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trained algorithm. Thus, an algorithm trained on different data may result in a different

model. Then, the function predicts P for a given trained model A(λ,D) and another

subsample for distribution D return predictions. We denote this as P
(
A(λ,D), Xnew

)
,

where Xnew is a sample of feature space from new subset Dnew = (Y new, Xnew) ∼ D.

To evaluate the quality of the trained model, we use the quality function

L
(
P
(
A(λ,D), Xnew

)
, Y new

)
, mapping trained model and dataset to model performance.

Evaluation metrics are based on the comparison of P(A(λ,D), Xnew) and actual la-

bels Y new.

Model performance can be expressed as one or more dimensional real value vector.

The most common metrics for binary classification are accuracy, F1, or area under curve

(AUC). For regression, the most common is Mean Square Error (MSE). Depending on

the type of measure, we may be interested in the highest possible value (Accuracy, AUC)

or the lowest possible value (RMSE, Error Rate). However, in the following discussion,

we assume we want to achieve the highest possible measure. In the case of decreasing

measures, the negative value of the measure can be maximized.

For every algorithm, hyperparameter configuration and dataset, we attempt to esti-

mate the expected value of the performance for a random sample of observations given as

G(D,A, λ) = EDtrain,Dnew∼D L
(
P(A(λ,Dtrain), Xnew), Y new

)
. (2.1)

Two samples Dtrain, Dnew = (Y new, Xnew) are drawn independently from the same

distribution D. However, in practice, we observe only a finite sample from D ∼ D, so we

estimate Equation 2.1 using k-fold cross-validation as

G̃(D,A, λ) = 1

k

∑
i=1,...,k

L
(
P(A(λ,Dtrain(i)), X test(i)), Y test(i)

)
, (2.2)

where Dtrain(i) and Dtest(i) = (Y test(i), X test(i)) are train and test sample in i fold.

Implementation details about cross-validation may be found in [202].

The main objective of hyperparameter optimization for a prediction problem D, is to

find λ∗ configuration, optimal concerning the expected value of model performance

λ
∗
= argmax

λ∈ΛA
G(D,A, λ). (2.3)

So far, we consider one algorithm A and maximize its performance. However, it is
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possible to generalize this concept to Combined Algorithm and Hyperparameter Selection

(CASH, [208]), and then we optimize not only the hyperparameters but also the choice

of algorithm, i.e.

A∗, λ
∗
A∗ = argmax

A∈A
λ∈ΛA

G(D,A, λ). (2.4)

The CASH problem is a double loop, where the outer loop explores the discrete space of

algorithms, and the inner loop solves the Hyperparameter Optimization problem. CASH

can also be approached as a regular optimization problem where the choice of a classifi-

cation algorithm is modeled as a categorical variable, and the algorithm hyperparameters

are modeled as conditional hyperparameters [208].

The hyperparameter optimization problem presented in this section is a black-box

optimization problem and most often reduces to iterative testing of successive configu-

rations of hyperparameters. Hyperparameter optimization methods differ in the way in

which successive points are proposed. We denote the finite set of T configurations for

the algorithm A as

ΛA
T = (λ1, . . . , λT ),

where λi ∈ ΛA for every i = 1, . . . , T . Various methods for selecting hyperparameters ΛA
T

are presented in Section 2.1.3.

In the case of numerical hyperparameters, the search space can be infinite, while we

are able to test a finite number of configurations.

So, we may not find the best algorithm globally, but we want to find the best possible

solution after a small number of iterations. When interrupted, hyperparameter opti-

mization methods should return the best configuration found so far to ensure anytime

performance [105].

2.1.2 Average Distance to Maximum

In this section, we define the Average Distance to Maximum to assess the quality of a

given hyperparameter optimization strategy S.

Let Dmeta−test = {D1, D2, . . . , Dm} denote a finite set of datasets, where the dataset

Di is understood as the realization of a sampling from the distribution Di. Some hyper-

parameter selection strategies are themselves algorithms using meta-learning described
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in more detail in Section 2.1.4. They should be tested on an independent collection of

datasets to check the generalizability of these strategies. Hence, we call this dataset a

meta-test.

We assume that strategy S returns a finite set of hyperparameters for each dataset

Di dataset from Dmeta−test and denote as S(A, Di) = ΛS,A,i. Some strategies, such as

Bayesian optimization, may provide different collections for every dataset Di.

Then, the Average Distance to Maximum (ADTM) in k iteration is defined

ADTM(Dmeta−test, S,A, k) =
1

|Dmeta−test|
∑

Di∈Dmeta−test

min
λ∈ΛS,A,i

1:k

limax − li(λ)

limax − limin

, (2.5)

where li(λ) = L
(
P(A(λ,Dtrain

i ), X test
i ), Y test

i

)
standing for the model perfor-

mance for test sample of Di dataset is scaled with the difference between

lmax
i = maxλ∈ΛA L (P(A(λ,Dtrain

i ), X test
i ), Y test

i ) and lmin
i defined analogously. Moreover,

|Dmeta−test| indicates the cardinality of meta-test set, and ΛS,A,i
1:k returns k-first elements

of ΛS,A,i.

ADTM determines how far we are from the optimal solution for a given algorithm

after running k iterations of optimization for the entire set of datasets. Since the results

for different datasets may be on a different scale, we use appropriate scaling.

Most often, ADTM is used not for a specific optimization step but for the whole series

of, for example, the first 100 iterations. The results are mainly compared on plots.

2.1.3 Hyperparameter optimization methods

This section presents various hyperparameter optimization (HPO) methods for a specific

machine learning algorithm, denoted as A.

For dataset D, optimization strategies involve conducting trials with a finite sequence

of hyperparameter values ΛA,D
T = (λ1, . . . , λT ), where T is the number of iterations, which

depends on the available budget in terms of time or computational resources. This finite

set of hyperparameters should provide the best possible performance model according to

the Equation 2.2. Hyperparameter optimization methods differ in selecting configuration

points λi.

Generally, we can divide HPO methods into two groups:

1. Offline methods involve conducting iterations of optimization and testing new solu-
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tions independently. The knowledge of previously tested solutions does not influence

the selection of subsequent points. This independence makes these methods easily

parallelizable. Offline methods are highly versatile and can be easily compared

across different experiments since the set of tested points can remain consistent.

2. Online methods are influenced by previous iterations of optimization. The selection

of new candidate points is iteratively updated based on the performance of points

of earlier iterations. Online methods need to balance exploring the hyperparameter

domain and focusing on subspaces yielding good performance.

Offline methods

The most known offline methods are grid search and random search [12]. These methods

are based on testing a finite number of hyperparameter configurations selected indepen-

dently of each other.

Both methods are entirely independent of the dataset, and optimization must start

from scratch without knowing which hyperparameters may impact the model performance

most. So, many optimization iterations are often needed to find near to optimal solutions.

In addition, as offline methods, they do not use the information obtained in the earlier

runs, namely which model algorithm settings resulted in a good performance model.

However, their advantages are ease of usage and parallelization of computation.

Grid search

Grid search (GS) uses a predefined set of values for every hyperparameter λk
i . Then, every

combination (the Cartesian product) of predefined hyperparameter values is evaluated,

and the best configuration is selected. In this method, users usually define fixed values as

a set of discrete values for every hyperparameter. If it is a continuous hyperparameter,

the most common way is to use evenly distributed points from a fixed interval. Sometimes

hyperparameter value transformations are used to provide better coverage of the search

space; for example, if the range of values is extensive, it is worth considering an exponential

transformation of the points [170].

This approach suffers from the curse of dimensionality because the number of required

function evaluations grows exponentially with the dimension of the configuration space.

When the optimization budget can be increased, or a satisfactory solution has not been
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Figure 2.1: Taken from [12]. Comparison of grid search and random search for two-dimensional
hyperparameter space. The hyperparameters on the X-axis significantly impact the model’s
quality, whereas those on the Y-axis have a minor effect. In grid search, using all possible
combinations of a fixed set of hyperparameters results in testing only three values of an important
hyperparameter. Random search, with the same number of configurations tested, allows for
testing up to nine different values of this crucial hyperparameter.

found, increasing the resolution of discretization significantly raises the number of function

evaluations needed. Adding only one value for a particular hyperparameter means that

hundreds of configurations often have to be tested. What is essential is that grid search

must be carried out holistically because interrupting it in progress can cause some of

the hyperparameters to go unchecked. The simple solution is to randomize the order

in which the values for each hyperparameter are changed to introduce variation for all

hyperparameters fairly evenly.

Random search

In random search (RS), we do not define fixed values, but we define the marginal distri-

butions from which values are sampled

λk
i ∼ λk, (2.6)

where λk is a priori defined marginal distribution for k-configuration of hyperparam-

eter. These distributions must be specified by users. The most popular choices are

uniform distribution from fixed intervals for numerical hyperparameters or finite collec-

tions for categorical hyperparameters. If the numerical hyperparameter is not bounded,

the exponential distribution is often chosen [170].

The most significant change from grid search is the independent sampling of each
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hyperparameter value in a configuration [12]. This change makes it possible to search

the hyperparameter space more efficiently than grid search when some hyperparameters

have little impact on the performance of the models. A diagram showing an example of

a set of hyperparameters for grid and random search is shown in Figure 2.1. The hyper-

parameters on the X-axis have a large effect on the quality of the model, while the hy-

perparameters on the Y-axis have a small effect. In grid search, only three values of a

significant hyperparameter are tested by using all possible combinations of a fixed set of

hyperparameters. In random search, with the same number of configurations tested (and

therefore the same optimization cost), we test as many as nine different values of this

hyperparameter.

Furthermore, unlike grid search, random search offers flexible resource allocation. This

flexibility allows for adding any random hyperparameter configuration to a random search

design while still maintaining the integrity of the random search approach.

Grid search and random search are straightforward to use and have also found wide

applications in research. According to [22], most survey respondents answered that these

are the techniques they use to find hyperparameters. Random search is also integrated

into AutoML frameworks such as H2O AutoML.

Bayesian optimization

Bayesian optimization-based methods are the most known examples of online methods,

sometimes called Sequential Model-Based Optimization (SMBO, [96]). In Bayesian opti-

mization, the objective is to benefit from exploring new, previously unexamined regions

while sampling from those with a known history and demonstrated efficacy [96, 13, 197].

This Bayesian optimization consists of two functions. One is a surrogate model,

the purpose of which is to specify the quality of the model on unseen values of hyper-

parameters. The surrogate model should also provide an uncertainty of the estimated

value. This uncertainty is supposed to be high in unexplored regions but low close to al-

ready checked points. The second component is the acquisition function, which balances

estimated model performance and its uncertainty coming from the surrogate model to

propose a new configuration for validation. Thus, acquisition function trade-off explo-

ration vs. exploitation of hyperparameter space. Most often, the exploration component

has more weight at the beginning, but over time, the exploitation of promising subspace
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Figure 2.2: A demonstration of Bayesian optimization on a 1-dimensional maximization prob-
lem taken from [192]. The figures illustrate a surrogate model, specifically a Gaussian process,
across four iterations of sampled objective function values. Each panel’s bottom section displays
the acquisition function. This function peaks where the surrogate model forecasts a high objec-
tive (exploitation) and where the prediction uncertainty is high (exploration). Areas exhibiting
both characteristics are prioritized for sampling. The region on the far left remains unsam-
pled because, despite its high uncertainty, it is expected to provide minimal improvement over
the highest observed value.

becomes more prevalent.

The next point to be checked is selected as the point maximizing the acquisition

function. After checking the actual value of the objective function at this point, it is

included in the recorded history, based on which the surrogate model is trained. So, in

Bayesian-based optimization methods, the set ΛT is selected at runtime, and configuration

λi is determined by an acquisition function which is based on the model performance for

the preceding values λ1, . . . , λi−1.

The performance of Bayesian optimization is mainly affected by choice of surrogate

model and the acquisition function [134]. In the case of the surrogate model, it is essential

that it estimates the uncertainty of the estimated values. The best-known model that

meets such a condition is the Gaussian Process (GP, [174]). However, Gaussian Processes

are only suitable for continuous hyperparameters. In addition, they scale poorly, which is
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a major practical limitation because many ML algorithms have a multidimensional space

of hyperparameters. Therefore, another surrogate model is the Tree Parzen Estimator

(TPE, [13]). This model addresses the main weakness of GP because it is adapted to

discrete hyperparameters and scales to high-dimensional spaces. TPE implementation is

available in the most known package for Bayesian optimization – SMAC [135], which is

used in Auto-sklearn and AutoWEKA.

Also, the acquisition function can be specified in different ways. The Probability of

Improvement (PI) is the simplest and measures the likelihood that a new point will im-

prove upon the current best observation. Expected Improvement (EI, [113]) extends this

approach and quantifies the expected gain from sampling at a particular point. Alterna-

tives are Upper Confidence Bound (UCB) and Thompson Sampling [34]. Each acquisition

function has unique characteristics and applications: PI tends to be more exploitative, EI

balances exploration and exploitation effectively, UCB allows for a clear trade-off between

the two, and Thompson Sampling is advantageous in high-dimensional spaces.

Optimization efficiency is also affected by initial conditions such as the number and

values of starting points and the distribution from which hyperparameters are drawn.

Hvarfner et al. [99] show that it is possible to modify the distribution to express users;

belief in the dependence of model performance on the value of the hyperparameters.

In later iterations, this distribution is updated and improved depending on the results

obtained in the optimization.

2.1.4 Meta-learning

The optimization methods presented so far work only on the basis of information from a

single dataset. It is natural to use the knowledge from previous experiments to focus on

hyperparameters that have the greatest impact. Using information from previous exper-

iments to improve the pipeline-building process is the essence of meta-learning [217]. In

this section, we focus on using meta-learning in meta-task of optimizing hyperparameters

for ML algorithms operating for tabular datasets.

For tabular data, most meta-learning methods have a two-step structure [111]. In

Figure 2.3, we show the schema of the procedure. The first step is finding the expressive

representations of each dataset Di, and we refer to this meta-extractor as function ϕ :

D → Rk, where k stands for the size of the representation.
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Figure 2.3: Schema of high level intuition behind meta-learning for tabular datasets and HPO.
The first step is finding the representations of each dataset by meta-extractor ϕ. The second
step is the meta-model θ, which, based on the given representation, aims to provide information
about the quality of the hyperparameters.

The second step is the meta-model θ, which, based on the given representation, is to

solve the considered meta-task. In the case of the hyperparameter optimization meta-task,

the meta-model aims to provide information about the quality of the hyperparameters.

This information can take various forms, e.g., a prediction of the performance model for a

given configuration or a proposal for a finite set of configurations to be checked. In the first

case, the meta-model performs based on the dataset representation and hyperparameter

configurations predicting the model performance θ : Rk ×ΛA → R. In the second, how-

ever, based on the representation, the meta-model returns a finite set of hyperparameter

configurations θ : Rk → {ΛA}Tj=1.

Meta-learning most often defines at least two sets of datasets. One of them, Dmeta−train

is used for meta-model training, while Dmeta−test is used to check the quality of the meta-

model. A frequently used method to make efficient use of datasets is an analogous

approach to leave-one-out cross-validation, namely, leave-one-dataset-out. In addition,

sometimes, when the meta-extractor also needs training, we should consider an additional

set of datasets.

Meta-features extractor

For tabular data, finding representations of datasets is a non-trivial challenge and is still

an open problem. First, meta-extractor representations should correlate with the quality

of trained models with given hyperparameters. The meta-extractor should also operate

on datasets of different dimensions [111].

The initial approach in finding representation for tabular datasets is the collection of

predefined meta-features described by Rivolli et al. [179]. We can highlight the following

categories of predefined meta-features:

1. Simple - basic statistics that summarize the dimension of the data. They include
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the number of variables, the number of observations, and the number of numeric or

categorical variables. Often, attention is also paid to imbalanced data in terms of

both the response variable and individual explanatory variables.

2. Statistics - characteristics of distributions of individual numerical variables. For

one variable, statistics include primarily moments of distributions such as mean,

variance, kurtosis, and skewness, as well as correlation and covariance between any

two variables. Statistical meta-features for a given dataset are deterministic. Also

included in this group are measures that determine the predictive power of individual

variables, e.g., the accuracy of a model based on a given variable.

3. Information-theoretic based - meta-features that summarize the amount of infor-

mation transmitted in categorical data. The entropy of the variables represents

uncertainty associated with them [189]. Mutual information and joint entropy are

used to assess the relationship between features and targets.

4. Model-based - meta-features extracted from trained predictive models. The idea

behind these meta-features is to better capture the data’s complexity. For multi-

dimensional data, statistical meta-features may not express variability sufficiently.

However, extracting features from predictive models can capture higher-order depen-

dencies and interactions that can be crucial in finding an appropriate representation.

It is advisable to use algorithms that are both simple and fast to train, especially

when dealing with large datasets. In practice, the majority of model-based meta-

features are derived from decision trees. Some examples of such features include

the depth of a decision tree without any pruning or the node count of that same

tree.

5. Landmarkers - meta-features that are at a higher level of generality than model-

based ones. They stand the performance of these simple models such as Naive

Bayes or Decision Tree with default hyperparameters. Landmarkers are a kind of

baselines that signal the intrinsic difficulty of a given prediction problem.

Predefined meta-features are available for datasets in the OpenML repository. In

addition, to ensure reproducibility and comparability, Alcobaça et al. [3] create the MFE

package that computes the given set of meta-features.
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Statistical and informatics-based meta-features are mostly calculated for each variable

separately. To ensure that the meta-extractor will provide representations of datasets in

the same dimension space, regardless of the dataset dimension, it is necessary to aggregate

the meta-feature values. The most common aggregation is the mean, but sometimes also

minimum or maximum are applied.

The aforementioned set of meta-features has been used in many works regarding

the optimization of hyperparameters [230, 229, 60]. However, such a broad collection

of meta-features turns out to be necessary because different statistics are informative

depending on the considered meta-task. Bilalli et al. [17] showed that different sets of

meta-tasks are valid for a classification problem and others for regression.

In addition to predefined meta-features, a new approach to finding representations is

to use encoder-based meta-extractors. Then, the meta-extractor optimizes the dataset’s

representation, and the user most often has to define only the size of this representation.

In the case of this type of meta-extractor, the greatest difficulty is to ensure schema-

agnosticism so that the meta-extractor works on diverse datasets with different structures.

The first such model is Dataset2Vec [111], but also FLAT [240] operates on a similar

principle. Dataset representations can also be extracted from other models that work for

heterogeneous tabular datasets [101].

Meta-models

Based on how these meta-features are utilized, we may define the following types of meta-

learning frameworks.

1. Sequential surrogate meta-models employ meta-features to assess the similarity

between meta-train datasets and new task. Then, meta-models use these similar-

ity measures as weights to configuration transfer. A meta-learner does not use

meta-features explicitly; they are compressed to similarity measures, so it is more

challenging to understand the meta-features impact.

Extensions of SMBO are used to propose new hyperparameters with the potential

for good model performance on the new dataset. The MI-SMBO procedure [60]

uses the best predicted hyperparameters from similar datasets to select the initial

points to optimization for novel data. Two definitions of similarity between meta-

features vectors are proposed: the p-norm of the difference between the datasets’
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meta-features and a metric that reflects how similar the datasets are concerning

the performance of different hyperparameter settings. The meta-features modifi-

cation is utilized in the main optimization step in a surrogate Gaussian Process

(GP) for all tasks simultaneously [234]. To measure similarities between instances,

they use a squared exponential kernel and the nearest neighbor’s kernel. This ap-

proach is extended to become more scalable in Wistuba et al. [230, 231]. They fit

separate GPs for each task in the meta-data, then aggregate them into one using

the Nadaraya Watson kernel.

2. Black-box surrogate meta-models directly predict model performance for given

hyperparameter settings and a given dataset described with the meta-feature vec-

tor. A meta-learner is a regression model, and meta-data has a tabular format –

every dataset is represented as a vector with a sequence of meta characteristics [24].

Firstly, this generic approach is proposed by Giraud-Carrier et al. [73]. The au-

thors provide a knn-ranking method to rank candidate models. Vilalta et al. [219]

also consider this approach in the meta-model framework and suggest the potential

source of meta-features. Reif et al. [176] use the SVM model as a meta-regressor and

utilize a broad scope of meta-features: statistical and information theory measures,

model-based features, and landmarkers. For every machine learning algorithm, they

train the meta-learner independently because of different hyperparameter configu-

rations. Similar meta-features are applied by Davis and Giraud-Carrier [46], but

the meta-learner is a Multilayer Perceptron. Probst et al. [170] extend the idea of

surrogate benchmarks and train surrogate regression to map hyperparameter con-

figuration to model performance.

Both perspectives on meta-learning models empirically prove that transferring knowl-

edge from independent tasks is beneficial. The sequential approach requires the valida-

tion of each step separately, and it is more challenging to explore interactions between

meta-features and hyperparameter configurations. On the other hand, the black box

meta-model is very similar to the classic machine learning approach. It, therefore, offers

excellent opportunities for analogous model exploration methods.
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Hyperparameter portfolio

Hyperparameter portfolio is a particular case of meta-learning since at least one portfolio

configuration should parameterize a good-quality model for previously performed exper-

iments and should transfer this good performance to a new dataset. We assume that at

least one configuration will be promising for new, unknown data. The data repository,

based on which we determine the portfolio, is called a meta-train set, and new target

prediction problems are called a meta-test.

A predefined, limited set of hyperparameter configurations optimized for a wide range

of datasets has been shown to give comparable results to Bayesian optimization [229,

167] and proves to be even better when considering anytime performance. Moreover,

the portfolio approach may be seen as an extension of the default hyperparameter values

that is easy to share and parallelize. In the first studies introducing this method, all

meta-train datasets have the same relevance for the portfolio composition due to their

independent weighting. Therefore, to enhance the impact of meta-learning, Feurer et al.

[62] use meta-features (i.e., vectors of dataset characteristics) to evaluate the dataset

similarity. Subsequently, during portfolio development, a higher weight is given to a

good configuration of hyperparameters from meta-train sets more similar to the new

data. This approach combines the online and offline procedures since a static portfolio

leverages the most effective configuration for similar datasets, assuming their optimized

functions have similar learning curves. The use of meta-train datasets reduces the time

for the early iterations in Bayesian methods.

Algorithm 1 Average SMFO
Require: Set of feasible hyperparameter configurations Λ, set of datasets D, number of

maximal tries T
Ensure: Sequence of hyperparameter configurations to evaluate.
λ← ()
while T > 0 do

Λ∗ ← CANE(Λ \ λ, T,D)
T ← |Λ∗|
λ← λ ∪ Λ∗

end while

The most well-known method of portfolio construction is the A-SMFO algorithm pro-

posed in [229] and presented in Algorithm 1. It is based on the principle of composing

a portfolio complementarily according to the Algorithm 2 and repeating this operation
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until you get a portfolio of the expected size. The model portfolio performance on a set

of datasets is defined as the average of the best model quality for each dataset obtained

by the considered models. In each step, we check which configuration of hyperparameters

most improves the portfolio performance on a fixed set of datasets D, and such configu-

ration is added to the previously selected set. Such an improvement function is denoted

as L∗ in the algorithm.

Algorithm 2 CANE Optimal Sequence
Require: Set of feasible hyperparameter configurations Λ, set of datasets D, number of

maximal tries T
Ensure: Sequence of hyperparameter configurations to evaluate.
Λ0 ← ()
for t = 1, . . . , T do

λt ← argmaxλ∈Λ L
∗(λ,Λt−1,D)

Λt ← Λt−1 ∪ λt

if every dataset has the best hyperparmeter in Λt then
return Λt

end if
return Λt

end for

2.2 Data Engineering

Before we start building a machine learning model, it is necessary to prepare the data,

as the data quality is crucial to the entire pipeline. Data Engineering, which involves

the technical aspects of data processing, is time-consuming and laborious, making it a

natural target for automation. Due to the multitude of aspects involved in data prepa-

ration, De Bie et al. [47] have proposed dividing data engineering into three high-level

themes: (1) data organization, (2) data quality, and (3) data transformation. . These

themes help structure the approach to handling data, ensuring it is properly organized,

high-quality, and appropriately transformed for model building.

ETL (Extract, Transform, Load) is a common term closely related to data engineering,

which refers to a process used in data warehousing and integration. Data engineers may

utilize ETL processes to ensure that data is correctly collected, transformed, and loaded

into the systems they manage. However, data engineering encompasses a broader range of

responsibilities beyond ETL, including developing and maintaining data infrastructure,

pipelines, and systems for efficient data management and analysis. It often intersects
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with data exploration, creating potential feedback loops, but remains primarily focused

on providing high-quality input data for models built during the model-building phase.

In this thesis, the primary focus in Data Engineering is on data transformation, which

involves preparing the data so that machine learning algorithms can effectively operate on

it. Correctly applying transformations is crucial and often challenging, as inappropriate

application can lead to poor generalization on new data samples. Preventing data leakage,

which can introduce bias, is especially important when working with large datasets. To

avoid this, transformations should be trained on training data and only adjusted on

new data. Additionally, it is essential to ensure that the target variable is appropriately

separated to maintain the integrity of the model training process.

2.2.1 Imputation methods

A significant challenge in the field of machine learning is the handling of eventual data

gaps that occur in datasets. This is a common problem across various domains, with

a notable example being in medicine. Medical datasets often contain missing values for

various reasons, such as patient dropouts, incomplete records, or errors in data collection.

Most machine learning algorithms are not designed to handle missing data natively.

As a result, it is necessary to use data imputation methods to fill in these gaps before

proceeding with analysis or model training. Without proper handling of missing data,

the performance of predictive models can be severely compromised, leading to biased or

incorrect conclusions.

Numerous data imputation methods have been developed to address the issue of miss-

ing data. These methods are predominantly designed by statisticians who use various

techniques to estimate multivariate distributions and propose values for the unobserved

data. Some of the most common imputation techniques include:

- Mean/Median/Mode Imputation. Simple methods that replace missing values with

the mean, median, or mode of the observed data. These imputations are easy to

implement but can introduce bias into data and reduce its variability.

- Hot Deck Imputation [7]. This group of methods involves replacing missing values

with observed values from similar records (donors). The various methods differ

in how they determine these similar observations, but in most cases, they preserve
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the original distribution of the data. Hot Deck Imputation techniques are introduced

as an extension of cold deck imputation, which uses values from an external data

source, such as historical data. However, hot deck imputation can still be used when

the additional data is unavailable or of poor quality.

- Regression Imputation. Regression models are also applied to predict and fill in

missing values. For each variable with missing data, we build a regression model

(linear or logistic regression) and model the values of that variable in relation to

other variables. The user can specify a subset of variables. Such an operation is

repeated for other variables with missing data. These methods can introduce bias if

the underlying model assumptions are violated but also help maintain the dataset’s

natural variability.

- Machine Learning-Based Imputation [214]. The assumptions in this case are very

similar to those in Regression Imputation, but machine learning models are used

here. Often applied algorithms are k-nearest neighbors [65], random forests [26],

neural networks, or gradient boosting [36]. These algorithms can capture complex

patterns and interactions in the data.

- Expectation-Maximization Algorithm (EM, [182]). EM algorithm is a robust

method for imputing missing data by iteratively refining estimates of the missing

values. The algorithm operates in two main steps: the Expectation (E) step and

the Maximization (M) step. Initially, it starts with an initial guess for the missing

values. During the E step, the algorithm calculates the expected log-likelihood of

the data, including both observed and missing parts, given the current estimates

of the missing values. In the M step, it maximizes this expected log-likelihood to

update the estimates of the model parameters. These updated parameters are then

used in the next E step to re-estimate the missing values. This process is repeated

until convergence. These methods can handle complex data structures and depen-

dencies.

- Matrix factorization methods [86]. This is a class of algorithms for imputing miss-

ing data by decomposing a large matrix into the product of two lower-dimensional

matrices. They are borrowed from Collaborative Filtering in recommended systems.

Here, the original dataset is represented as a matrix with missing values and is ap-
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proximated as the product of two matrices: one representing the latent features of

the rows (e.g., users) and the other representing the latent features of the columns

(e.g., items). Initially, these matrices are imputed with random values. The al-

gorithm iteratively adjusts the values in these matrices to minimize the difference

between the observed entries in the original matrix and their approximations.

The basic imputation method is Single Imputation, which performs a single impu-

tation of a missing value according to one of the abovementioned techniques. However,

the main problem with this approach is the lack of evaluation of the uncertainty and

potential variance of the imputed values. The solution to this issue is to use Multiple

Imputation [182], which consists of three steps:

1. generation of multiple pooled versions of the dataset by sampling observations.

This approach gives us several versions of the dataset on which the imputation is

performed.

2. independent imputation for each dataset,

3. aggregation of the imputed values and evaluation of their variance.

Data imputation techniques are primarily evaluated for the accuracy of the imputed

data and compared with known values. In addition to accuracy, the behavior of the distri-

bution of the original data is also evaluated. In both cases, it is best to have information

about ground truth values so they are most often evaluated for simulated data.

2.3 Data Exploration and Exploitation

Model Building and Data Engineering have so far been included as an integral part of

AutoML frameworks, while Data Exploration and Exploitation have been treated more

as independent pre- and post- pipeline building steps performed by users. Moreover,

they are the broadest aspects of AutoDS and can include many human interactions with

data in the case of Data Exploration and model results in Exploitation. For this reason,

descriptions of the aspects of these two subfields that are used in the original results of

this thesis are presented in the corresponding chapters.
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2.4 Selected methods to improve trust in AutoDS

In addition to methods and techniques typical of AutoML and AutoDS, this thesis employs

additional techniques to address the need for greater trust in components of the Auto-

mated Data Science process.

2.4.1 Understanding evaluation: Explainable Artificial Intelli-

gence

Explainable Artificial Intelligence (XAI) methods are increasingly integrated into AutoML

frameworks to enhance interpretability in the models they generate. In addition, XAI is

increasingly being used to interpret the pipeline generation process with a particular focus

on hyperparameter optimization [152, 187]. However, XAI provides more opportunities,

and this section discusses XAI methods that can be used as an extension of the evaluation

and selection process that occurs in AutoDS.

Variable Importance

One fundamental approach to explaining ML models is through model-agnostic variable

importance measures [64]. This class of methods aims to evaluate the importance of each

feature in a predictive model to understand which features have the most influence on

the model’s predictions.

A commonly used technique in this category is Permutation Variable Importance. This

method evaluates the importance of a single variable by attempting to remove its effect

on the model’s estimation. One way to do this is by disrupting the relationship between

the target variable and the variable in question by permuting the values of the considered

feature.

The Permutation Variable Importance measure depends on the change in the model

performance of algorithm A with hyperparameters λ before and after perturbations in

a subset of variables Xk. Formally, we define the Permutation Variable Importance of

variable Xk as

vip(k) =
G(D−k,A, λ)
G(D,A, λ)

, (2.7)
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where Di is original data distribution and D−k
i is distribution ignoring the relationship

between Xk and (Y,X−k). This distribution is usually a product of marginal distributions

of Xk and (Y,X−k) from Di. Sometimes, instead of the ratio between the model perfor-

mance before and after permutation, the difference of these two values is applied [16].

In a basic implementation, Xk consists of just one variable; however, it can also be ex-

tended to a larger set of variables. In that case, the relationships within Xk are preserved,

while the other variables are permuted.

The method of generating perturbed observations, which affects the joint distribu-

tion of the data, is often pointed out as a drawback of this approach. However, other

approaches that are more robust to disruption of the relationship structure between vari-

ables have a significantly higher computational cost [94]. In addition, the importance of

selected samples has been raised repeatedly in the context of the data drift. If the model

does not generalize well, then the initial model performance will be lower, and thus,

the importance of the variables will also appear lower.

In addition to global methods that provide an overall ranking of importance across

the dataset, local methods for measuring variable importance are being developed to

assess the importance of features to individual predictions. One prominent method is

Local Interpretable Model-agnostic Explanations (LIME, [178]), which approximates a

model locally with an interpretable model by perturbing the input data around the in-

stance to be explained. Meanwhile, Shapley Additive exPlanations (SHAP, [137]) derives

from cooperative game theory and provides a measure of feature importance by assigning

the difference between the actual prediction and the average prediction to each feature.

Triplot

Despite various modifications of variable importance measures, whether at the global

or local level, it is still unclear how to deal with the structure of correlated variables.

Triplot [162] is one method that addresses this problem and supports model analysis by

exploiting the information about the correlation between variables. In addition, triplot

provides a new visualization method for this multilevel technique.

The whole method consists of two components. The first focuses on capturing the cor-

relation structure between variables. The assumption is that the correlated variables

should be grouped together into a set called aspect. Since we do not know what degree
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Figure 2.4: Example of the global variable importance in FIFA dataset taken from [162]. The left
panel displays variable importance determined by permutation variable importance. The right-
most panel illustrates a hierarchical arrangement of variables, where each level represents aspects
formed by variables linked by lines. The central panel depicts the same structure but includes
information on the relevance of each aspect.

of correlation is relevant to the model’s performance, we do not consider a single cutoff

point but perform a hierarchical clustering operation on the variables. This gives us a

hierarchical structure of the variables, and we can easily modify the cutoff to determine

which variables are correlated. In addition to the groups of variables determined from

the correlation structure, this method can be used in domain-specific applications where

there is domain knowledge of which variables should be grouped together. For exam-

ple, in the FIFA dataset, variables can be divided into characteristic sets of soccer skills

important in particular positions.

The second component is the evaluation of the significance of the variables. Triplot

can summarize both global and local variable importance. In the case of global, it uses

grouped Permutation Variable Importance for each grouping into the aspects specified in

the clustering. As local importance, it uses a modified LIME method.

To capture all aspects of this model analysis approach, the triplot is composed of
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three panels. Figure 2.4 shows an example of the global importance of variables taken

from [162]. The left panel shows variable importance based on permutation variable

importance. The far right panel shows a hierarchical structure of variables where, at

each level, aspects are formed by variables connected by a line. The middle panel shows

the same structure but with the aspect’s relevance information applied.

Partial Dependence and Individual Conditional Expectation Plots

In addition to summarizing the importance of variables, we can also study how changes in

the value of a variable affect the prediction value. The primary global method used for this

purpose is Partial Dependence Plots [66], while the local one for individual observations

is Ceteris Paribus Plot [16] also called Individual Conditional Expectation Plot [75, 150].

The main concept behind constructing these profiles is to illustrate the expected value

of the model’s prediction changes as a function of a chosen explanatory variable. Thus,

to determine the PDP profile for variable Xk at point z, we must calculate the expected

value from the marginal distribution of the other variables as

gPDP
k (z) = EX−k∼D P

(
A, (Xk|=z)

)
,

where for simplicity A denote here already trained model. What is more, vector X−k

indicates the random vector with excluded k-th variable, and Xk|=z stands for the ran-

dom vector with fixed k-th variable to value z. The estimation of this expectation value

is carried out by averaging the prediction for artificial observations from a marginal dis-

tribution with a fixed value of the variable Xk into a z. In practice, the most partial

consideration is given to all observations in the dataset; only the value of Xk is replaced.

The equivalent of PDP for single observations is the Ceteris Paribus profile, showing

the dependence of an instance X∗ prediction as

gCP
k (X∗, z) = P

(
A, (X∗

k|=z)
)
, (2.8)

where X∗
k|=z stands for a vector that has all variables set to the values of observation X∗,

but the value of the variable Xk is modified.
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CP can be seen as a decomposition of PDP profiles since aggregating and averaging

CP profiles over observations yields just the PDP profile. In the case of additive models,

the profiles for different observations are parallel to each other. If, on the other hand,

they intersect, then there may be interactions in the model.

2.4.2 Understanding domain

In order to incorporate domain knowledge into AutoDS systems, it is first necessary to

formalize this external information in an appropriate way. This is achieved through the use

of an ontology.

Ontologies

Ontologies are formalized systems that describe a set of concepts and their relationships

within a specific domain, providing a structured framework for organizing and integrating

knowledge. In scientific and technical contexts, ontologies play a crucial role in enabling

consistent data annotation, semantic interoperability, and automated reasoning. Here, we

delve into the formal definition, components, and applications of ontologies.

Definition and Formalism

An ontology O is typically defined as a tuple O = (C,R) where C defines a set of

concepts that represent a particular domain of knowledge, along with the relationships R

between those concepts [80]. In order for the ontology to be properly defined, the classes

and relations must take into account the axioms representing the rules and constraints in

the domain. Algorithmically, ontology can be considered a Directed Acyclic Graph [209]

when relations create a hierarchy or partial ordering of concepts, namely, each concept

can have one or more parent and child relationships, but any concept is an ancestor of

itself.

Ontologies have a wide range of applications across various scientific and technical

fields, serving as essential tools for organizing and utilizing complex information. In

biomedical informatics, ontologies such as the Gene Ontology (GO,[8]) and the Foun-

dational Model of Anatomy (FMA,[180]) provide structured vocabularies that facilitate

the annotation and integration of biological data, thus enhancing discoveries and promot-

ing interoperability between databases. For example, GO defines classes such as Biological

Process, Cellular Component, and Molecular Function, along with their interrelationships
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and axioms, which enable queries and inferences about gene functions. In the context of

the Semantic Web, ontologies are crucial for enabling machines to understand and pro-

cess domain content in a meaningful way. The Web Ontology Language (OWL,[78]) is

frequently employed to create and share ontologies in this context.

Through the structure of ontologies, semantic relationships and similarities between

different concepts can be evaluated. There are many methods for evaluating semantic

similarity using graph structure of connections. The most basic measure is the length

of the shortest path between terms [172]. This simple method does not always corre-

spond to the properties we want to represent, so other definitions have been developed

using the specificity of a term. Examples of these are similarity measures developed in

the biomedical field by Resnik [177], Lin et al. [133], and Jiang and Conrath [106]. An-

other approach to finding semantic similarity is to create embeddings of ontology terms

and then evaluate the distance between their representations. The OWL2Vec [35] is an

example of an ontology embedding approach.

Despite so many successful applications, from the AutoDS point of view, ontologies

are a new tool and their potential has not yet been explored.
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Part I

Evaluation of the individual stages of

the AutoDS
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In the first part of the thesis, we discuss the aspect of evaluation of the various elements

of AutoDS. In order to increase confidence in the frameworks, we want to extend the

perspective beyond just numerical evaluation and provide users with an in-depth analysis

of why particular operations are applied.

In this part, we focus on three aspects of Automated Data Science.

Chapter 3 discusses the evaluation of imputation methods, which has to be carried

out during the Data Engineering step. This aspect of data preprocessing has not been

validated early on, and missing data is a relevant problem due to its prevalence and the

fact that most machine learning algorithms do not handle missing data.

Chapter 4 is an extended evaluation of the meta-features used in meta-learning. This

work fits into the Model Building field, as meta-learning is part of model optimization.

This evaluation is based on a multi-faceted analysis of the meta-model with the application

of explainable machine learning techniques.

Chapter 5 is to extend the evaluation of machine learning benchmarks to provide

more information than just a comparison of performance measures. The EPP meta-

score provides an additional probabilistic interpretation and a function aggregating the

performance model between multiple repetitions of the experiment.
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Chapter 3

Does imputation matter? Evaluation of

preprocessing method

This chapter corresponds to the article Katarzyna Woźnica and Przemysław Biecek. Does

imputation matter? Benchmark for predictive models. (arXiv:2007.02837), 2020. This

article was presented at the Workshop on the Art of Learning with Missing Values (Arte-

miss) at International Conference of Machine Learning.

AutoDS background in relation to Hypothesis 1

Each preprocessing operation results in a data transformation and can affect

the quality of the machine learning model. Given the number of potential pre-

processing steps and the variety of techniques associated with each, including all of

them in the search space of potential algorithms significantly increases the dimen-

sion of that space. A way to address this problem is to independently benchmark

preprocessing techniques on how they may affect model performance. Conducting

a benchmark that identifies preprocessing techniques can exclude those that have

little impact on the performance model, and more resources are gained for other

steps.

In addition, it is crucial to benchmark preprocessing methods with a view to applying

them to AutoML and AutoDS. Often, AutoDS imposes a potential preprocessing

technique to meet specific assumptions that do not necessarily need to be met in

method development. For example, developers of preprocessing methods may have

other priorities and pay attention to other aspects of the performance of the chosen
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techniques, e.g., the stability of the selection of the same variables in feature selection

or the accuracy of the values of the imputed data.

In the following chapter, we benchmark imputation methods as preprocessing tech-

niques impacting the model performance.

3.1 Introduction

In practical tasks in data analysis and machine learning, one of the most common prob-

lems are missing values in collected data. On the other hand, many established machine

learning algorithms require fully observed datasets without any missing entries. Due to

this, imputation is a necessary step in preprocessing, and the subject of handling missing

data is a challenge for practitioners. We can observe this, for example, on the Kaggle plat-

form, where users compete in real-life machine learning tasks. Competitors often share

their knowledge among other approaches to imputation data. This gives us insight into

the trend of applied methods: there is a tendency to apply simple methods such as mean

or mode replacement regardless of their limitations.

At the same time, many statisticians work on more complex methods with theoret-

ical foundations. Rubin [183] was the first to formalize the universal three categories

of the process generating: missing completely at random (MCAR), missing at random

(MAR) and missing not at random (MNAR). Since then numerous techniques of substi-

tuting missing data were developed. In R package wide range of single imputation are

implemented: missForest [201], softImpute [87], VIM [120], missMDA [114] . A variety

of multiple imputation techniques are also available: mice [214], Amelia [93], missMDA

[114]. Most of these implementations deal with imputing missing entries in continuous and

categorical variables. In addition, most of these packages enable more than one method of

imputation. In the platform R-miss-tastic [142] can be found a comprehensive summary

of existing techniques.

Due to the plenitude of available packages and methods, global evaluation of existing

techniques is desirable. So far only a few articles address this necessity [125, 103]. These

comparisons focused on the quality of imputed data. They considered simulated data and

applied several imputation methods was assessed in terms of the accuracy of predicting

the missing values.
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In most cases, handling missing data is a prepossessing step to complete data before

the primary modelling task. For practitioners, a crucial aspect in choosing an imputation

method is the impact of the selected procedure on the predictive power of the ML model.

Recently, in machine learning, more attention has been paid to benchmarking and com-

parison of various predictive algorithms or the importance of hyperparameters, but only a

few papers have taken into account the selection of prepossessing techniques. Brown and

Kros [28] provide a descriptive study of imputation impact on machine learning algorithms

but did not support these conclusions with any empirical results. Hutter et al. [97] consid-

ered substitute missing values with mean, median, or mode as one of the hyperparameters

in importance analysis, but imputations were limited to simple ad-hoc approaches, and

their impact was inappreciable.

Contributions. In this chapter, we research the contributions of imputation methods

to the improvement of predicting the power of machine learning classification algorithms.

We provide a benchmark on 13 real-life tasks and face simple methods with more sophisti-

cated ones. The proposed benchmark has a universal nature and can be applied to assess

the influence of any imputation methods on a wide range of datasets and algorithms.

3.2 Experiments settings

A reliable source of real-world datasets is OpenML, especially the collection of classifi-

cation task OpenML100 [19]. In this experiment, we focus on binary classification and

pick datasets with at least one column with missing values. We select from the OpenML

database thirteen datasets meeting these criteria. In Table 3.1, we present a summary

of basic information about considered tasks. Every dataset was split into two parts: a

training sample consisting of 80% of instances and a test sample. ML models were trained

on the training part and then metrics were validated on test data.

3.2.1 Imputation methods

We select seven methods of handling missing data. For some data, some methods did

not work. Next to the imputation name, in brackets, we give a number of datasets on

which particular methods succeed in imputing. We test two simple ad-hoc methods:

random (13) - every missing entry was replaced with a value drawn independently from
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Table 3.1: Statistics of considered OpenML datasets: number of instances, percentage of missing
values, number of continuous variables, number of continuous variables with missing values,
number of categorical variables, number of categorical variables with missing values.

dataset name
(dataset ID)

# obs prc of
missings

# num. # num. w.
missings

# cat. # cat. w.
missings

ipums_la_99-
small (1018)

8844 7% 15 0 41 14

adult (1590) 48842 1% 4 0 9 3
eucalyptus (188) 736 3.9% 14 10 2 0
dresses-sales
(23381)

500 14.7% 1 1 12 9

colic (27) 368 16.3% 5 5 15 13
credit-approval
(29)

690 0.6% 6 2 10 5

sick (38) 3772 2.2% 6 6 22 1
labor (4) 57 33.6% 8 8 9 8
SpeedDating
(40536)

8378 1.8% 59 58 64 3

hepatitis (55) 155 5.4% 6 5 14 10
vote (56) 435 5.3% 0 0 17 16
cylinder-bands
(6332)

540 5.1% 19 18 15 7

echoMonths (944) 130 7.5% 6 6 4 1

observed values of the considered feature, mean (13) - filling missing values with mode for

categorical variables and mean for continuous variables of complete values in a feature.

Moreover, we consider four single imputation methods. The first is softImpute (10)

- for numeric variables fit a low-rank matrix approximation to a matrix with missing

values. For categorical variables, missing values are imputed with mode. The second

is missForest (11) - imputation with predictions of random forest model, trained on

complete observations. Available for both numeric and categorical variables, From VIM

package, we choose two methods: VIM kknn (13) - k-Nearest Neighbour imputation

can be applied to numeric and categorical features, and VIM hotdeck (13) - sequential,

random hot-deck algorithm. As representative of multiple imputation, we include mice

(10) - we test default methods from this package: predictive mean matching for numerical

variables and polytomous logistic regression for categorical ones.

Some of the above-mentioned methods depend on additional parameters. In this

benchmark, we used default values. Reproducible scripts are available at https:

//github.com/ModelOriented/EMMA. We also tried Amelia and missMDA, but they

failed to impute most datasets, so they were excluded from the benchmark. To prevent

data leakage and simulate a real-world application, we should fit imputation methods on

the train dataset and then apply this to the test sample. Unfortunately, in used packages
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implementations, this is impossible, so we decided to impute data separately on train and

test data. For the same reasons, the target variable was excluded from the imputation

step.

3.2.2 ML Algorithms

We select five types of algorithms that should capture the different structures of data:

logistic regression with regularization (implemented in glmnet package), classification

tree (rpart), random forest (implemented of ranger package), k-nearest neighbors, and

XGBoost. In this benchmark we leave aside hyperparameter tuning, every algorithm was

trained with default settings.

In the first step, for every datasets on train and test part, missing values are substituted

with seven imputation methods. Then, on train data, five types of algorithms were fit,

and on test data, we reported the value of two performance measures obtained on test

data: Area Under Curve (AUC) and F1. We consider two types of measures because

of that some datasets have imbalanced response variable, and F1 captures this aspect of

quality of performance.

3.3 Results

Because selected measures are incomparable across datasets, next to the comparison of

values of metrics we create the ranking. For every task and every machine learning

algorithms we rank imputation methods, scores can range from 1 to 7. The higher and

better measure the lower rank obtain this imputation technique. Methods that did not

work on specific tasks get the lowest score (7). For some datasets and algorithms, despite

different imputation methods, some models achieve exactly the same measure values. In

case of ties we assign a maximum value of ranks, so rank 1 corresponds to evidently

the best model.

In our analysis, we focus on three main questions about globally the best imputation

method and the interaction between imputation and classifiers. We check trends in ob-

tained results and attempt to draw conclusions about the optimal workflow for incomplete

data.
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Figure 3.1: Bars describe how often a given method of imputation had the best results (rank 1,
dark green) or the worst results (rank 7, dark orange) for a particular pair ML-model/dataset.
The top ranking is based on the F1 measure, while the bottom one is based on AUC. The per-
centages on the right describe how often a method was in positions 1 to 3. The percentages on
the left describe how often a method was in position 5 to 7.

3.3.1 Does exist the best universal imputation method?

In Figure 3.1 for every imputation method, we show the distribution of ranks based on F1

and AUC measure. A single score corresponds to one task and one algorithm, so for every

method, there are 65 scores. We can interpret this figure in various ways. If we assume

that the best methods are to achieve rank 1 to 3 most frequently, then mean substituting

is the winner for F1 measure and kknn method for AUC measure. On the other hand,

every imputation method gives the best measure of F1 and AUC for at least one task and

algorithm.

For both measures, top positions are taken by simple methods as random, mean, or

kknn from the VIM package. Against this background, arises the question of whether

these methods work effectively on similar tasks and ML algorithms or rather oppositely.

In Figure 3.2 we present the percentage of covered best results in rankings of F1 and AUC

measure by single imputation methods and all pairs of them. As a single imputation, we

would choose random and mean or kknn for F1 and AUC, respectively. At the same time,

combinations of two methods work definitely better, and they are able to cover above 50%
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Figure 3.2: The OX axis shows how often the indicated imputation method has the best results
measured by the AUC. The OY axis shows how often the indicated imputation method has
the best results measured by F1. The points marked A+B refer to the better of the two indicated
methods (parallel max).

of best results. For F1 measure missForest and random methods cover an outstanding

percentage of best methods. Three of the most effective methods for F1 are random, miss-

Forest and VIM_hotdeck, but missForest imputation result in improvement of coverage

of AUC best results. For the AUC measure, the optimal pair is mean and VIM_kknn

substituting but mean and missForest are very close to them and, what is more, achieve

better results for the F1 measure. We may notice that missForest imputation takes high

positions for both measures.

To extend this approach we perform a greedy search to find the optimal sequence of

imputation methods covering a wide range of tasks and algorithms. In Figure 3.3 on

the left panel on the OY axis, we see these sequences for F1 and AUC, respectively. We

see that for F1 random, missForest and hotdeck covers above 75% of optimal imputation

methods for combinations of dataset and ML model. For AUC, the first two positions

are the same as in Figure 3.2, but the third is mice imputation. It suggests that this

imputation method works complementarily to simple approaches.

As we see, shown results may be concluded in different ways depending on the con-

sidered measure and there is no one answer to the question about universal the best
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Figure 3.3: Left panel: On the OY axis, there are consecutive imputations from the greedy search
for F1 and AUC, respectively. On the OX axis, there is a cumulative percentage of tasks and
ML models for which one of the imputation methods was optimal. Right panel: Contribution
of subsequent imputations from greedy search broken down by ML algorithms. On the OY axis
there is a cumulative percentage of covered the best imputation.

imputation method. For considered tasks, it is difficult to select an imputation tech-

nique that maximizes both measures. The next question arising from this analysis is an

interaction between imputation methods and the type of classifier algorithm.

3.3.2 Does exist the best imputation method for a machine learn-

ing algorithm?

In Table 3.2 we present averaged across datasets ranking based on F1 measures for impu-

tation methods and classifier model. The lower score indicates better methods. According

to averaged ranking, mean imputation is the best in 2 out of 5 models, for glmnet and

kknn model. For ranger ML-method, random imputation wins, but missForest takes

the top position in rpart model. For XGBoost, hotdeck achieves, on average, the best

score. Deeper insight into the interaction of imputation and classifiers gives principal

component analysis (PCA) performed on averaged rankings in Figure 3.4. The first PCA

coordinate positively correlates with averaged ranking so mean method gives the best re-
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Table 3.2: Average rank for a particular method of imputation and method of construction of
the classifier

glmnet kknn ranger rpart XGBoost
mean 4.38 3.85 4.77 4.69 4.62

mice_default 5.54 4.92 4.85 5.15 4.23
missForest 5.15 4.38 4.85 4.62 4.46

random 4.46 4.00 4.00 4.77 4.31
softImpute 5.69 4.69 4.92 5.92 5.46

VIM_hotdeck 4.85 4.62 4.15 4.85 3.92
VIM_kknn 5.15 4.23 5.08 4.15 4.69

sults. The second coordinate reveals model preferences. Mean, missForest and VIM_kknn

methods cooperate with rpart and kknn while mice works with ranger and XGBoost. This

conclusion goes along with Figure 3.3 on the upper right panel, where we present results

for a greedy search of the optimal set of imputations splitting by ML models. We see that

for the ranger, XGBoost, and rpart models, mice provide enhancement of substituting

missing values in relation to random and missForest imputation.
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Figure 3.4: Biplot for a PCA made for an average of the rankings for pairs imputation-method
/ ML-method. The first coordinate correlates with the average ranking, the best results have
the method mean. The second coordinate reveals the method’s preferences. The mice method
works better for the ranger model than for the kknn model. See Table 3.2 for details.
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3.4 Conclusions

To our best knowledge, this is the first empirical benchmark of imputation methods

in terms of their impact on the predictive power of classifier algorithms. This kind of

verification of proposed methods enables a better understanding of the pros and cons of

imputation techniques. We proposed a general plan for the experiment, which can be

extended to different datasets, imputation methods, and predictive algorithms. In our

experiment, simple imputation methods achieved surprisingly good results, but we can

not definitely conclude that more advanced methods should be given up. We focus on

the impact on their predictive power, but methods with statistical foundations achieve

better results in accuracy in imputed values.

The included analysis of results does not provide a single universal default for the best

imputation method, even for a particular ML model. What is more, the selection of these

imputation methods is sensitive to the considered performance measure. We observe some

trends in results, but generally, their structure is very complex. For humans, it is very

difficult to summarize this in a concise way. This is the area to employ a meta-learning

model to capture these high-level interactions.
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Chapter 4

Towards explainable meta-learning

This chapter corresponds to the article Katarzyna Woźnica and Przemysław Biecek. To-

wards Explainable Meta- learning. In Machine Learning and Principles and Practice of

Knowledge Discovery in Databases, volume 1524, pages 505–520. Springer International

Publishing, Cham, 2021. doi: 10.1007/978-3-030-93736-2_38. This article was presented

International Workshop and Tutorial on eXplainable Knowledge Discovery in Data Mining

(XKDD Workshop) at the ECML PKDD Conference.

AutoDS background in relation to the Hypothesis 2

One of the key elements of the Model Building process is meta-learning, which

involves transferring information between experiments that have already been con-

ducted and the new experiment. Based on the similarity measure of the datasets,

algorithm configurations are proposed that can be used for the new dataset. How-

ever, it remains an open question of which meta-features of the datasets we should

consider. This is not defined so far, and it is necessary to assess which meta-features

correlate most with the quality of the model.

At this point, it is possible to use the internal processes of AutoML systems as

a source of knowledge about which meta-features are most relevant and why we

represent datasets in a given way. Extending the evaluation of the meta-learning

stage can contribute to a greater understanding of what aspects of datasets are

correlated with model performance.

This chapter aims to propose a methodology for the evaluation process of meta-

models and selected meta-features. This extension employs explanatory machine
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learning techniques, thus allowing for a more comprehensive examination of the im-

pact of individual meta-features and their correlations with expected model perfor-

mance across diverse configurations of hyperparameters.

4.1 Introduction

The effectiveness of meta-learning is highly dependent on the type and quality of meta-

features [17]. So, it is crucial to consider a broad range of candidates [219]. The primary

sources of meta-features that feasibly predict model performance are datasets’ character-

istics. The conventional approach is to express the whole dataset as a vector of simple

engineered statistics.

Figure 4.1: The proposed process of the explainable meta-model exploration. Firstly, we gather
meta-features for selected datasets from the OpenML repository. Then we calculate model per-
formance on these datasets for selected configurations of hyperparameters. Secondly, we assemble
a black-box surrogate meta-model. Thirdly, we use XAI techniques to extract information about
the relative importance of meta-features and their marginal responses.

A comprehensive summary of these commonly used meta-features is provided in

[217, 179]. Autoencoders as meta-feature extractors [54, 90] avoid the problem of a pri-

ori defining meta-features, but they are limited to the same schema of meta-datasets.

More versatility is offered by an extractor Dataset2Vec based on hierarchical modeling

[111]. In addition to defining features through the internal data structure, we can also

consider how difficult a given prediction problem is for a specific portfolio of machine
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learning models. This is a concept of landmarking models introduced in [164]. It ex-

tends the list of meta-features by the relative performance of some predefined models,

so-called landmarkers. As well as a dataset’s properties, good meta-models take into ac-

count the tunability of particular algorithms concerning selected hyperparameters [170].

For that reason, a part of the meta-feature space is the detailed model configuration –

user-determined hyperparameters.

Another subdomain of machine learning that has been developing intensively recently

is eXplainable Artificial Intelligence (XAI). With the growing demand for highly engi-

neered models, there is an apparent necessity to investigate black-box algorithms and

identify the most critical aspects affecting model operation. There is a reservoir of XAI

methods that address the justifications of a model’s predictions for a single instance as

well as dataset-level exploration [16, 149]. So far, these exploratory techniques have

been applied to the enhancement of the ML model, but this kind of inference amplifies

the meta-learning generalization ability. The transparency of the algorithm structure

helps to identify which explanatory variables are included in the predictive process and

how changes in their distribution affect a model. What is more, the effectiveness of meta-

models greatly depends on the chosen set of meta-targets and on the approach to modeling

the relationship between them and the meta-response. So, similarly to classic machine

learning approaches, it can be a trial-and-error process that requires several iterations.

This work integrates these two promising directions (see Figure 4.1). We show how to

use XAI techniques to extract knowledge and validate meta-models used in meta-learning.

Focus is placed on the specific architecture of meta-models which enables the application

of exploratory techniques. Using them, we extract essential informative properties of

meta-features. We present an example for meta-learning based on OpenML100 datasets,

but the proposed approach can be applied to any meta-model trained for a particular

domain set of problems.

4.2 The Meta-OpenML100 surrogate model

In this section, we present a universal approach to exploration of the black-box meta-

model explained in Section 2.1.4. Both the choice of dataset for which model evaluation

and hyperparameters transfer was carried out and the choice of algorithm for the meta-

learner should be considered as illustrative. Similarly to previous researches, this meta-
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model works on classification problems from the OpenML100 benchmark [19]. We use

a meta-model engineering methodology analogous to [176, 46, 170] and employ gradient

boosting algorithm as meta-learner. In this section, we describe how this meta-model is

built (Figure 4.1).

We build the meta-model based on all predictive tasks for binary classification in

the OpenML100 suite; see the list of these tasks in Table 4.1. According to [219] recom-

mendations, for each task, we calculate the following meta-features: four landmarkers’

performance for baseline models and 38 statistical properties of the underlying dataset.

The meta-model is built to predict the performance of the gradient boosting model

parametrized with five hyperparameters. Finally, we train a meta-learner, also a gradient

boosting model, to predict the performance of a model with selected hyperparameters on

a dataset with the following meta-properties.

This black-box surrogate model is hereafter called Meta-OpenML100 in this article.

In the following subsections, we provide a detailed description of its components.

4.3 Predictive tasks and their meta-features

Out of all tasks in the OpenML100 suite [19] we select only these for binary classifica-

tion. The suite provides 61 meta-characteristics for these tasks [17], some correspond to

properties of continuous variables, some for categorical variables, and some for datasets

with mixed variables. Here the limit is to use only datasets with all continuous variables,

i.e., 20 datasets listed in Table 4.1. For these datasets, we use 38 available statistical and

information-theoretic properties.

4.4 Landmarkers

We use landmarker-based meta-features to characterize predictive problems. As land-

marker models, we consider five machine learning algorithms with default hyperparameter

configurations:generalized linear regression with regularization, gradient boosting, k near-

est neighbours, two random forest implementations: randomForest and ranger. Various

models have been proposed as landmarkers [9], but one of the requirements is diversified

architectures of algorithm capturing interrelationship of different variables. We balance

this diversity with the landmarkers’ computational complexity [164].
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Table 4.1: Meta-features for selected datasets from the OpenML repository. Four landmark-
ers (relative performance to default gbm model) and five hyperparameters for gbm model are
presented. datasets’ characteristics are omitted for brevity. Only optimal hyperparameters are
listed in the last columns for the corresponding dataset.

Hyperparameters for GBM model Landmarks
dataset (id) shrink. inter.

depth
n.treesbag

fract.
min.
node

knn glmnetrangerrandom
for-
est

diabetes (37) 0.00 4 1480 0.69 7 1.10 2.25 2.36 2.30
spambase (44) 0.04 5 1414 0.98 16 2.97 4.78 7.57 7.74
ada_agnostic
(1043)

0.05 5 333 0.90 7 2.31 5.41 6.28 5.37

mozilla4 (1046) 0.09 4 1567 0.54 7 1.71 0.39 2.62 2.84
pc4 (1049) 0.01 5 2367 0.75 12 1.11 2.13 3.46 3.57
pc3 (1050) 0.04 1 949 0.90 11 0.86 1.34 1.85 1.88
kc2 (1063) 0.00 2 273 1.00 21 0.81 0.73 0.90 0.98
kc (1067) 0.00 3 5630 0.26 3 0.23 1.16 1.49 1.66
pc1 (1068) 0.00 4 6058 0.21 14 1.12 0.27 1.92 1.84
banknote au-
thentication
(1462)

0.03 1 8429 0.52 12 6.47 4.99 5.56 6.02

blood trans-
fusion service
center (1464)

0.01 1 394 0.21 10 0.64 1.23 0.86 0.71

climate model
simulation
crashes (1467)

0.00 2 654 0.26 15 0.35 1.36 1.12 1.15

eeg-eye-state
(1471)

0.08 5 2604 0.28 14 2.48 0.93 3.34 4.16

hill-valley
(1479)

0.08 5 2604 0.28 14 1.78 0.43 2.04 2.24

madelon (1485) 0.05 5 333 0.90 7 0.34 0.48 1.61 1.58
ozone-level-8hr
(1487)

0.00 3 8868 0.33 11 1.41 3.40 4.43 4.36

phoneme (1489) 0.02 5 5107 0.60 18 4.89 2.90 7.12 8.13
qsar-biodeg
(1494)

0.05 5 333 0.90 7 4.16 5.34 6.74 6.81

wdbc (1510) 0.04 1 949 0.90 11 1.56 0.63 1.88 1.91
wilt (1570) 0.00 4 6058 0.21 14 2.73 4.80 7.15 7.28

We apply 20 train/test split methods and compute AUC scores for each split to eval-

uate their predictive power. These five algorithms are ranked according to methodology

in section 4.6. Because we predict the performance of gradient boosting models we com-

pute landmarkers as a ratio of models rankings (knn, glmnet, ranger and randomForest)

to a ranking of gbm model with the default configuration. As a result, there are four

landmarker meta-features.
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4.5 Algorithms and hyperparameters space

In this paper we explore the performance of gradient boosting classifiers (gbm) to the selec-

tion of the following hyperparameters: n.trees, interaction.depth, n.minobsinnode, shrink-

age, bag.fraction. In order to do so, we sample 100 random configurations of hyperpa-

rameters in a similar way to [170] to examine their influence gradient boosting model

predictive power. Additionally, we add one special configuration – the default settings for

the gbm library [79].

4.6 Estimated predictive power of selected configura-

tions

For every combination of 20 datasets from the OpenML100 suite and the 101 hyperpa-

rameter configurations, we try pre-specified 20 train and test data splits. Each model is

fitted on each training subset, and afterward, AUC is computed on the test frame. This

way, we obtain a meta-dataset for the performance of 40400 configuration/datasets/split

combinations. Because performance for different datasets takes values in different ranges,

we normalized these values using ranks per dataset (the higher AUC, the higher position

in the ranking). Ratings are scaled to [0,1] intervals. Every configuration for each algo-

rithm appears in the list 20 times because of train-test splits. To aggregate this to one

value for every model, we computed the average rating for the model.

4.6.1 Surrogate meta-model

As meta-model, we select a gradient boosting algorithm with maximum interaction depth

equal to 10 (i.e., a model that may be rich in interactions between meta-features). This

kind of algorithm has already been applied inside sequential-model-based optimization,

for example, in SMAC [96]. Tree-based algorithms are particularly well suited to handling

high-dimensional and partially categorical input spaces. They are known for robustness

and automated feature selection.

This surrogate meta-model configuration is selected as the best one according to

the evaluation schema as follows. We apply one-dataset-out cross-validation: every model

is trained on 19 datasets and then is tested on the remaining data frame for mean square
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error (MSE), in addition Spearman’s correlation between predicted rankings and actual

meta-responses was also checked. Given meta-model achieves 0.017 MSE when the con-

stant mean prediction has 0.041 MSE, so the performance of the surrogate meta-model is

significantly better than the baseline mean prediction.

The meta-dataset with all meta-features and fully reproducible code can be found in

this GitHub repository https://github.com/woznicak/MetaFeaturesImpact.

4.7 Explanatory analysis of Meta-OpenML100 model

the black-box meta-model approach, despite its effectiveness, does not provide new knowl-

edge about how dataset characteristics translate into optimal choices for hyperparameters.

In this chapter, we present the main result of this work – recommendations on how one

can use selected XAI techniques [16, 149] for the analysis of the black-box meta-model.

Each proposal is complemented with an example for the Meta-OpenML100 meta-model

developed in the previous section. The knowledge drawn from the model often looks in-

tuitive, but through the presented analysis, is it possible to get a quantitative validation

of our assumptions.

The XAI methods allow the analysis of a single meta-model. Meta-OpenMl100 uses a

one-dataset-out schema to explore the constructions of each of these meta-models indepen-

dently or extend this approach and aggregate feature importance across cross-validation

meta-models.

4.8 Meta-features importance

the meta-models are built on various sets of meta-features determined for datasets. For

complex meta-models, it is difficult to discover which variables actually contribute to

the model output. This investigation is needed to identify presumptive noisy aspects and

may be significant in deliberation about excluding these meta-features from new genera-

tions meta-models. The solution to this problem is to use model agnostic permutational

feature importance, which assesses how perturbations of a specific feature decrease model

performance [64].

An example for Meta-OpenMl100 is presented in Figure 4.2. We can easily read

that most important are hyperparameters followed by two landmarker features (knn and
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randomForest) and two meta-features (NumberOfInstances and MinorityClassSize).

The considered meta-features form three groups because of the different approaches to

creating them. Figure 4.2B presents the assessment of different groups’ influence. As we

see, the most important class of meta-features is hyperparameters, and this conclusion is

consistent with the importance measure for individual variables. Landmarker and dataset

characteristics have similar dropout values.

Figure 4.2: Panel A: Importance of the 15 top meta-features in GBM meta-model. Panel B:
Cumulative importance of groups of meta-features.

4.8.1 Meta-features interactions

A good meta-model offers different optimal hyperparameters for different datasets to solve

the problem of there being no one optimal hyperparameter across tasks. This means

that the model detects interactions between variables, situations in which the values of

one attribute (meta-characteristic) affect the effect of another attribute (hyperparame-

ter). In general, the identification of interactions is a complex problem. For analysis of

meta-models, we propose to use Friedman’s H-statistic [67]. This method decomposes

the prediction into components corresponding to two selected features. The variance of

the difference between observed values and decomposed ones without interactions is used
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to assess the strength of interactions. We use the implementation of Friedman’s H-statistic

from [150].

The example identification of interactions for Meta-OpenMl100 is presented in Figure

4.3. Firstly, we study two-way interaction between any two meta-features. The strongest

interaction is for bag.fraction and NumberOfFeatures, i.e. between hyperparameter

and statistical meta-feature. Based on such analysis, we can directly identify which meta-

characteristics are related to the selection of particular hyperparameters, which is a com-

petitive approach to [60].

In Figure 4.3B there is the overall assessment of the variable propensity to interact

with any other meta-feature. This approach may be an alternative to functional ANOVA

from [216]. In this case, the ranking is similar to this at the Figure 4.2. The most prone

to interact variables are hyperparameters.

Figure 4.3: Panel A: Top 15 most important two-way interactions. Panel B: Top 15 most
important meta-features in terms of overall propensity to interactions. Colors code groups of
meta features

4.8.2 Importance of correlated meta-features

Meta-features are often correlated because they describe similar characteristics of datasets.

It is not known whether adding more correlated features increases the quality of a meta-

model anyway. To test the validity of a group of correlated variables, we propose to use

the triplot technique [162]. Groups of meta-variables are determined according to hierar-
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chical clustering based on correlations between meta-features. At each stage, the impor-

tance of the cluster of selected meta-variables is calculated.

In Figure 4.4, on the right panel, we see that most of the statistical meta-features have

marginal contributions independently, and even after clustering, their accumulated im-

portance is substantially less than individual hyperparameter contributions. Landmarkers

connected with information about mean values and standard deviation of numeric columns

are very close to the importance of hyperparameters independently.
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Figure 4.4: Triplot joint analysis of feature correlation and importance. The top panel shows
hierarchical clustering for meta-features while the bottom one shows the importance of groups
of features. Types of meta-features are color coded.

4.8.3 Hyperparameters informativeness

the majority of meta-learning is concentrated on obtaining the optimal hyperparameter

configuration or effective warm-start-points for a novel task. Some of them present the es-

timated empirical prior distribution of hyperparameters [216]. Alternative approaches to
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4.8. META-FEATURES IMPORTANCE

estimating the learning profile for a selected hyperparameter are Ceteris Paribus (CP) pro-

files, also known as Individual Conditional Expectation profiles [75]. This curve shows how

a model’s prediction would change if the value of a single exploratory variable changed.

In essence, a CP profile shows the dependence of the conditional expectation of the de-

pendent variable (response) on the values of the particular explanatory variable. This is

equivalent to a partial dependence plot for an individual instance. In this analysis, we

use its R implementation [15].

Figure 4.5: Ceteris paribus for hyperparameters for test instances. Thick colored lines are
aggregated profiles for datasets clusters. Colors indicate groups. On the x-axis a logarithmic
scale is applied.

As we argue, looking at the profile, we would like to point to the optimal hyperpa-

rameter value for independent data. Thus, we provide a CP profile for every dataset in

meta-data. The curve corresponding to a particular dataset is extracted from meta-model

from the cross-validation schema in which the selected task is the test example. As a re-

sult, we present CP profiles for every dataset when the prediction curve is independent of

that data. This situation is equivalent to the production application of meta-framework

optimization.

Obtained CP analysis for the selected hyperparameters is presented in Figure 4.5.

To recall, the higher ranking, the better predictive power of the given gradient boost-

ing model. So observing increasing lines in CP profiles indicates the better rating of

the considered gbm models.

For shrinkage, interaction.depth and n.trees hyperparameters, three patterns of

profiles are detected. We apply hierarchical clustering for profiles, and the aggregated

profiles for three groups are shown in Figure 4.2. These groups are indicated with dis-
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tinctive colors and termed A, B, and C. It is worth highlighting that the groups indicated

A for two hyperparameters may consist of different datasets because the clusterings are

performed independently.

For each of these three hyperparameters, group A has an increasing CP profile with

a very strong trend for the interior values of variables. Profiles stabilize for high predic-

tion for larger meta-feature values and the maximal value of hyperparameters would be

pointed as an optimal warm start point to optimization. Similar behavior can be ob-

served in group C. Group B is strictly different for n.trees and shrinkage: the highest

prediction of rankings is obtained for the medium value of hyperparameters, and then

predictions decrease. The CP profiles therefore confirm that there is no single value of

hyperparameters that is optimal for all datasets, but at the same time suggest several

hyperparameter values worth testing because they are optimal for a certain group of

prediction problems.

4.8.4 Robustness of meta-data

For reliable validation, we select the full model as one specified meta-model from the Meta-

OpenMl100 one-dataset-out schema: dataset 1471 is the test instance. For this data, we

check the change in optimal hyperparameter values. The influences of the remaining

datasets are estimated by sequentially deleting them as we describe above.

Figure 4.6A shows the scatter plot for the considered measures of disturbance caused

by removing the effect of the single dataset. On the x-axis, there is a distance between

the optimal shrinkage hyperparameter; on the y-axis, there is the value of Cook’s distance.

The biggest perturbations in the final predictions are caused by deleting the datasets 1485

and 37. For dataset 37 we also observe the most significant shift of optimal hyperparam-

eter value.

In Figure 4.6B are CP profiles for the full meta-model and the selected limited meta-

models with diverse values of Cook’s distance. These profiles allow the assessment of

the significance of the change in the choice of the optimal point. Only for dataset 37

we observe the transformation of the CP profile in comparison to the full model. This

observation shows that the selection of meta-data in this example provides the robust

selection of hyperparameter warm-start.
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Figure 4.6: Panel A: Cook’s distance vs. change in estimated optimal shrinkage. Numbers
stand for the OpenML datasets ids. Panel B: Individual profiles for the most and the least
influential dataset. Blue line corresponds to the full model.

4.9 Conclusions

Meta-learning is a promising approach for AutoML solutions. The main contribution of

this is to show the applications of techniques known in the explainable artificial intelli-

gence area in meta-learning. It turns out that many model exploration techniques not

only increase knowledge of which meta-features are relevant, but also increase knowledge

of the relationship of hyperparameters to model performance. In this work, we have

shown how to use XAI techniques to build an effective meta-model, and extract knowl-

edge about the importance of the particular meta-features in the meta-model. Variable

importance technique and extension of this, taking into account the correlation struc-

ture of a meta-feature, amplify the selection of the most informative set of meta-features.

This is crucial in the trial-and-error process of defining meta-space and brings us closer

to find a transferable representation of datasets. Examining interaction between dataset

based meta-features and Individual Conditional Expectation profiles for hyperparameters

supports hyperparameter tuning. In further research, this may lead to a significant re-

duction of the dimension of the searched hyperparameter space and an improvement of

automatic model selection processes. What is more, the choice of datasets determines

the quality of meta-features and the evaluation of hyperparameters. Validating datasets’
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informativeness through Cook’s distance helps build a robust and reliable repository for

meta-learning.

This approach is universal and generic to the explainable analysis of any meta-learning

model presented in Figure 4.1. The OpenML may be argued that this is not the appro-

priate illustration for every meta-learning problem - the datasets are relatively small.

However, at the moment, there are no publicly available repositories for big data prob-

lems. This approach can be reproduced on any repository of datasets from a specific

domain or datasets of a selected size or complexity. It is sufficient to store a selected

meta-targets, fixed hyperparameters, models performance, and then build a black box

meta-model to predict model performance for novel data.
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Chapter 5

Interpretable meta-score for model

performance

This chapter corresponds to the article Alicja Gosiewska, Katarzyna Woźnica, and Prze-

mysław Biecek. Interpretable meta-score for model performance. Nature Machine Intel-

ligence, 4 (9):792–800. doi: 10.1038/s42256-022-00531-2

AutoDS background in relation to the Hypothesis 3

The comparison of the quality of machine learning models is essential for model

selection and hyperparameter optimization. This process is typically conducted in-

ternally in the majority of AutoML frameworks. However, it also plays a significant

role in the Exploitation of results. How model performance is reported is so impor-

tant because it is based on these results that users decide whether to potentially

implement the model or at least continue working with AutoDS.

In the final summary, users can assess the quality of different models by examining

their values and rankings. This approach, however, is not sufficient for practical

applications where users require a deeper understanding of the factors influencing

the differences in model performance. However, it is often the case that we are deal-

ing with non-technical audiences, and thus, it is necessary to communicate results in

an easily accessible way. One example of such interpretation is the Elo-based Pre-

dictive Power (EPP) meta-measure, which provides a probabilistic interpretation of

differences in model performance.
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In this chapter, we present the application of the EPP measure in the benchmark of

models built for OpenML datasets. Using the unique properties of EPP, in-depth

analyses of this benchmark are presented.

5.1 Introduction

The current rapid development of machine learning area has resulted in a considerable

increase in the number of new algorithms that need to be compared to the state-of-the-

art ones. Along with this emerged the need to establish procedures for the systematic

comparisons of algorithms. The current practice is to create benchmarks on predefined

sets of tasks, for example GLUE [221], SuperGlue [222], or VTAB [235]. Benchmarks are

created especially in deep learning because the aim here is to build unified algorithms

with understanding beyond the shallow patterns in data, which is why it is crucial to

compare algorithms on a wide variety of tasks from different domains. Another way

to evaluate the progress in algorithms development are biological competitions, such as

Critical Assessment of protein Structure Prediction (CASP, [123]), Critical Assessment of

protein Function Annotation algorithms (CAFA, [239]), or Critical Assessment of PRe-

diction of Interactions (CAPRI, [129]). Through this, the performance of algorithms for

predicting new structures, properties, or interactions between proteins is regularly com-

pared. Another popular approach for model comparison is storing and sharing the results

of multiple algorithms on multiple datasets on platforms such as Kaggle1, Papers With

Code2 or OpenML [19].

These days, it is difficult to imagine a high-quality article with a new algorithm with-

out comparing it with the state-of-the-art methods on at least one of the benchmarks.

Despite that, there is no unified description of benchmarks to refer to when describing new

ones. What is more, performance measures of models currently used in benchmarks share

many limitations, such as the lack of possibility to interpret differences in performance or

the impossibility of comparing models between datasets.

Considering the shortcomings of existing benchmarks, the need for new approaches for

comparing models and establishing new guidelines is being felt in the machine learning

1https://www.kaggle.com/
2https://paperswithcode.com/
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community [141]. This urgency is borne out by the fact that in 2021, the organizers of

the Thirty-fifth Conference on Neural Information Processing Systems provided a new

track dedicated to datasets and benchmarks3.

In this article, we propose an Elo-based Predictive Power (EPP) Meta-Score, which is

a new way of aggregating model results and which overcomes the most common problems

with benchmarks and the performance scores they use. The main contributions of this

work are as follows.

- We propose a Unified Benchmark Ontology that allows for the uniform description

of different benchmarks.

- We identify and demonstrate the limitations of the most common measures of ma-

chine learning model performance, such as the lack of interpretation of differences

and incomparability between datasets.

- In light of the highlighted limitations of the most common measures, we propose

a new Meta-Score named EPP that is built as an aggregation of other measures

and enriches them by providing interpretable comparisons of models, even between

datasets.

- We apply EPP on a large-scale benchmark from the OpenML repository and Visual

Task Adaptation Benchmark. In both cases, we show how the use of EPP enriches

the understanding of model performance.

5.1.1 Historical overview

The problem of model assessment is even older than modern statistics. Its origins can be

traced to Laplace’s work from 1796 on the nebular hypothesis. Since then, the increasing

number of applications for models has led to an increase in the number of metrics describ-

ing their quality. The various measures of model performance differ in their properties

and applications [169, 199]. The most common machine learning frameworks such as

scikit-learn [161], TensorFlow [1], or mlr [18] rely on common measures such as accuracy,

AUC, Recall, Precision, F1, cross-entropy for classification and MSE, RMSE, MAE for

regression problems.

3https://nips.cc/Conferences/2021/CallForDatasetsBenchmarks
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Beyond measure selection, there is an even more important problem related to eval-

uating whether the differences between its values are significant, or whether they come

from noise in validation datasets. There have been many approaches to verify whether

a new proposed algorithm improves the performance compared to previous state-of-the-art

methods. The majority of them have been statistical testing procedures. Janez Demšar

[48] reviewed commonly used practices and point out the vast number of problems with

them. One of the earliest and most widely cited articles in this area is the one by Diet-

terich [50]. He gave a broad description of the taxonomy of the different kinds of statistical

questions that arise in machine learning. He also introduced a new procedure for testing

which of two classifiers is more accurate, called 5x2cv t-test and based on 5 iterations of

2-fold cross-validation. In each replication, two algorithms are trained on each fold and

tested on the other fold. The test statistic is then a modified statistic of a paired t-test,

where the standard deviation comes from the cross-validation. The 5x2cv test was later

improved. Alpaydin [5] introduced a robust 5x2cv F test while Bouckaert [21] doubted

the theoretical degrees of freedom and corrected them due to dependencies between exper-

iments. However, the above methods do not fit into the actual trends in machine learning

algorithms, where new algorithms are tested against multiple state-of-the-art models and

over several datasets. For this purpose, more extensive methods began to be used. One

of them is ANOVA [186], for example with Friedman’s test [81, 168] for comparison of

multiple models, however it can only give conclusions about whether there are differences

in the performance of models. If there are differences, a post-hoc tests are needed to

determine which model has better performance. One of the procedures used for post-

hoc analysis is the Nemenyi test, that gives the statistical significance of performance

differences for a pair of models. Results of Nemenyi test for many models and may be

aggregated as Critical Difference plot that shows groups of models that are not different.

However, these results are not transferable to new datasets (not used during testing) be-

cause tests results have no absolute meaning. Therefore, once we do a ranking, we cannot

extend it without repeating the entire testing procedure. The first to use non-parametric

tests for comparing models on multiple datasets was Hull [95]. Brazdil and Soares [25]

used ranks to compare classification algorithms, yet they do not provide statistical tests.

Demšar [48] analyzed papers from five International Conferences on Machine Learning

(1999-2003) that compared at least two classification models. The conference papers in-
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cluded a wide range of approaches, from naive average accuracy over all datasets, through

counting the number of times a model performed better than the others, to assessing sta-

tistical significance by pairwise t-tests. However, despite multiple hypothesis testing, only

a few articles had Bonferroni correction, that is, a method to adjust tests’ p-values in case

of multiple comparisons.

The conclusion of the analysis was that there is no well-established procedure for

comparing algorithms over multiple datasets. Furthermore, there are issues with common

measures of model performance, such as uninterpretable differences between two values,

or the inability to compare these values between datasets (see Section 5.3.3). Therefore,

there is an emerging need to develop better solutions for models benchmarking. In this

work, we introduce a method of model comparison that is based on the Elo ranking system

used in sports, for example in chess and football.

5.1.2 Elo ranking system

The rating introduced by Elo [55] is a ranking system used for calculating the relative

level of a player’s skill. The difference between the Elo ratings of two players can be

transferred into the probabilities of winning when they play against each other. Therefore,

the difference in Elo scores is a predictor of the match result calculated on the basis of

the history of players’ matches. The scores of players are updated after each match they

play, and a new rating is calculated on the basis of two components: the result of a match

and the rating of the opponent. A player’s level is not measured absolutely, although it is

inferred from wins, losses, and draws against other players. After each match, the winner

gains Elo points. The amount of received points is related to the strength of the opponent.

If a player beats an opponent that has a higher Elo score, the victor would gain more

points than if playing a weaker opponent. Conversely, a defeated player would lose more

points if he lost a match against a player with a lower rating.

An Elo rating has many variations; one of them, popular in chess, is the algorithm

of 400. It states that an average player has a rating of 1500, and reaching a rating over

2000 means that the player is one of the best. Let us consider two players, Player1 and

Player2. Player1 has an expected score of E1, which is their probability of winning plus

half of the probability of drawing with Player2, and is expressed as:
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E1 =
1

1 + 10
(S1−S2)

400

,

where S1 and S2 are ratings of Player1 and Player2. This formula shows an important

property of Elo scores - the possibility to interpret them in terms of the probability of

winning. For example, the difference of 200 rating points means that a more skilled player

has a probability of winning 1

1+10−
200
400
≈ 0.75.

In addition to probabilistic interpretation, Elo rating has one more advantage. It is

not necessary for every player to play against each other to provide a comparison of their

skills. In the real world, it would be impossible to stage matches between all chess players,

therefore Elo is used to find an approximation of true skill. Of course, the more matches

played, the better the approximation; however, not all players need to play against each

other.

5.2 Unified Benchmark Ontology

In this section, we introduce the Unified Benchmark Ontology for machine learning that

fills the gap for a uniform description of benchmarks. Figure 5.1 contains a unified diagram

for describing machine learning benchmarks. We use terms associated with sports tourna-

ments, such as Player , Tournament , Round , Leaderboard . The detailed descriptions of all

these components are in Table 5.1. In this article, whenever we refer to the components

of a Unified Benchmark Ontology, we will indicate this with capitalization and italics.

Each component may be assigned to a different machine learning element. The set of

such assignments is a Scheme. Examples of Schemes are provided in the next subsection.

5.2.1 Example Schemes

In Table 5.2, we present example schemes, i.e., mappings between components of a Unified

Ontology Benchmark and machine learning terms. Scheme Model/CV is one of the most

standard benchmarking settings where models are compared on different cross-validation

splits. Scheme Model/Task covers a situation when models are compared on several

datasets where each is assigned to its own performance measure. The pair dataset and

performance measure is a task. Examples of such benchmarks are SuperGlue and the Vi-

sual Task Adaptation Benchmark. The third example Scheme is dataset/Model. The aim
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Figure 5.1: A diagram of the EPP Benchmark. The orange dashed lines shows EPP-specific
parts of the benchmark and were not included in the unified benchmark.

Table 5.1: The descriptions of the EPP Benchmark components.

Component Description Example

Player i A single i-th participant of the EPP Benchmark. Classification
model

Score
A one-dimensional measure of a Player’s strength.
We assume that the order relation over Scores
is given and monotonic.

Accuracy

Round r
A single game environment for Players. The
outcome of a Round r are score values of Players.

Cross-validation
fold

Tournament An independently replicated Rounds. dataset

Meta-Score A measure of a Player ’s strength aggregated
over all Rounds in a Tournament . Mean

Leaderboard The ordering of Players according to their overall
strength on all Rounds in a Tournament .

Mean Accuracy
of models over

CV folds

Scheme An assignment of EPP Benchmark components to
specific machine learning pieces. —

here is to compare datasets and assess how high performance models can score on it. This

can be useful in assessing how simple it is to train a good model on a particular dataset.

Depending on the Scheme assumptions, the Scores for a particular Player may be
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Table 5.2: Example Schemes for EPP Benchmark.

Component Scheme Model/CV Scheme Model/Task Scheme dataset/Model

Player Model Model dataset

Score
Performance
measure, for
example, AUC

Score defined
separately for
each dataset

Performance
measure,
for example, AUC

Round Cross-Validation
split

datasets with one
train/test split each Model

Tournament dataset One dataset Set of models

Leaderboard
Separate rankings
of models for each
dataset

One ranking of
all models

One ranking of
all datasets

independent (when Rounds are different datasets) or correlated (when Rounds are cross-

validation splits) across Rounds . In both cases, we assume that within Round the Players ’

Scores are comparable and can be ranked against each others’s according to a given order

relation.

5.3 Elo-based Predictive Power (EPP) Benchmark

In this section, we introduce the EPP Benchmark that fits into the nomenclature intro-

duced in Section 5.2. In Section 5.3.1, we show key concepts of the Elo-based Predictive

Power (EPP) score, while in Section 5.3.3, we show the common problems with state-

of-the-art benchmarking methods and we derive the properties of the EPP score that

overcome such issues.

Figure 5.1 presents the EPP Benchmark with the nomenclature from the Universal

Benchmark Ontology. The thick arrow from Figure 5.1 is broken down here into additional

components, such as Opponents and Matches . The detailed descriptions of components

that are specific for EPP Benchmark are in Table 5.3.

Table 5.3: The descriptions of the EPP Benchmark components that extends the Universal
Benchmark Ontology.

Component Description

Opponent i,j
Player j whose Score values are compared to the Scores values of
the Player i.

Match i,j,r
A single comparison of the Score values of a pair of Players, i.e.
Player i and Opponent i,j in Round r.
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5.3.1 The Concept of the Elo-based Predictive Power (EPP)

Meta-Score

Elo-based Predictive Power (EPP) Meta-Score is used for establishing the Players ’ Leader-

board according to a single Round of the experiment. The Players are ranked according

to their Score values in a single Round . However, the order of Players on the Leaderboard

consistent with all Rounds may be impossible to determine. A single order might not

have the property of connectivity with all Rounds , and therefore be nonlinear. That is

why the common procedure is to aggregate, for example as an average, the Scores over

Rounds and then obtain the Leaderboard . However, the mean is sensitive to outlier ob-

servations, thus models with strongly varying results will distort the aggregated ranking.

In this work, we introduce an alternative approach that is EPP. The idea is not to ag-

gregate values of Scores , but to compare the relative performances of Players . We ignore

the absolute values of Players ’ Scores and the winner is the one whose Score is better

(in terms of given order relation). Every Round r consists of Match i,j,r in which Player

i competes with other Player j (Opponent i,j). In consequence, for every pair of Play-

ers we get the sequence of win/lose results for every Round and can use these table for

calculating the relative EPP Scores of Players ’ performances. This relativity of Players ’

performance makes EPP very similar to Elo, in particular in the way that both methods

give a probabilistic interpretation of differences in score values.

However, the limitations of Elo ranking used in sports does not apply to the EPP

for machine learning benchmarks. In classic Elo ranking, not every Player stands against

every other. One hundred Players would have to play 100·99
2

= 4950 Matches , which might

be impossible for logistical or time reasons. Therefore, it is often hard to use all possible

results of Matches . In the case of machine learning models, the cost of calculating EPP

Meta-Scores is not as time consuming as human Matches . It is worth noting that a Match

result is a comparison of Players ’ performances in one Round and the performance for

a particular Score is the same, regardless of the Opponent . Therefore, for one hundred

players we can obtain results of all Matches calculating only 100 values (performance of

each Player in each Round). It is worth noting that it is not always possible to get Score

value for each model in every Round , for example due to the missing data that only some

of the models can deal with. However, EPP can still be calculated in the presence of

missing Players ’ Scores .
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In classic Elo ranking, the scores are updated after consecutive matches, therefore

there is a natural order of updates. As the Elo points by which the winning player’s score

increases depends on his Elo and the opponent’s Elo, the order in which the matches are

played may affect the Elo’s final score. However, it should be noted that the need to

sequentially calculate Elo is due to the aforementioned weakness, which is the inability

to play matches between all players at once. We propose an EPP model scoring method

that does not require sequential calculation of match results and preserves the desired Elo

properties, i.e. the possibility of interpretation on an interval scale.

It is worth noting that Elo [55] proposed a solution to the problem of how to mea-

sure the skill of all players with only partial information about the outcome of matches.

The EPP score applies Bradley-Terry model [23] to machine learning models and there-

fore is a direct way to calculate the values approximated with Elo [41]. For that reason,

the order of model comparisons is irrelevant for EPP.

5.3.2 Definiton of the EPP score

Now, we formally define the EPP meta-score in terminology of the unified EPP bench-

mark. LetM = {M1,M2, ...,Mm} be a set of m Players . For a selected single Tournament

Tt, we specify a set of r Rounds R = {R1, R2, ..., Rr} and Score.

Let denote the result of a single Match in a Round Rk between Players Mi and Mj as

yki,j =


1, where Player Mi has better Score value than Player Mj, in Round Rk

0.5, where PlayerMi has the same Score value as PlayerMj, in Round Rk

0, otherwise,

and
∑r

k=1 y
k
i,j is the number of wins the Player Mi over the Player Mj in all Rounds .

The Scores are usually continuous, so the probability of a tie is near 0. Therefore, the em-

pirical probability of winning in a random Round is equal

pi,j =

∑r
k=1 y

k
i,j

r
.

Definition 5.3.1. The odds(i,j) are odds that Player Mi has a better Score than Player
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Mj, and are expressed as

odds(i, j) =
pi,j

1− pi,j
,

where pi,j is the probability that Player Mi has a better Score than Player Mj in

a random Round R.

Definition 5.3.2. The βMi
and βMj

are EPP Meta-Scores for Players Mi,Mj ∈ M

respectively if they satisfy the following property

log
pi,j

1− pi,j
= βMi

− βMj
,

where pi,j can be estimated p̂i,j in two exploratory variables logistic regression of

the form

log
p̂i,j

1− p̂i,j
= β̂Mi

xMi
+ β̂Mj

xMj
, where xMi

= 1 and xMj
= −1,

where β̂Mi
and β̂Mj

are estimated EPP Meta-Scores . For brevity, in the following

sections, we refer to them simply as EPP Meta-Scores .

Definition 5.3.3. The EPP Meta-Score Leaderboard for Tournament T is the set of EPP

Meta-Score values for the set of m Players M = {M1,M2, ...,Mm} is

LT
M =

(
β̂M1 , . . . , β̂Mm

)
.

The properties of EPP Meta-Score are in the next subsection.

5.3.3 EPP handles the problems with common ML performance

measures

In this section, we identify problems with the most common performance measures in ML

benchmarks and we show that the EPP Meta-Score handles these issues. The attributes

of EPP Meta-Score may be described with three aspects:

- EPP is a meta-approach based on values of other performance measures. EPP

broadens the possibilities of comparing Players because of its unique properties
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introduced in Sections 5.3.3 - 5.3.3;

- EPP is an alternative approach to aggregating results, such as mean scores for

repeated measurements - Rounds . EPP gives the statistical possibility to assess

the stability of Scores (see Sections 5.3.3 and 5.3.3);

- Unlike the methods used so far, EPP gives the possibility to compare Benchmarks.

It allows the assessment of the quality of Leaderboards across Tournaments . (see

Section 5.3.3).

The following sections are constructed as follows: first we discuss a problem with a real-

life benchmark using terminology from the field of machine learning. In the second part of

each section, we discuss at a general level and describe theoretical properties of the EPP

that addresses the problem at hand. We describe such properties in terms of the EPP

Benchmark. This distinction helps to better separate the examples from the theoretical

part.

There is no interpretation of differences in performance

Table 5.4: Springleaf Marketing Response Kaggle Competition, https://www.kaggle.com/c/
springleaf-marketing-response

Team Name AUC

Asian Ensemble 0.80925
ARG eMMSamble 0.80907
.baGGaj. 0.80899

In Table 5.4, we show an example of Kaggle ranking. The difference between AUC

value of the first and AUC value of the second model equals 0.00018. This absolute dif-

ference gives us no additional information. The AUC is useful for ordering models, but

its differences have no interpretation, it does not provide any quantitative comparison of

models’ performances. There is no single accepted way to compare the power of enhance-

ment of performance measures. Some say we should equate absolute differences regardless

of the absolute values of the score, while others would suggest analyzing relative improve-

ment. Both ways may lead to opposite conclusions, depending on the absolute value of

a performance measure.

This ranking fits to the EPP Benchmark Scheme Model/Task with just one Round .

EPP score provides the direct interpretation in terms of probability.
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Property 5.3.1. The difference of EPP scores for Players Mi and Mj is the logit of

the probability that Mi achieves better performance than Mj.

Indeed, from Definition 5.3.2 we have that

logit (p̂i,j) = log
(
ôdds(i, j)

)
= β̂Mi

− β̂Mj
. (5.1)

After reformulating Equation 5.1 we achieve direct formula for probability that Player

Mi achieves better performance than Player Mj:

p̂i,j = invlogit
(
β̂Mi
− β̂Mj

)
=

exp
(
β̂Mi
− β̂Mj

)
1 + exp

(
β̂Mi
− β̂Mj

) .
There is no procedure for assessing the significance of the difference in per-

formances

In Table 5.5, there are results of an IEEE-CIS Fraud Detection Kaggle Competition. The

AUC values of all models in Table 5.5 differ in the third decimal place. There is no

reference point to indicate whether this difference represents a significant improvement in

prediction or not. Significance in the statistical sense means these differences are not on

the noise level.

Table 5.5: IEEE-CIS Fraud Detection Kaggle Competition, https://www.kaggle.com/c/
ieee-fraud-detection

Team Name AUC

AlKo 0.968137
FraudSquad 0.967722
Young for you 0.967637

The scoring of models in this example are deployed in a Scheme Model/Task with just

one Tournament and one Round . A similar situation with minor differences appears in

many state-of-the-art benchmarks. When a Player gains improvement by a decimal place

it would be desired to distinguish between real improvement and apparent improvement

due to the noise coming from different Round setting e.g. splitting to train and test data.

Currently, there are not many formal methods to assess the significance of differences.

One way is to use a Kruskal-Wallis test for the equality of medians. But results from

statistical tests are not transitive. We can compare two Players , but we would not get

an overall Leaderboard for all of them.

87

https://www.kaggle.com/c/ieee-fraud-detection
https://www.kaggle.com/c/ieee-fraud-detection


CHAPTER 5. INTERPRETABLE META-SCORE FOR MODEL PERFORMANCE

EPP score allows for the assessment of the significance of score value, which gives an

intuition whether the difference in performance is a noise or not.

Property 5.3.2. The values of the EPP Meta-Scores are coefficients of logistic regression

model with intercept β0 = 0.

The Equation 5.1 can be generalized to

logit(p̂i,j) = β̂M1xM1 + β̂M2xM2 + ...+ β̂Mk
xMn , where xMa = 1a=i − 1a=j. (5.2)

β̂Mi
is the estimation of unknown βMi

coefficients from the multiple exploratory vari-

ables logistic regression where xMa indicates if the Player is compared.

Because of calculating values of EPP Meta-Score from logistic regression, a logit of

probabilities gives an additional benefit in the form of gaining a significance of EPP scores.

This is an advantage over raw empirical probabilities.

Property 5.3.3. The statistical significance of the difference between EPP for two Play-

ers Mi and Mj may be tested as the null hypothesis that

β̂Mi
= β̂Mj

.

If Round performances are independent and sample size is sufficiently, this hypothesis

may be tested with Wald test or Likelihood ratio test.

However, even when assumptions about independence of splits are violated and obser-

vations appear in different bootstrap samples, one can rely on tests results as they are ro-

bust. Another way is to use approximately unbiased bootstrap resampling [193, 194, 206].

There is no way to compare Scores between Tournaments

In Tables 5.4 and 5.5 differences between second and third best models for each dataset

are around 0.00008. The question arises as to whether these differences are comparable

between datasets. Does 0.00008 on Springleaf Marketing data mean the same increase of

model quality on IEEE-CIS Fraud data?

There are at least three points of view. One is that the gaps are almost the same for

both datasets, because the differences in AUC values are almost the same. The second

is that the gap in the IEEE-CIS Fraud Competition is larger as the AUC value is close
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to 1. Relative improvement for Fraud detection
(
0.967722−0.967637

1−0.967722
≈ 0.0026

)
is larger than

relative improvement for Springleaf Marketing
(
0.80907−0.80899

1−0.80907
≈ 0.0004

)
. The third point

of view is that the gap between first and second place for Springleaf (0.00018) is smaller

than the same difference for IEEE-CIS Fraud detection (0.000415). Therefore, the relative

gain from the difference between second and third place for Springleaf is higher.

From the definition of EPP score, the probability of winning against an average Player

(equivalent to an intercept β̂0) has the same meaning, regardless of the Tournament .

The EPP scores are absolute values with a mean equals to zero. Therefore, comparison

of EPP values between Tournaments is possible by comparing a probability of winning

against an average Player .

Property 5.3.4. Probability that Player Mi would win against an average Player Mavg

is

p̂i,avg =
exp

(
β̂Mi

)
1 + exp

(
β̂Mi

) ,
from the Property 5.3.2 we have that intercept β̂0 = 0. In the logistic regression,

intercept relates to the mean, therefore β̂Mavg = 0 and

p̂i,avg = invlogit
(
β̂Mi
− β̂avg

)
=

exp
(
β̂Mi
− β̂Mavg

)
1 + exp

(
β̂Mi
− β̂avg

) =
exp

(
β̂Mi

)
1 + exp

(
β̂Mi

) .
Mean aggregation may be misleading: the Variance for Round

In Figure 5.2, we show four selected models from the Visual Task Adaptation Benchmark

(VTAB) [235]. Every small point indicates the top-1 accuracy for one model on one of

19 specified datasets. The scores corresponding to the same dataset are connected with

the thin lines.

We analyse the results of these models within pairs. The first pair is the Sup-Rotation-

100% model and Sup-Exemplar-100% model. The second pair is Uncond-BigGAN model

and VAE model. Averaged top-1 accuracy across datasets are close to to models in these

pairs. The Sup-Rotation-100% and Sup-Exemplar-100% have evidently higher predictive

power than Uncond-BigGAN and VAE models for most tasks.

Top-1 accuracy scores of Sup-Rotation-100% and Sup-Exemplar-100% models are very
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*

*

*

*
VAE

Uncond−BigGAN

Sup−Exemplar−100%

Sup−Rotation−100%

25 50 75 100
Score

Top−1 accuracy for selected models from the VTAB

Figure 5.2: Boxplots of scores for four selected models from the Visual Task Adaptation Bench-
mark. Red stars correspond to mean scores across all VTAB tasks. Dots indicate scores in
separate VTAB tasks. Thin lines connect points corresponding to the same task. Green and
Blue lines are highlighted for example purposes in Section 5.3.3.

close to each other within specified datasets. This is represented as parallel lines con-

necting dots for two models in the top part of the plot. In the second pair, the rela-

tionship between Uncond-BigGAN and VAE is more ambiguous. Comparing just aver-

ages across datasets show that the Uncond-BigGAN model is comparable to VAE. How-

ever, when considering the green path in Figure 5.2, all four models have similar perfor-

mance. On the other hand, when considering the blue path, VAE significantly defeats

Uncond-BigGAN and performs comparably to Sup-Rotation-100% and Sup-Exemplar-

100%. The probable reason for these two scenarios is the different tunability of datasets,

which exhibits as diverse variance of top-1 accuracy for different models.

The VTAB ranking exemplifies the Scheme Model/Task of EPP Benchmark with just

19 Rounds determined with datasets. Averaging the Score values neglects the information

about the distribution of Score values within Rounds . This is especially relevant in cases

where we compare Scores of different definition and range of values for a sequence of

Rounds . EPP also ignores the dispersion of Score values for a specified Round but this

simplification comes, by design, from the definition of EPP computing.

Property 5.3.5. The EPP score is an aggregate over all rounds.

By fitting the logistic regression model from Equation 5.2 as dependent variables of ob-

servations, we use the results of Matches- whether one Player beats another.
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The mean aggregation may be misleading: the variance for Player

As we see from the example of VTAB rankings in Figure 5.2, variation of VAE scores are

higher than in the case of Uncond-BigGAN. Averaging the Score values neglects the infor-

mation about the variance of Score values within Player results. Sometimes the standard

deviation of Scores is used as description of stability of results but when Scores values

come from various distribution depending the Round this summary is incorrect.

EPP benchmark from the definition unifies the definition of all Matches in the early

phase and EPP Meta-Score is computed on the base of win/lose results coming from

binomial distribution. Because of that, there is the procedure of assessing the stability of

EPP Meta-Scores values.

Property 5.3.6. The (1− α)% confidence interval of EPP for Player Mi is equal

CIα
β̂Mi

=
(
β̂Mi
− zα/2SEβ̂Mi

, β̂Mi
+ zα/2SEβ̂Mi

)
,

where zα/2 is the percentile of standard normal distribution.

If Round performances are independent and sample size is sufficient, the standard

deviation of EPP score
(
SEβ̂Mi

)
may be computed with maximum likelihood estimation

method. Otherwise, the non-parametric bootstrap may be applied.

You cannot assess the quality of a Leaderboard

In the VTAB example in Figure 5.2, mean aggregation summarises the model performance

with a single value. In Figure 5.2 we see that the residual values between Score value

corresponding to a single task and mean value for Sup-Exemplar-100% model are much

smaller than for Uncond-BigGAN or VAE. Averaging the top-1 accuracy values does not

provide any statistics on how compatible the aggregated ranking is with rankings related

to a single task, in other words how much information is lost in aggregation.

Assessing the quality of aggregation is crucial because the main objective is to create

a Leaderboard emulating the relative performance power of models. If aggregated ranking

is consistent with ranking for single tasks, it is reliable and this aggregation may be con-

sidered representative. Otherwise, the aggregated ranking is not an appropriate approach

and a different aggregation measure or aggregation in subgroups of tasks should be con-

sidered. So far, aggregation methods which have been used to summarise many rankings
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do not give any measure reflecting the quality of aggregation.

EPP Meta-Score is computed on the basis of logistic regression models. From the def-

inition of the generalized linear model, there are tools to assess the quality of the aggre-

gation procedure. We may compare the estimated probability p̂i,j with the true values

pi,j using likelihood function.

Property 5.3.7. The deviance of logistic regression for EPP Meta-Score is a measure of

goodness-of-fit of a Leaderboard L for Players M and Tournament T .

D
(
pT
M, p̂T

M
)
= 2

(
log

(
L(pT

M,pT
M)

)
− log

(
L(pT

M, p̂T
M)

))
,

where pT
M = (pi,j) is a vector consisting of the actual empirical probability of winning for

every pair of Players Mi and Mj in Tournament T and p̂T
M = (p̂i,j) is a vector consisting

of the predicted value of the probability of winning, respectively. L
(
pT
M,pT

M
)

stands for

the logistic regression likelihood function for a saturated model that provides a separate

parameter for each observation and is the best fitted model and L
(
pT
M, p̂T

M
)

is the logistic

regression likelihood function for a considered model.

In addition, as the number of rounds R → ∞ deviance converges in distribution to

chi-square distribution D
(
pT
M, p̂T

M
) D−→ χ2

m(m−2), where m is the cardinality of Players

setM.

If the deviance of the Leaderboard is low, the EPP Meta-Scores and respective esti-

mated probability p̂i,j are close to empirical probability pi,j and this Leaderboard is more

reliable than a Leaderboard with high deviance. In general, we cannot provide the ab-

solute threshold that indicates whether the deviance statistic is low and Leaderboard is

reliable. Yet, note that asymptotic distribution is chi-square and the number of degrees

of freedom depends only on the number of Players , therefore for the same set of Players

we can compare the relative quality of Leaderboards in Tournaments .

Property 5.3.8. Given the set ofM = {M1,M2, ...,Mm} Players and two Tournaments

T1 and T2, the quality of EPP Meta-Score Leaderboards LT1
M and LT2

M can be compared

using the deviance statistics. If
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D
(
pT1
M, p̂T1

M
)
≤ D

(
pT2
M, p̂T2

M
)
,

the Leaderboard LT1
M for Tournament T1 is better fitted to actual probabilities than

the Leaderboard LT2
M for Tournament T2.

The number of degrees of freedom of deviance statistic is order of m2, therefore de-

viance statistics can take very large values if the number of Players m is in the order of 100

or higher. From χ2 distribution properties, the skewness of this asymptotic distribution

decreases with the number of Players m. If the number of Players is sufficiently high,

D
(
pT1
M, p̂T1

M
)

converges in distribution to normal distribution N (m(m − 2), 2m(m − 2)).

The deviance statistics can be scaled and shifted depending on the number of Players .

Property 5.3.9. Standardized deviance statistics for set of Players Mi and Tournament

Tj is

D̃
(
p
Tj

Mi
, p̂

Tj

Mi

)
=

D
(
p
Tj

Mi
, p̂

Tj

Mi

)
−m(m− 2)√

2m(m− 2)
,

where m is the cardinality of Players setMi.

If the number of rounds R → ∞ deviance and m is sufficiently large,

D̃
(
p
Tj

Mi
, p̂

Tj

Mi

)
D−→ N (0, 1).

It is worth emphasizing that the transformation of deviance statistics is done by con-

stants, depending only on the number of Players . We do not need to estimate additional

coefficients.

Due to the approximation with a standard normal distribution, we can compare

the loss between estimated probabilities and the observed values in different Schemes

of Tournaments , but not necessarily for the same set of Players .

Property 5.3.10. Given the set of M1 = {M1
1 ,M

1
2 , ...,M

1
m} Players in Tournament T1

and the set of M2 = {M2
1 ,M

2
2 , ...,M

2
n} Players in Tournament T2, the quality of EPP

Meta-Score Leaderboards LT1
M1

and LT2
M2

can be compared using the deviance statistics. If
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D̃
(
pT1
M1

, p̂T1
M1

)
≤ D̃

(
pT2
M2

, p̂T2
M2

)
,

the Leaderboard LT1
M1

for Tournament T1 is better fitted to actual probabilities than

Leaderboard LT2
M2

for Tournament T2. Which means that Leaderboard LT1
M1

captures

the relationship between models’ performance better than Leaderboard LT2
M2

.

An alternative approach to comparing deviance statistics is the comparison of p-values

corresponding to chi-square distribution (Property 5.3.8) or for standard normal distri-

bution (Property 5.3.10) for deviance statistics. The higher p-value corresponding to

deviance statistics indicates that the leaderboard fits more accurately. However, with

the increase of the number of Players , we may observe the discretization of p-values

related to deviance for tournaments.

5.4 Real data examples

In this section, we show that EPP Meta-Score improves the existing real data benchmarks

for tabular data as well as Computer Vision and Natural Language Processing problems.

Firstly, we regard the OpenML100 benchmark for table data [19], which fits

the Model/CV scheme from Section 5.2.1. Every model (Player) is tested on a differ-

ent train/test split of cross-validation (Round). The rankings are created per dataset

(Tournament).

There is a different perspective in VTAB and SuperGlue benchmarks. Similarly

to the OpenML, the compared items are different neural architectures - Players . But

the Rounds are determined by different independent tasks.

5.4.1 Computing EPP on the OpenML100 benchmark

Now, we demonstrate the advantages of EPP Meta-Scores in Leaderboards on a Memen-

toML [122] database, that is a large-scale benchmark on 30 binary classification datasets

from the OpenML. We selected 5 machine learning algorithms: gradient boosting ma-

chines (gbm), a generalized linear model with regularization (glmnet), k-nearest neigh-

bors (kknn), and two implementations of random forest (RF and ranger). Each algorithm

was trained with 400 different, randomly chosen hyperparameter configurations. For each
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dataset, models were tested on 20 random train/test splits with AUC as a performance

measure. This gave us an overall number of AUC values equal to 30 ·20 ·5 ·400 = 1200000.

On the computed AUC Scores , we calculated the EPP Meta-Score introduced in Sec-

tion 5.3 and Figure 5.1. As a single Round , we consider a train/test split. A Match is

a comparison of performances of two models with specified hyperparameters on the same

dataset, yet not necessarily on the same train/test split. As a result, we have ob-

tained EPP values for each data-model-hyperparameter combination, which gave us

30 · 5 · 400 = 60000 values of EPP Meta-Scores .

The performance of models is highly variable due to the dataset, which can be seen in

Figure 5.3, where the distributions of EPP Meta-Score values across models and datasets

are shown. The longer boxplot means greater potential for model tuning; for example, we

can see that tree-based models (gbm , RF, and ranger) perform better on dataset madelon

than the other two models. Also, all of the EPP values for random forest are positive,

which means that, generally, the performance of random forest is above the average.

Due to the independent sampling of hyperparameters and an excessive L1 penalty in

regularization, a part of the glmnet models achieved AUC score equal to 0.5 or less.

The models with AUC=0.5 always lose against other models, which causes a huge range

of values of EPP scores for glmnet.

In Table 5.6, we show AUC and EPP values for the four selected models for

the ada_agnostic dataset from experiments described earlier. To recall, in Section 5.3.3,

in the example of Kaggle ranking, we postulate that AUC score does not provide a prob-

ability interpretation. EPP addresses this issue, so we can assess the probability of one

model winning against another model according to Property 5.3.1. The descending order

according to the averaged AUC is different from EPP ranking. The lowest EPP value has

the kknn model, even though the lowest averaged AUC corresponds to glmnet. The differ-

ence between AUC of the first and AUC of the second model equals 0.001497, the difference

between AUC of the third model and the fourth score equals 0.00395. Due to EPP, we can

estimate the probability that gbm beats ranger with logit(1.27− 1.08) ≈ 0.55 probability.

In the second pair of glmnet and kknn models, despite the close to averaged AUC, there

is a 0.83 likelihood that glmnet will defeat the kknn model. These dissimilarities are not

emphasized by AUC score, since the averaged crossvalidation scores miss the variability

of metrics.
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Figure 5.3: Boxplots of EPP scores for different algorithms across datasets. Each boxplot aggre-
gates EPP scores of all models trained on all datasets.
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Table 5.6: EPP of selected models for ada_agnostic dataset. AUC values are averaged..
The numbers of models are IDs from the MementoML benchmark.

Model AUC EPP

gbm1305 0.890 1.27
ranger1088 0.888 1.08
kknn1396 0.816 -7.52
glmnet1242 0.812 -5.91

Table 5.7: The best models in algorithm class for mozilla4 dataset. AUC values are averaged.
The numbers of models are IDs from the MementoML benchmark.

Model AUC EPP

gbm1184 0.986 7.49
ranger1106 0.984 6.25
RF1106 0.984 6.22
kknn1016 0.942 -6.78
glmnet1011 0.922 -11.24

With respect to Property 5.3.4, EPP Meta-Score enables the analysis of performances

between datatsets. Because of the lack of interpretation of AUC differences, comparison

between model scores may be made in various ways, as described in detail in Section 5.3.3.

Table 5.7 and Table 5.8 present rankings for best-in-class models for two datasets from

our experiment, mozzilla4 and credit-g. Even though absolute differences of AUC between

the first and second model in each ranking are around 0.002, the rankings have different

levels of AUC scores (approximately 0.98 and 0.81 for mozzilla4 and credit-g respectively)

so distinct approaches provide dissimilar claims. The EPP overcomes this problem and

we can draw consistent conclusions regardless of the absolute value of a considered metric.

Due to differences in EPP values, mozzilla4 dataset gbm model has 0.77 probability that

beats the best ranger model. In credit-g ranking, the RF model has only a 0.53 likelihood

that it will defeat the ranger model.

Recalling Property 5.3.8, for every dataset (EPP Leaderboard) we can use the deviance

statistics to compare the quality of rankings. The two leaderboards related to the lowest

and the highest deviance of model computing EPP values are banknote-authentication

and wdbc respectively. In Figure 5.4 we present the actual empirical probabilities of win-

ning among every pair of models versus predicted probabilities computed on the base

of EPP values. The exact fit should be placed on the black line plotted on the graph.

The higher deviance statistics reflect the greater consistency with empirical results. In

addition to the relative comparison of deviance statistics, we can compare the quality of
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Table 5.8: The best models in algorithm class for credit-g dataset. AUC values are averaged.
The numbers of models are IDs from the MementoML benchmark.

Model AUC EPP

RF1155 0.809 1.29
ranger1212 0.807 1.16
gbm1136 0.807 1.16
glmnet1379 0.802 0.97
kknn1038 0.769 -0.54

the resulting Leaderboards as a fit to empirical probability values. For 12 of the 33 Tour-

naments , the obtained model rankings are not statistically worse than the Leaderboards

corresponding to perfect fits to the true observed odds of winning.

Figure 5.4: Actual empirical probability of winning and predicted probability computed on
the basis of EPP meta-score value for datasets: banknote-authentication (least accurate fit ac-
cording to deviance) and wdbc (the best fit according to deviance).

It is worth noting that the proposed scheme of EPP application in this benchmark is

not fully consistent with the previously described ontology for Model/CV scheme, where

the single Round is a single dataset split. Here, we consider as one round the comparison

of Scores on different train/test splits. This approach allows for more matches between
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players and the EPP Meta-Score values are more reliable. This extension is valid because

the properties of crossvalidation and the assumption of estimating the same value of

the performance measure across train/test folds. Next to this issue arises a question

about the stability of EPP Meta-Score values and how many Matches are needed to

estimate EPP.

Figure 5.5: Elo and Mean of VTAB scores. Each black dot represents one model. Horizontal
bars are confidence intervals for EPP scores.

5.4.2 Use-case on the Visual Task Adaptation Benchmark

The Visual Task Adaptation Benchmark (VTAB) [235] is a suite of tasks designed to

evaluate general visual representations. The VTAB benchmark consists of 16 different

architectures. Each architecture is evaluated on 19 datasets. The overall score of archi-

tecture is the mean of scores across datasets. In terms of the Unified Benchmark Ontology

from Section 5.2, VTAB fits Scheme Model/Task.

In Figure 5.5, we show the comparison of the mean VTAB score and EPP meta-score

for each model. The overall trend for the mean score and EPP is similar; however, there

are some differences in the rankings. For example, Semi-Rotation-10% has a higher mean

score than Rotation, but lower EPP. It is caused by the fact that EPP only takes into

account whether a model is better or worse than another, while the mean depends on

the differences in results.

The independence of tasks in the benchmark allows for the computing of confidence
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intervals that show whether difference in EPP scores is significant. The analysis of con-

fidence intervals in Figure 5.5 distinguishes groups of models that truly differ in perfor-

mance. In particular, mean scores and EPP meta-scores for Semi Rotation 10% and Ro-

tation models differ, while EPP confidence intervals overlap, which means we cannot state

that there is a difference in model performances. Additionally, due the Property 5.3.3, we

can test the differences between two models. The p-value of the Wald test between Semi

Rotation 10% and Rotation at the significance level 0.05 equals 0.65. Therefore, there is

no significant difference between these models’ performances.

In addition to group analysis, one can also compare pairs of models. The mean for

the top 2 models is almost the same; however, the EPP Meta-Scores can be used to

calculate the probability that on a new dataset Sup-Rotation-100% will perform better

than Sup-Exemplar-100%. The probability of winning is the inverse logit of the difference

of scores (see Property 5.3.1). Therefore, Sup-Rotation-100% (EPP=3.41) will obtain

higher performance than Sup-Exemplar-100%g (EPP=3.16) with the probability equal to
exp(3.41−3.16)

1+exp(3.41−3.16)
= 0.56.

5.5 Conclusions and future work

In this work, we introduced a new performance meta-score, the EPP. By introducing

the Unified Benchmark Ontology, we demonstrated how universal and applicable the EPP

measure is across different machine learning domains. In addition, we highlighted the most

important objections regarding existing metrics and pointed out EPP properties which

cover these limitations.

The versatility feature combined with EPP statistical properties enhances the infer-

ence that comes from existing benchmarks, which is shown in the use-case of VTAB and

OpenML. The most important is the possibility of transofming differently defined evalua-

tion scores to the same scale, i.e. the probability of winning against a competitive model.

On the VTAB benchmark we show that the EPP Leaderboard amplifies the original ap-

proach and provides a confidence interval for EPP value, so we are able to assess the sig-

nificance of differences between architectures. On the basis of the OpenML repository we

illustrate how EPP empowers the systematic benchmark with the well-defined space of

machine learning models and hyperparameters. EPP Meta-Score enables the comparison

of predictive power for different Tournaments , in this case datasets. Tournaments are
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comparable in terms of quality of EPP Leaderboards .

Hence, EPP may be considered as competitive to commonly applied scores in rankings

of machine learning challenges and as an alternative to existing approaches to aggregating

scores. What is more, EPP extends the existing benchmarks and does not require to

recompute them (see VTAB use-case in Section 5.4.2).

The EPP Meta-Score has statistical foundations and this should be the key aspect

of further research. The need remains to examine how the interdependence of Rounds

affects the EPP Meta-Score estimation and how many Rounds are required to obtain

stable EPP values.

5.6 Future applications

We see several possible extensions of EPP score. The TrueSkill [89] Elo-based system

allows the grading of human skills in games for more than two players; it can be applied

to machine learning and used for assessing the performance of model ensembles. It could

make it possible to assess separately the performance of a single model, performance of

the ensemble of models, and the potential of the model in the ensembles.

Due to interpretation of differences and comparability of EPP across diverse datasets,

new measures provide the opportunity to research and verify state-of-the-art AutoML

benchmarks in a new light. So far, the researchers have to make assumptions to sim-

plify finding optimal configuration of algorithm settings across multiple datasets [170].

The EPP Meta-Score does not require the same scale of score and adds an interpretation

for comparing Leaderboards . The second major opportunity is to use EPP for navigated

hyperparameter tuning. EPP score can be used to assess the probability that we can

improve performance if we continue searching the hyperparameter space.

5.A Appendix

5.A.1 EPP fitting error

Comparison of the error of fit of the estimated probability to the observed proportion of

matches won between each pair of players can be carried out using two approaches.
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Deviance of EPP

Table 5.9: Deviance of EPP Leaderboard for every benchmarked dataset from OpenML described
in Section 5.4.1. For all Leaderboards, deviance has χ2 distribution with 3996000 degrees of
freedom. std.deviance stands for normalized deviance computed by subtraction of the mean
value of χ2 distribution and then division by the standard deviation χ2 distribution. p.value
comes from one-sided t-test.

id data set deviance std. deviance pvalue
1043 ada_agnostic 4025457.0 10 <2e-16
1461 bank-marketing 3908379.0 -31 1
1462 banknote-authentication 43888510.0 14111 <2e-16
1464 blood-transfusion-service-center 2226673.0 -626 1
1467 climate-model-simulation-crashes 5423963.0 505 <2e-16
31 credit-g 2904705.0 -386 1
37 diabetes 1720012.0 -805 1
1471 eeg-eye-state 36066114.0 11344 <2e-16
151 electricity 14954722.0 3876 <2e-16
1479 hill-valley 13492159.0 3359 <2e-16
1480 ilpd 2915470.0 -382 1
1067 kc1 7259304.0 1154 <2e-16
1063 kc2 1339686.0 -940 1
3 kr-vs-kp 4166641.0 60 <2e-16
1485 madelon 5362849.0 484 <2e-16
1120 MagicTelescope 13854813.0 3487 <2e-16
333 monks-problems-1 20237849.0 5745 <2e-16
334 monks-problems-2 5349152.0 479 <2e-16
335 monks-problems-3 2175298.0 -644 1
1046 mozilla4 3762485.0 -83 1
1487 ozone-level-8hr 3631091.0 -129 1
1068 pc1 8165732.0 1475 <2e-16
1050 pc3 3409399.0 -208 1
1049 pc4 5706084.0 605 <2e-16
4534 PhishingWebsites 9131773.0 1817 <2e-16
1489 phoneme 4626573.0 223 <2e-16
1494 qsar-biodeg 3929698.0 -24 1
312 scene 7911292.0 1385 <2e-16
44 spambase 4605587.0 216 <2e-16
1504 steel-plates-fault 41210355.0 13164 <2e-16
50 tic-tac-toe 6676955.0 948 <2e-16
1510 wdbc 982508.0 -1066 1
1570 wilt 15151134.0 3946 <2e-16

EPP vs. Mean - Mean square error

In deviance approach, assumptions about the binomial probability distribution are taken

into account. An alternative naive approach that ignores the distribution of estimated

values is the mean square error (MSE). By ignoring theoretical assumptions it is possible

to compare fitting error for the EPP method and the mean as the default aggregation of

the chosen measure.
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Since EPP coefficients are transformable to probabilities p̂i,j (according to Property 5.3.1)

and then

MSEEPP =
∑
i,j

(pi,j − p̂i,j)
2. (5.3)

In the case of the mean aggregation we predict that a player wins with probability equal

to 1 if the mean score is higher than that of the opponent. So mean square error for mean

aggregation equals

MSEmean =
∑
i,j

(pi,j − I (mean(scorei) ≥ mean(scorej)))
2 . (5.4)

In Table 5.10 we compare the MSE of EPP and mean aggregation for OpenML benchmark.

For many data sets MSE for EPP method is many times lower than the baseline method

(see Ratio column).

Simulations

To confirm results showing the superiority of EPP over Mean aggregation we run sim-

ulations changing the benchmark plan. In addition to the classical estimation of EPP

coefficients using unpenalized logistic regression, we also use EPP estimation by Ridge

regression. The comparison of both EPP estimation methods allows to empirically assess

the quality of the fitting error for both approaches versus mean aggregation.

The simulations are conducted for 10, 50, 100, 200, 500 number of players and for 3,

5, 10, 15, 20, 30, 40, 50 rounds. Simulation for each configuration was repeated 12 times.

For each number of players (nplayers) and number of rounds (nrounds) we sample the

AUC score, then create Leaderboard using EPP and mean aggregation. For all three

methods, MSE is computes according to following steps:

1. Sample µ0 ∼ U(0.7, 0.95) and σ0 ∼ U(0.005, 0.01), where U stands for uniform

distribution. This value simulates the expected difficulty of task and the tunability

of the task respectively.

2. For every playeri, i = 1, . . . nplayers, sample µi ∼ N (µ0, 0.01) and σi ∼ N (σ0, 0.001).

These values simulate the expected score and its variance for player i.

3. For playeri draw nrounds values of aki - score of performance (AUC) in k-th round
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Table 5.10: Comparison of MSE values for EPP aggregation and Mean aggregation every bench-
marked data set from OpenML described in Section 5.4.1.

id data set EPP MSE Mean MSE Ratio
1043 ada_agnostic 0.00016 0.058 372
1046 mozilla4 0.0001 0.037 356
1049 pc4 0.00022 0.071 324
1050 pc3 0.00015 0.097 626
1063 kc2 8.6× 10−5 0.15 1732
1067 kc1 0.00025 0.068 272
1068 pc1 0.0003 0.093 306
1120 MagicTelescope 0.04 0.12 2
1461 bank-marketing 0.00018 0.029 164
1462 banknote-authentication 0.019 0.13 6
1464 blood-transfusion-service-center 0.00017 0.1 604
1467 climate-model-simulation-crashes 0.00031 0.098 316
1471 eeg-eye-state 0.0014 0.027 19
1479 hill-valley 0.00053 0.075 140
1480 ilpd 0.0002 0.1 511
1485 madelon 0.00016 0.028 174
1487 ozone-level-8hr 0.0002 0.073 358
1489 phoneme 0.00012 0.039 337
1494 qsar-biodeg 0.00031 0.085 276
1504 steel-plates-fault 0.009 0.078 8
151 electricity 0.00089 0.019 21

1510 wdbc 0.00012 0.15 1301
1570 wilt 0.00049 0.059 120

3 kr-vs-kp 0.00014 0.05 357
31 credit-g 0.00016 0.088 549

312 scene 0.00024 0.053 217
333 monks-problems-1 0.017 0.1 6
334 monks-problems-2 0.00028 0.024 88
335 monks-problems-3 0.00031 0.086 282
37 diabetes 0.00011 0.12 1055

4135 Amazon_employee_access 0.00036 0.065 180
44 spambase 0.00013 0.054 422

4534 PhishingWebsites 0.00028 0.031 112
50 tic-tac-toe 0.0014 0.049 35

(k = 1, . . . , nrounds) with mean µi and variance σi sampled in Step 2.

4. On the base of drawn nrounds values of AUC for each of nplayers calculate EPPi and

EPPRidge
i to create Leaderboards .

5. For estimated EPPi, EPPRidge
i and mean value of AUC, compute MSEEPP ,

MSEEPP Ridge and MSEmean according to 5.3 and 5.4.

6. For every value of nplayers and nrounds we repeat steps 1-5 12 times.

Figure 5.6 summarizes the results across number of players and number of rounds.

EPP estimated by two methods is more accurate in MSE terms than mean aggregation.
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Figure 5.6: Boxplots of MSE values for EPP aggregation, EPP estimated with Ridge regression
and Mean aggregation for n = 12 repetition per aggregation method. Horizontal bars indicate
largest (smallest) value within 1.5 times the interquartile range above (below) the third (first)
quartile. As the number of players and the number of rounds increase, the difference between
EPP and Mean aggregation becomes more apparent. For low number of players EPP estimated
with Ridge regression is more accurate than estimated with unpenalized regression.

5.A.2 Stability of EPP across rounds

The purpose of the following simulation is to investigate the stability of the EPP estima-

tion as a function of the number of rounds and the number of players. Usually, due to

limited availability of data, resampling methods, such as, cross-validation and bootstrap

are used to correctly estimate the performances of models. As a result of the resampling

mechanism, the scores obtained in subsequent rounds are correlated with each other.
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In this experiment we investigated the behavior of the EPP, assuming that, the AUC

values come from a multivariate normal distribution. All rounds have a constant expected

value and a constant variance. Relationships between rounds are expressed by a fixed cor-

relation value. In the experiment, we assumed the pessimistic case where the correlation

between rounds is twice as large as their variance.

The simulation was conducted for 10, 50, 100, 200, 500 number of players and for 3,

5, 10, 15, 20, 30, 40, 50 number of rounds. The simulation for each configuration was

repeated 10 times.

We simulate AUC for nplayers in the following steps:

1. Sample nplayers AUC mean from the uniform distribution [0.5, 0.9].

2. For each player sample 50 values from the joint multivariate normal distribution

with one of the means from step 1, and fixed covariance matrix with variances equal

to 0.0002 (values on the diagonal of the covariance matrix) and covariances equal

to 0.0001 (values off the diagonal). Thus, correlations between rounds equal 0.5.

Samples simulate vectors of AUC values from bootstrap subsets in rounds.

3. For each of nplayers players and for each number of rounds nrounds ∈

{3, 5, 10, 15, 20, 30, 40, 50} take the first values of the simulated AUC. Calculate the

EPP ranking for those values.

4. Repeat Steps 1-3 10 times.

Figure 5.7 shows the results of EPP stability simulation. Values on y-axis are eppdiff

which are the mean of EPP difference of the same players relative to the previous number

of rounds, which can be described by the following formula. Let eppi,r be an EPP value

for i-th player in EPP ranking calculated on r rounds:

eppdiff (20) =
1

nplayers

nplayers∑
i=1

(eppi,10 − eppi,20).

Even in the case of dependence between rounds that we consider, the proposed estimation

method provides stable EPP values. From the plot we can see that for smaller number

of models (10, 50) EPP is stable for more than 40 rounds. For larger numbers of models

(100, 200, 500) EPP is stable from 20 rounds.
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Figure 5.7: Simulation of the stability of EPP. Each panel shows results for different number
of players. On the x-axis there is number of rounds. On y-axis is the mean difference of EPP
for the same player relative to the previous number of rounds. The values on y-axis around 0
indicates that the values of EPP do not change when the number of rounds changes.

Figure 5.8 shows the changes in EPP distribution when the number of players increases.

The ranges of boxplots for larger numbers of players do not differ from the ranges of

boxplots for smaller numbers of players, therefore EPP do not inflate with the increasing

number of players.

5.A.3 EPP stability in new player scenario

The aim of this simulation is to verify, whether EPP is stable when new player is added.

We used values of nplayers: 10, 50,100, 200, 500 and values of nrounds: 3, 5, 10, 15, 20, 30,

40, 50.

We simulate AUC in the following steps:

1. Sample AUC mean from distribution N(0.8, 0.05).

2. Sample AUC variance from distribution N(0.08, 0.005).

3. Sample rankbase that consists of AUC for nplayers and nrounds with mean and variance

sampled in Steps 1 and 2. Where mean and variance of AUC is different for each

player and the same for each player’s rounds.
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Figure 5.8: Simulation of the EPP inflation for the increasing number of players. Boxplots of
EPP values split by number of players/models (n=10 per number of players) . Horizontal bars
indicate largest (smallest) value within 1.5 times the interquartile range above (below) the third
(first) quartile. Each panel is different number of rounds.

4. Calculate EPPbase for rankbase.

5. Generate ranknew that consists of players from step 3 and playernew with AUC=0.75

6. Calculate EPPnew for ranknew .

7. Calulate Kendall tau kt for model ranking from EPPbase and for model ranking

from EPPnew, skipping playernew in ranknew.

8. Repeat steps 1-7 100 times

Figure 5.9 shows differences in probabilities of winning between consecutive models

before and after adding a new player. For more than 10 models differences are around 0,

therefore addition of a new player do not disturb the relationships between models in the

ranking.
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Figure 5.9: Difference of the probability of winning between models. Boxplots of differences
of probabilities of winning between consecutive models before and after adding a new player
split by number of players (n=100 per one number of players). Horizontal bars indicate largest
(smallest) value within 1.5 times the interquartile range above (below) the third (first) quartile.
Panels show different number of rounds.
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Part II

Integrating domain knowledge into the

AutoDS
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In the second part of thesis, we focus on integrating domain knowledge into AutoDS

frameworks. Users often want to validate models against specific domain requirements,

but this process becomes challenging due to the current limitations in incorporating such

knowledge.

We explore how to effectively embed domain expertise into AutoDS frameworks, con-

centrating on two key areas: Model Building and Data Exploration.

In Chapter 6, we address the problem of building a meta-train set of datasets reflecting

prior knowledge of the dataset’s structure. We call this approach to building a meta-train

consolidated learning. Based on the prepared metaMIMIC benchmark, we show that the

transfer of hyperparameters can be more beneficial than the previously used non-domain

meta-training sets.

Chapter 7 introduces the SeFNet to methodology, which allows structuring tabular

datasets based on the systematic meaning of variables found in the data. Thanks to this

method, a broader exploration of datasets belonging to the same domain is possible. The

resource that has been prepared can be the beginning of a feature-centric perspective in

AutoDS.
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Chapter 6

Consolidated learning:

a domain-specific model-free

optimization strategy

This chapter corresponds to the article Katarzyna Woźnica, Mateusz Grzyb, Zuzanna

Trafas, and Przemysław Biecek. Consolidated learning: A domain-specific model-free

optimization strategy with validation on metaMIMIC benchmarks. Machine Learning,

113:4925–4949, 2023. doi: 10.1007/s10994-023-06359-0

AutoDS background in relation to the Hypothesis 4

The field of Model Building is considered a relatively universal subfield of AutoDS,

irrespective of the application domain. This universality stems from the fact that

the algorithms employed in Model Building are largely similar across various fields.

However, the data used in modeling are no longer universal. Data can often be

characterized by unique features depending on the specific domains. For instance,

in the survival analysis of a disease, these unique features might include related

response variables such as long-term and short-term mortality rates. Taking into

account the specificity of new datasets has not yet been considered in meta-learning

for hyperparameter optimization.

So far, meta-train sets have been constructed for very diverse datasets, neglect-

ing additional relations between predictive problems within the domain. Consid-

ering domain-specific meta-set offers two potential advantages. First, it introduces
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important new information into meta-learning that can improve hyperparameter

transferability. Second, it increases the transparency of the meta-learning stage.

This chapter presents the consolidated learning methodology of constructing a meta-

train set. This methodology restricts the datasets that are included in the meta-

train to better reflect the internal structure of the new dataset. In addition to

the methodology, this chapter includes a metaMIMIC benchmark created to validate

this scenario of dependencies between datasets.

6.1 Introduction

In order to effectively use the full capabilities of available machine learning algorithms,

we have to pay great attention to the hyperparameter values. On the one hand, hyperpa-

rameter tuning may be costly due to the dimensionality of the search space. On the other

hand, it is necessary because the default settings of hyperparameters do not guarantee

good model quality [126, 170]. Therefore, automatic hyperparameter optimization meth-

ods are being developed to avoid a manual, trial-and-error-based search for the optimal

set and thereby support users in building effective predictive models. They have become

a part of AutoML frameworks [208, 14, 157, 62] and resulted in increased attention to

the proposed methods’ ease of use, implementation, parallelization, and computational

complexity. It is essential to adapt to the considered prediction problem and provide

anytime performance, i.e., to propose a good configuration of hyperparameters even if

only a few evaluations have been performed.

So far, two main groups of hyperparameter optimization techniques have been rec-

ommended and are used as baselines in papers proposing new solutions. The most basic

class of methods are grid search and random search [12]. They are entirely independent

of the dataset; for each case, optimization must be started from scratch for a pre-specified

hyperparameter grid. Many optimization evaluations are needed to find near to optimal

solutions. In addition, these methods do not use the information obtained in the earlier

iterations, namely which algorithm settings resulted in good performance model. The sec-

ond class, Bayesian Optimization-based methods, addresses that problem. It automati-

cally extracts knowledge from the response surface. Then the surrogate model proposes

a new hyperparameter configuration weighing the benefits of exploring new, unseen re-
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gions against sampling from the known regions with good performance [96, 13, 197]. This

is an example of online hyperparameter optimization adapting to the dataset response

function and updating the expected model performance as a function of its hyperparam-

eter values. Nevertheless, these methods still do not provide anytime performance and

require independent optimization for every new prediction problem. Population-based

evolution strategies [58, 4] or reinforcement learning optimization [130] are other exam-

ples of online hyperparameter optimization methods. Both are quite complex, require

a different definition of the optimization problem and they are less popular in real-world

applications [22].

In addition to the techniques that require performing a complete optimization for each

new task, there is an increasing need for an offline approach that involves building a port-

folio of several hyperparameter configurations [229, 228, 62, 167, 63, 139]. Furthermore,

the hyperparameter portfolio is a particular case of meta-learning since at least one port-

folio configuration should parameterize a good-quality model for previously performed

experiments and should transfer this good performance to a new dataset. We assume

that at least one configuration will be promising for new, unknown data. The data repos-

itory, based on which we determine the portfolio is called a meta-train set, and new target

prediction problems are called a meta-test.

A predefined, limited set of hyperparameter configurations optimized for a wide range

of datasets has been shown to give comparable results to Bayesian optimization [229,

167] and proves to be even better when considering anytime performance. Moreover,

the portfolio approach may be seen as an extension of the default hyperparameter values

that is easy to share and parallelize. In the first studies introducing this method, all

meta-train datasets have the same relevance for the portfolio composition due to their

independent weighting. Therefore, to enhance the impact of meta-learning, Feurer et al.

[62] use meta-features, (i.e. vectors of dataset characteristics) to evaluate the dataset

similarity. Subsequently, during portfolio development, a higher weight is given to a good

configuration of hyperparameters from meta-train sets more similar to the new data under

consideration. This approach combines the online and offline procedures since a static

portfolio leverages the most effective configuration for similar datasets, assuming their

optimized functions have similar learning curves. The use of meta-train datasets reduces

the time for the early iterations in Bayesian methods.
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Techniques employing portfolios built on meta-features and assessing dataset similarity

are intuitive to humans and resemble an expert’s use of domain knowledge. The difficulty

of this approach is the use of meta-features. Firstly, computing meta-features may be

expensive and generate errors [63]. Secondly, we do not know how to describe prediction

problems and datasets using meta-features in an effective and discriminative way. Namely,

whether they should be predefined, based on statistical definitions [217, 179], landmarkers

[164], or perhaps automatically trained extractors based on neural networks [54, 90, 111].

Due to its availability, a set of meta-features based on statistical definitions is most of-

ten used, but their correlation with model performance is questionable [232]. Likewise,

the definition of distance and similarity between datasets is underdetermined [230, 60].

In addition to meta-features, the choice of meta-train is crucial for the effectiveness of

the portfolio. The standard choice of dataset repositories is OpenML [19]. It includes pre-

diction problems from diverse domains and may be a satisfying source to build a portfolio

that speeds up the optimization for general, random data. Nonetheless, we may have some

external knowledge about specific characteristics in many applications, e.g. high target

imbalance in insurance claims frequency models or interactions between specific blood

tests in medical data. Domain-specific AutoML frameworks [2, 82, 213, 156] already ex-

ploit these unique properties. This work shows that instead of searching for meta-features

describing these relevant attributes we can appropriately select the meta-train, limiting

it to the representative datasets from a specific domain. We call this refined meta-train

a consolidated meta-train and we denote the subsequent creation of a portfolio to transfer

hyperparameter configurations from that meta-train as consolidated learning.

Our contributions are as follows. 1) We purposefully restrict the meta-train dis-

tribution, taking into account only domain-specific characterizations of considered tasks.

Defining a consolidated meta-train, we highlight the importance of design decision in

the selection of meta-train. 2) We leverage a consolidated collection of the prior exper-

iments to determine the portfolio of hyperparameters transferred from the meta-train

to meta-test tasks. We employ two model-free portfolio selection strategy methods:

greedy search and average ranking. 3) To mimic a real case and validate consolidated

learning, we create a metaMIMIC repository extracted from the medical MIMIC-IV

database [109]. Our experiments reflect various levels of consolidation between the meta-

train and the meta-test (see Figure 6.1) based on the definition of the input and output

118



6.1. INTRODUCTION

space for every task. The metaMIMIC repository is the first benchmark to verify the util-

ity of consolidated learning. 4) In our experimental setup, we empirically show an improve-

ment of consolidated learning over the baseline methods (random search and Bayesian

optimization) as well as predefined portfolios extracted from the OpenML repository. We

confirm the hypothesis that consolidated learning for MIMIC-IV enhances the transfer

of XGBoost [36] hyperparameters in the early stage of optimization. The consolidated

portfolio combines the advantages of the two approaches used so far: it extends the idea

of the defaults, and it is easy to share such a ranking of subsequent algorithms. What

is more, at the same time, we take into account the specifics of a given dataset using

the best configurations of hyperparameters for similar data. The proposed method does

not require any additional optimization, is parallelizable, and has strong anytime model

performance. This property is significant when aiming to achieve good results with a lim-

ited time budget. In this way, consolidated learning becomes a support for data scientists

preparing entire collections of models for similar prediction problems or other subsamples

of observations. In the long run, applying consolidated learning to model deployment can

significantly reduce optimization budgets.

Figure 6.1: Relationship between the similarity of tasks and consolidated learning. Correspon-
dence between the space of prediction problems allows the meta-feature-free technique of hyper-
parameter tuning to incorporate the advantages of meta-learning. The greater the similarity in
task design, the more consolidated learning increases.
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6.2 Related work

Until now, it has been common for individuals to use the defaults implemented in the soft-

ware or to use simple tuning methods. With the development of machine learning, more

advanced hyperparameter optimization methods have been proposed. However, their

usage requires additional expertise in the configuration itself, which is why some data sci-

entists find them deterrent and why they often neglect to tune. Random search methods

were conducive to automatic hyperparameter optimization gaining in popularity. Previ-

ously, it was known that the configurations for many algorithms are crucial for the perfor-

mance of trained models, but effective tuning of the settings was lacking. Random search

facilitates the determination of a low dimensional effective subspace of hyperparameters

faster than a grid search or manual tuning, but it is still susceptible to the dimensionality

of the search space. To eliminate low-efficiency configurations, faster multi-armed bandit

methods such as Successive Halving [104] or Hyperband [131] are used. However, these

more advanced methods work only for iterative algorithms and are far less common than

simple random search or defaults.

Bayesian-based optimization methods are a class of techniques that particularly re-

quire expert knowledge in implementation. Their great advantage is using the knowledge

acquired from the previous evaluations and adjusting the optimization process to the char-

acteristics of the considered dataset. However, the selection of a surrogate model is crucial

for optimization effectiveness. The most popular are variants of Sequential Model-Based

Optimization (SMBO) [112] such as Sequential Model-Based Algorithm Configuration

(SMAC) [96], Tree-structured Parzen Estimator (TPE) [13] or Spearmint [197]. How-

ever, all of them are computationally demanding, difficult to parallelize and depend

on the choice of a starting point [230]. What is more, straightforward Bayesian-based

optimization methods do not provide anytime good solutions. To eliminate this prob-

lem, adaptive resource allocation and early-stopping of unpromising configurations are

combined with Bayesian optimization [59]. Despite these modifications, we still do not

leverage the information gathered so far in the previous experiments for other datasets;

the only way to provide additional information is the prior distributions of the hyperpa-

rameters [155, 200, 163].

In addition to the predefined portfolio of hyperparameters employed in this article,

there are different attempts to combine the strengths of online and offline approaches.
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The most common is the injection of the portfolio information into Bayesian optimiza-

tion. The main goal is to exploit the adaptability of online methods while leveraging

offline portfolios to quickly propose a good, though perhaps not the best, configuration of

hyperparameters. The most common approach is to define the starting points in Bayesian

optimization not as random ones but considering their model performance in the prior

experiments [60, 62, 231]. These methods emphasize the adaptation of the surrogate

model to the new considered dataset, and the portfolio is used only for the initialization.

An alternative is to use the results from the previous experiments and build a black-box

surrogate model that predicts the performance for a selected dataset and hyperparame-

ter configuration. Then, based on the data collected offline, we can predict the response

surface for the new dataset [219, 176, 46, 170].

6.3 Consolidated learning

We define a technique of transferring the hyperparameters from the consolidated design

meta-train set to the meta-test task as consolidated learning. The motivation behind this

modification comes from a practical perspective on building predictive models.

Motivation

When we look at the applications of predictive models in various fields of science and busi-

ness, it can be seen very quickly that the expectations of machine learning are significantly

different from those applied in AutoML. Experts in the relevant fields consider problems

with complex structures and ambiguous characteristics, so they often analyse various ap-

proaches to building predictive models. That results in multiple analyses not for just one

dataset but for a whole collection of related problems by definition. This multiplicity of

approaches gives a great deal of potential for enhancing machine learning models using

meta-learning for a new prediction problem. We examine the previous research to point

out the potential amplification of meta-learning coming from a composition of meta-data.

- Shared variables. In real-world use cases, prediction tasks for specific domains

often include standard explanatory variables shared between many datasets so that

the models can exploit analogous dataset characteristics. In medical research, clin-

ical patient data are often collected according to a set protocol. The introduction
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of Electronic Health Records (EHRs) has increased the consistency of reported pre-

dictive variables and support for the multi-center research [191, 91, 151, 181, 32].

In addition to the unification of data collection, the reason for the existence of similar

datasets is that in the diagnosis of rare diseases, the testing of specific predictive

factors is required. Without them, the study is considered incomplete, and any

predictive model is not deemed reliable so most examinations use these features.

For example, according to [124], 75% of analyzed articles concerning the prediction

of Alzheimer’s disease dementia progression use cognitive assessments as features.

In the treatment of cancer, on the other hand, TNM staging is key - its inclusion

in the study is essential for a proper assessment of treatment effects and disease

progression [27].

This schema of the similar structure of descriptive variables is also common in ex-

perimental sciences such as chemistry, physics, or biology. In biochemistry, a great

deal of attention is paid to Quantitative structure-activity relationship (QSAR)

studies [115]; based on the encoded structural features of individual molecules,

the models are supposed to predict the activity of a given compound in, for ex-

ample, drug development. In the CheMBL database [68], we can find collections of

diverse tasks used in the meta-learning approach in [156]. On the other hand, in

high-energy physics, machine learning is used in particle detection from collected

data at the Large Hadron Collider (LHC) [30].

- Related targets. Many prediction problems do not have a clearly defined end-

point, and several different correlated target definitions are examined. In [196],

in addition to the occurrence of acute kidney injury (AKI) within 24h of admis-

sion, the occurrence of AKI at certain stages of progression and the risk of death

are extracted as the target variable. The same is true for mortality prediction, as

endpoints are often considered with differently defined short- and long-term mor-

tality [171, 185]. From a logistical point of view, predicting the length of stay in

hospital is also an important issue [171, 211]. If, in addition, the explanatory vari-

ables have a similar structure, then the predictive algorithms should capture similar

relationships across the tasks.

- Out-of-time data. Data scientists working for a specific entity often have one
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large database and build multiple models for different data samples extracted, such

as [121] building a sequence of machine learning models to predict an acute kidney

injury. Another case is the need to update the model for samples from different

periods. In that case, updating the set of observations and training the model

anew is common. Such models use the same set of variables, so the models should

have close properties to the previous versions. The question remains on optimizing

the new model, but the retraining of the algorithm with the same hyperparameters

turns out to be an effective approach [33].

These dependencies and shared definitions of features between meta-datasets are a dif-

ferent scenario from what has been considered in research papers on meta-learning so far.

To capture these circumstances, from the design of the sets used for training, we as-

sume a similarity between the prediction problems. We expect that if machine learning

algorithms can use similarly or identically distributed features, then they should detect

similar feature interactions or treat the same shared variable similarly. Since the only

parameterizations of the model that we know of are hyperparameters we assume that

such relationships between prediction tasks will positively affect the transfer of hyperpa-

rameters.

Formalization

We formalize the consolidated meta-train and consolidated learning using the terminol-

ogy from Section 2.1.3. Restricting meta-train tasks to the representative for specific

domain results in dependency between X i
meta−train and Xmeta−test for some i = 1, . . . , N .

In particular, explanatory features with the same marginal distribution may occur in

two different meta-train and meta-test distributions. In other words, some of the ex-

planatory variables may be shared between the two prediction problems under consid-

eration. Let P (X i
meta−train), P (Xmeta−test) be marginal probability distributions for i-th

meta-train prediction problem and meta-test, respectively. Then, we denote this situa-

tion as P (X i
meta−train)∩P (X j

meta−train) ̸= ∅ for i ̸= j or P (X i
meta−train)∩P (Xmeta−test) ̸= ∅.

If the features set is identical we denote this by P (X i
meta−train) ≡ P (Xmeta−test). We define

this constrained meta-train as a consolidated set in which common explanatory variables

occur between the sets contained in the meta-train set and the meta-test set. Based on

consolidated meta-training, a portfolio is composed (according to any strategy) and this
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process is called consolidated learning.

Correspondence between consolidated meta-train and meta-test is significantly higher

than between unrelated tasks within the OpenML repository. The assumption about

shared variables allows us to propose a meta-feature-free strategy of consolidated learning,

namely hyperparameter transfer which provides anytime solutions.

6.4 metaMIMIC repository

This section describes the methodology for creating a meta-dataset to imitate the consoli-

dated learning environment. Therefore, based on the MIMIC-IV database [109] we create

a collection of binary classification tasks of varying similarity. We weigh three scenarios of

similarity between the extracted tasks. In the real world, such repositories are naturally

collected during model development. However, to our knowledge, such a repository is

not publically available for research purposes. Behind the choice of the MIMIC database

as a source for the collection of prediction problems is its wide use in the research for

machine learning applications in medical diagnosis [154, 238, 147, 136]. We employ this

collection as a benchmark for evaluating hyperparameter transfer in consolidated learning

and assessing the improvement in tuning.

6.4.1 MIMIC-IV database

MIMIC-IV (Medical Information Mart for Intensive Care) is an extensive, freely available

database comprising de-identified health-related data from patients admitted to the in-

tensive care unit (ICU) of the Beth Israel Deaconess Medical Center. It contains data of

over 380,000 patients admitted to the ICU in the years 2008-2019. We include patient

tracking data, demographics, laboratory measurements sourced from patient-derived spec-

imens, and information collected from the clinical information system used during the ICU

stay.

To determine the cohort selection, we have to define the patient inclusion criteria

taking into account machine learning principles [110, 147, 171]. We consider only the first

admission of every patient to preserve the independence of all observations. Every patient

must be at least 15 years old at the time of hospitalization and their admission must

correspond to at least one chart event, one lab event, and one diagnosis recorded in
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the database. The hospital stay length must be shorter than 60 days. In total, 34925

unique patients met all the above conditions.

6.4.2 Prediction tasks

To determine multiple predictive problems, we decided to predict the occurrence of a spe-

cific disease. We examined the 50 most commonly appearing conditions and hand-picked

groups of diseases that have a representation in both ICD-9 and ICD-10 codes (see Ta-

ble 6.1). It resulted in 12 targets for binary classification. We also considered whether

the selected targets can be successfully predicted with the data available in the MIMIC-IV

database (at least 0.7 mean ROC AUC in 4-fold cross-validation after tuning).

Table 6.1: Selected targets with corresponding ICD codes and frequency in the considered cohort.

Condition ICD-9 ICD-10 Frequency

Hypertensive diseases 401-405 I10-I16 59.8%
Disorders of lipoid metabolism 272 E78 40.3%
Anemia 280-285 D60-D64 35.9%
Ischematic heart disease 410-414 I20-I25 32.8%
Diabetes 249-250 E08-E13 25.3%
Chronic lower respiratory diseases 466, 490-496 J40-J47 19.5%
Heart failure 428 I50 19.4%
Hypotension 458 I95 14.5%
Purpura and other hemorrhagic conditions 287 D69 11.9%
Atrial fibrillation and flutter 427.3 I48 10.5%
Overweight, obesity and other hyperalimentation 278 E65-E68 10.5%
Alcohol dependence 303 F10 7.7%

We selected 58 features, hand-picking ones with the lowest number of missing values.

Besides gender and age, we included only numerical variables related to the purposeful

medical examination. Most features were recorded several times, so we aggregated them

to minimum, average, and maximum values. In total, this resulted in 172 variables.

The missing values are imputed with a mean of all observations for each task independently

to avoid data leakage.

6.4.3 Task correspondence

In addition to specifying the response variables and the explanatory variable space, we

also considered various assumptions for choosing the subset of observations and available

125



CHAPTER 6. CONSOLIDATED LEARNING

variables. Generally, in applications such choices are forced by the available data, such

as the size of the sample of observations that can be used, or how model validation is

defined.

We mimic different selection scenarios that affect the intuitive perception of similarity

between the obtained tasks in this work. The process of task design always consists of

three choices – which predictors to use, which observations to consider, and which target

to predict (see Figure 6.2), giving us three scenarios of task correspondence. To verify

the impact of similarity between the tasks on the consolidated learning, we compare them

with baseline transfer from a wide range of OpenML datasets.
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Figure 6.2: Schemas of design decision in creating scenarios of similarity between meta-train and
meta-test. In S1-S3 from MIMIC-IV we extracted feature space, a sample of observations, and
target disease. In S1 models for meta-train and meta-test use all predictors and observations
but targets vary. Scenario S2 contains models built for the same predictors but disjoint sample
of observations. In S3 we consider different subsets of predictors. In S4 meta-train is composed
of the OpenML datasets unrelated to MIMIC.

1. In the first scenario (S1), we predict different targets considering the same ob-

servations and using the same variables. Using formal notation feature space are

identical X i
meta−train ≡ Xmeta−test for every i = 1, . . . , N . Therefore, the only real

choice to make is to select which target to predict (Figure 6.2 S1). This setup

reflects a situation where these targets are determined by historical data of the hos-

pital’s patients comprising basic diagnostic tests and diagnoses. The only difference

between the tasks is the diagnosis we want to predict, so there are 12 prediction

sets.

2. In the second scenario (S2), various targets are predicted considering different sam-
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ples observations but using the same set of variables. To avoid leakage of information

occurring in S1, we consider two random, disjoint samples of observations (Figure

6.2 S2) but the models are provided with the same 172 variables. This experimental

setting corresponds to the situation where we consider models built on out-of-time

samples of patients but from the same distribution. When considering any two pre-

diction problems, we can examine models built on independent sets of observations.

In this setup, we get 2× 12 = 24 prediction tasks.

3. In the third scenario (S3), we manipulate not only observations samples but also

a set of variables to predict defined tasks. We select a different number of the most

important predictors for each task (Figure 6.2 S3). The choice of predictor set was

realized by selecting top n variables with the highest permutation variable impor-

tance value [26, 64], calculated using the XGBoost model with default settings. We

determine n = 10, 20, 50, 100 out of 172 features. This scenario imitates the trans-

fer of knowledge between models built upon different targets, but now the scenario

takes into account not identical feature space. Many prediction problems are based

on a core set of variables and these are available in many tasks. An example is blood

tests performed and used in the diagnosis of most diseases. So when considering

a broad class of medical problems, many of the tasks contain variables describing

such measurements. But there are also more specific tests for example cognitive

testing is the primary diagnostic of Alzheimer’s or ECG for heart diseases. If we

are considering sets of models that predict these diseases then the datasets will have

corresponding variables. In this setup we get 4× 2× 12 = 96 prediction tasks.

4. As a baseline meta-set and meta-learning approach (S4), we use 22 datasets from

the OpenML repository. Using this collection for meta-learning, even in an online

approach, has proven better than using random search or uninformed Bayesian

optimization.

6.5 Experiment methodology

The proposed method of model tuning for the MIMIC-IV database is based on hyperpa-

rameter transfer within a collection of medical prediction problems. We validate the effec-

tiveness of using a MIMIC family of prediction problems by comparing analogous tuning
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strategies determined for an unrelated family of datasets with OpenML.

We decided on the XGBoost algorithm because it is a very flexible algorithm, and

for many prediction problems expressed as tabular data, it achieves the best results by

far [195]. On the other hand, XGBoost depends on more than a dozen hyperparameters,

both continuous and discrete. These parameters interact with each other, and often

their structure is hierarchical. Since XGBoost is widely considered to be a very tunable

algorithm [170], we validate the potential of consolidated learning for this algorithm.

6.5.1 Hyperparameter grid

As the hyperparameter search space, we use the grid from the MementoML study [122]

to validate the consolidated learning with the results obtained from 22 machine learning

tasks from the OpenML repository. The designed grid comprises 1000 sets of 8 differ-

ent XGBoost hyperparameters sampled independently from the predefined distributions.

The considered hyperparameters and the distributions they are sampled from are pre-

sented in Table 6.2. If gblinear is selected as a booster, not all hyperparameters are

active.

The predefined grid of hyperparameters exemplifies the discretization of the searched

space. However, the predefined grid approach has been used in several works on opti-

mization [230, 229] so we decided to create a fixed random grid. It uses the advantages

of random search and allows efficient space search while ensuring the reproducibility of

results.

Table 6.2: Hyperparameters and their underlying distributions. U stands for a random variable
sampled from a uniform distribution with corresponding lower and upper bounds. Booster can be
either gblinear or gbtree with equal probability. With * we indicate the active hyperparameters
when booster = gblinear.

Hyperparameter Type Lower Upper Distribution

* n_estimators integer 1 1000 U
* learning_rate float 0.031 1 2U

* booster discrete - - {gblinear, gbtree}
subsample float 0.5 1 U
max_depth integer 6 15 U
min_child_weight float 1 8 2U

colsample_bytree float 0.2 1 U
colsample_bylevel float 0.2 1 U

For each task in scenarios S1- S3, we train XGBoost models for a given grid of hyper-

parameters using 4-fold cross-validation (CV). In scenario S4 we use results from Memen-

128



6.5. EXPERIMENT METHODOLOGY

toML. ROC AUC is used as the model performance measure. Due to the incomparability

of AUC values between the tasks, mean 4-CV ROC AUC is scaled to interval [0, 1] for

each task individually.

6.5.2 Tuning strategies

We test four hyperparameter tuning methods for the XBGoost algorithm. Two of them

are meta-learning based, so they use the model performance results for other meta-train

sets. For each scenario, the following strategies are tested: the transfer is performed with

metaMIMIC (S1-S3) and OpenML (S4) independently. In the hyperparameter transfer

within the metaMIMIC, we used one-task-out validation. For scenario S4, we studied

the transfer of hyperparameters configuration into the optimization for metaMIMIC tasks

from scenario S2. As a meta-learning strategy of formation portfolio we considered:

- Average Sequential Model Free Optimization (A-SMFO) [229] using the greedy algo-

rithm to determine a sequence of hyperparameters to test on the new task. The or-

der in the hyperparameter portfolio is initially optimized for the meta-train set and

the best configurations for each meta-train dataset are included. In the consecu-

tive iterations, we add configurations among the feasible candidates, not considering

the previously chosen ones. This offline algorithm aims to create a diverse config-

uration portfolio covering a wide range of prediction problems.

- Average Ranks Ranking Method (AR) [25] determining the order of hyperparameters

according to the average ranking obtained by configurations for every meta-train

dataset. This method is elementary and does not require additional computations.

Both meta-learning methods are limited to hyperparameter configuration derived from

the grid defined in Section 6.5.1. As a baseline tuning strategy, we tested random search

and Bayesian optimization as two strategies not exploiting results from other datasets.

- Random search (RS) is simulated as a random walk within a defined hyperparameter

grid. Due to this, we did not perform a random search several times to estimate

the expected learning curve and its variance; we could calculate the theoretically

expected model performance after t iterations determined by the expected value

of the beta distribution with the relevant parameters and empirical parameters

quantiles.
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- Bayesian optimization (BO) is performed using the implementation available in

the scikit-optimize package based on uniform distributions of hyperparameters,

with bounds corresponding to the MementoML grid. Since Bayesian optimization

may propose different configurations of hyperparameters from our given grid of

hyperparameters, it also validates the quality of the proposed search space.

Since A-SMFO, AR, and RS use evaluation from the same hyperparameter grid for

every task, the observed maximum of AUC measure is the same for all the three tuning

strategies. They only vary in the sequence of proposed configurations. Bayesian opti-

mization is not limited to this grid only and can find better or worse optimal AUC than

the other optimizations.

6.5.3 Evaluation of tuning strategies

The objective of the experiment is to see if we can improve hyperparameter tuning for one

dataset from metaMIMIC using meta-learning for scenarios S1 - S3 relative to S4. Let

us recall that we use a one-task-out schema for scenarios S1-S3 to build the meta-train

set. Furthermore, to avoid information leakage for scenarios S2 and S3, we always exclude

the target for which we optimize from the meta-learning-based optimization strategy. For

example, let us consider scenario S2 and diabetes target variable with the first subsample

of observations in meta-train. We include only the tasks for the second subsample of

observations but exclude the tasks for diabetes. For scenario S4, the OpenML dataset

repository is independent of the metaMIMIC, so we do not address this problem.

We compare the optimization strategies for all scenarios and each dataset individually.

For every iteration of optimization of a given strategy, we consider the best performance

obtained so far. That is why we are interested in reaching the maximal value as soon as

possible and in finding out which strategy achieves this. To aggregate this information

for the entire collection of datasets, we recorded the development of the average rank

among different hyperparameter tuning strategies. Furthermore, to assess the speed of

convergence to the observed optimum, we use the average distance to maximum AUC

(ADTM) value [230].

In our experiment setup as meta-test we consider all MIMIC-based tasks available in

examined scenario S1-S4. For each meta-test task the portfolio is determined by the cor-

responding meta-train, according to one-dataset-out validation.
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6.6 Effectiveness of consolidated learning

To assess the improvement in transferability of hyperparameters brought by consolidated

learning we perform optimization for every metaMIMIC task from Scenario S2. We build

portfolios upon the meta-train in Scenarios S2 and S4. For S2, we consider the meta-

train including the same sample of observations and a disjoint sample of observations

as in the meta-test task. We also test two strategies for creating a static portfolio, A-

SMFO, and AR. The baseline collates meta-learning results with random search, Bayesian

optimization, and the default XGBoost algorithm.

Figure 6.3: Hyperparameter tuning velocity of different methods and multiple tasks. Purpura is
the only task for which OpenML initially outperforms MIMIC-IV among the 12 tasks considered.

Figure 6.3 shows the results for four selected meta-test targets. Looking at the model

performance during hyperparameter tuning, we see that methods based on meta-learning

provide configurations close to the observed maximum already in the first iteration.

The distance between the learning curves for scenarios S2, S4, and the baselines is evident

for the first few iterations. These results are significantly better than for the model with-

out tuning. Despite being able to go beyond the specified grid, Bayesian optimization
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Figure 6.4: Comparison of the aggregated performance development with the increasing number
of iterations for different optimization strategies. In the left plot, changes in the average rank of
strategy are used to summarize overall efficiency. In the right, ADTM is applied. As meta-test
tasks always are used MIMIC-based task from scenario S2. For meta-train, we use tasks from
S2 for the disjoint subset of observations (S2 A-SMFO, S2 AR), the same subset of observations
(S2 A-SMFO H2, S2 AR H2). As baseline strategies, we use meta-train from scenario S4 (S4
A-SMFO, S4 AR), random search (S2 RANDOM), and Bayesian optimization (S2 BO).

obtains better results for only two targets, so we may assume that the predefined grid

covers the space of good configurations.

Let us take a closer look at the meta-learning-based methods. The differences in

model performance between the transfer for consolidated learning in scenario S2 and

the transfer based on OpenML are of the order of 10−3, but in most cases, domain-

based strategies reach maximum AUC before OpenML-based methods. Furthermore,

the difference between the transfer in scenario S2 regarding the identical and disjoint

sample of observations is negligible, so the effect of the subset of observations is not

significant. A-SMFO and AR strategies of building a portfolio give close learning curves

even in the first iteration.

To further summarize the impact of strategy selection between different tasks and

scenarios, we examine the change in average rankings for each strategy (Figure 6.4). We

see that in the earlier iterations, portfolios from S2 consolidated learning get a better rank

than the configurations extracted from OpenML, especially in the early iterations. All

strategies based on consolidated learning have a similar average rank, regardless of a sub-

sample of observations and a method of creating a portfolio algorithm. Only Bayesian

optimization exceeds the consolidated optimization but requires about 30 iterations to

approach the S2 strategies. In Figure 6.4 we see how fast the tuning strategies con-
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verge against the best hyperparameter configuration on average. Similarly, we observe

the learning curves for consolidated learning converge considerably faster than the other

strategies. Again, this marked difference is more substantial in the OpenML meta-data

set. As the rank of each strategy changes with time, we see that all lines associated with S2

scenario converge to the observed maximum the fastest. OpenML-based strategies achieve

slightly worse AUC but reach the maximum after about 10 iterations. Bayesian optimiza-

tion goes beyond the fixed-parameter grid, and to see if it finds better hyperparameters

than those included in the grid, ADTM for this optimization is computed assuming that

the maximum observed value is equal to the maximum observed on the predefined grid.

Hence, negative ADTM values for BO over 75 iterations.

Thus, we can conclude that meta-learning is effective and even using unrelated datasets

allows us to reject unsatisfactory configurations and provide a decent model performance

for several trials in tuning. We can accelerate the tuning by employing consolidated learn-

ing. Random search and Bayesian optimization need to go through several iterations to

achieve comparable results as methods based on a static portfolio created from the pre-

vious experiments.

6.6.1 Size of meta-train

To better understand how to build a consolidated learning scenario, we investigate the im-

pact of the size of the meta-train set on the hyperparameters’ transferability. For each

of the 12 tasks from metaMIMIC, we change the size of the meta-train set (between 1

and 11 for S2-metaMIMIC and between 1 and 20 for S4-OpenML) sequentially adding

one dataset at a time and then build a ranking of the hyperparameter configurations. For

every composition of meta-train we build the hyperparameter portfiolio using A-SMFO

strategy. Then we calculate the ADTM after 10 iterations of optimization. Since the or-

der in which sets are added to the meta-train is not fixed, we repeat this operation for 20

different permutations of the order of extension of the meta-train.

In Figure 6.5, we show the distribution of ADTM values depending on the size of

the meta-train set and whether it was built on metaMIMIC or OpenML. Here we present

the results for 3 selected datasets as a meta-test. For data from S2 we include results from

1 to 11 because this is the maximum size of the available meta-train set; over 11 we only

have ADTM values for S4. Boxplots reflect the variability of ADTM values. For the con-
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solidated learning scenario, we get significantly better results even for a small meta-train

set; very quickly, the ADTM values converge to 0. For all meta-test datasets, by using

the Wilcoxon test, we can reject the hypothesis that both methods have the same mean

ADTM values in favor of the hypothesis that the meta-train based on metaMIMIC has

a lower ADTM than the one based on OpenML. For 2-4 sets in the meta-train the model

performance in 10 iterations reaches similar values as for the whole 11-element meta-train

set. Thus, in this experiment, 4 datasets from the metaMIMIC repository are enough to

make the transfer of hyperparameters faster than with selected datasets from OpenML.

Figure 6.5: Transferability of hyperparameters changes with the number of available datasets in
meta-train. For every task we modify the size of meta-train in Scenarios S2 and S4 and check
the distribution of the ADTM values after 10 optimization iterations. Grey headings indicate
target from metaMIMIC treated as meta-test. In brackets, the p-values of the Wilcoxon test are
reported. The alternative hypothesis is that the mean ADTM value for hyperparameter transfer
from the metaMIMIC portfolio is less than the mean ADTM value for hyperparameter transfer
from the OpenML portfolio for the 4 datasets in the meta-train set. A correction for multiple
testing is applied. We obtain similar results for other meta-train cardinalities.
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6.7. ROBUSTNESS OF TRANSFERABILITY

6.7 Robustness of transferability

In Section 6.6, we saw that meta-learning-based methods find the optimum observed on

the defined grid after only 10 iterations. In this section, we explore the similarity between

hyperparameter spaces in model performance terms. We also investigate the effect of task

correspondence on the strength of hyperparameter transfer. This is especially important

in order to provide anytime solution for optimization.
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Figure 6.6: Numbers of the best 10 hyperparameter sets (regarding the mean 4-CV ROC AUC
measure) shared between tasks from S4, S1, and S2. An individual cell of the matrix corresponds
to the number of hyperparameter sets shared between a given pair of tasks. Histograms sum-
marize the distribution of the values of each matrix. White color on the diagonal means that
the value is not considered.

To analyze the consistency of the hyperparameter model performance between any pair

of tasks, we examine the percentage of overlap in the top 10 best configurations (Figure

6.6). We decide on a threshold of 1% because 10 iterations in tuning is sufficient for

strategies S2 and S4. Nevertheless, choosing another threshold value from a reasonable

range of 10-100 results in analogous relationships between the distributions of values

in the matrices. This fact is also reflected in the mean of Spearman rank correlation
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coefficients calculated for individual pairs of full rankings (0.165 ± 0.469 for S4, 0.885 ±

0.072 for S1, and 0.849 ± 0.078 for S2).

Comparing the distributions of values in the presented matrices shows that the number

of shared best hyperparameter sets is significantly higher for the S1 than for the S4 scenario

representing a meta-learning from unrelated problems. In addition, with the rightmost

matrix, it is apparent that considering disjoint subsets of observations (which is often

closer to actual use cases) results in only a slight decrease in the average number of

shared hyperparameter sets.
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Figure 6.7: Summary of mean numbers of the best ten hyperparameter sets (regarding the mean
4-CV ROC AUC measure) shared between tasks from S3. A single matrix cell represents the aver-
age value for tasks with a given number of columns and is based on a given subset of observations.
Additionally, the vectors on the right correspond to the same operation for the intersection of
MIMIC-IV-based tasks with tasks derived from OpenML.

The analysis of the results scenario S3 required a partial aggregation of the calculated

statistics because without this operation, the number of possible combinations would be-

come too large for clear representation in a graph. We decided to perform this aggregation

by grouping the tasks based on their source and, for MIMIC-IV, also on the number of

predictors and the considered subset of observations (Figure 6.7). Therefore, a single cell

corresponds to the average value of a matrix created in the same way as the previous
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graph.

As the number of predictors decreases, their diversity between the tasks increases,

which is due to the procedure of selecting them described in Section 6.4.3. Despite this,

the average number of shared hyperparameter sets for tasks based on a similar number

of predictors is consistently high. This suggests that consolidated learning is related to

the transferability of hyperparameters. Nonetheless, even in the worst case, the average

number of shared hyperparameter sets is higher between the pairs of MIMIC-IV-based

tasks than when intersecting the MIMIC-IV-based tasks with the tasks derived from

the OpenML.

6.8 Conclusions

The results presented in this chapter highlight the importance of selecting meta-train

repositories. To our knowledge, this is the first work analyzing the impact of meta-train

sets on the optimization power of predefined hyperparameter portfolios. We show that

purposefully accumulating results from the prior prediction problems described by simi-

lar sets of variables strengthens the optimization strategies. We demonstrate empirically

that leveraging datasets from the MIMIC database produces better model performance

than using a portfolio determined for a diverse repository. We observe a positive effect

of the application of consolidated learning both in tuning speed and the consistency of

the best hyperparameters. We also analyze the weakening of assumptions in simulated

consolidated learning - despite smaller constraints in individual consolidated learning sce-

narios, we still show a more significant transfer than for the OpenML datasets.

Using the MIMIC-IV database, we demonstrate how consolidated meta-train reposi-

tories can be constructed in practice. To our knowledge, this is the first approach to cre-

ating a domain-specific repository for meta-learning. Therefore, we consider metaMIMIC

as a benchmark for evaluating the quality of the hyperparameters optimization in con-

solidated learning scenario. Creating and sharing a reproducible, unique database cor-

responding to a consolidated learning scenario is a significant resource for future use.

It is worth noting that the defined data dependency problem captures the real use of

metaMIMIC in both academic work and practical model deployment. What is more,

the conducted research uses non-synthetic data from a real-world source but allows us to

simulate the different relationships between meta-train and meta-test. Since metaMIMIC
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is the first benchmark of its kind, conclusions about, for example, similarities between

datasets or the number of datasets in the meta-train necessary for hyperparameter trans-

fer are not universal guidelines but hold valid for this particular experiment.

Our approach enhances the meta-learning effect in hyperparameter optimization while

avoiding the problem of defining a representative set of meta-features. This approach

attempts to answer whether hyperparameter transfer occurs and whether it can be cor-

related with some definitions of meta-features. Many papers have posed the question of

how to define effective meta-features and whether we can define them a priori [111]. In

our study, we were limited to very similar prediction problems in terms of definitions of

the described variables, their interactions, and in the context of variable distributions.

If there were no transfer of hyperparameters in consolidated learning constrained experi-

ment, there would be a serious argument that defining meta-features that affect transfer

is impossible. Based on this study, the transfer is more evident within MIMIC-IV-based

tasks.

In this study, in the consolidated learning scenario, we focus on the situation where

the set of explanatory variables has a non-empty intersection between the sets in the meta-

train and the meta-test set. This is possible because the problems were extracted from

the same MIMIC-IV database. In real-world applications, meeting these conditions is

not trivial. It is possible for a whole series of experiments, e.g., for the QSAR prediction

mentioned above, or for unified data from a single source. For other data, determining

the similarity of variables and, thus datasets is ambiguous. For data for which we do not

have additional domain knowledge, this is a significant limitation of consolidated learning,

as it requires inputting information about the semantic meaning of variables. With a non-

unified definition of variables, different definitions of the similarity of datasets can be

considered. A possible solution to explore these relationships is to use domain ontologies

such as SNOMED [223].

In future work, we plan to verify the hypothesis that the consolidated portfolios cre-

ated for the experiments extracted from MIMIC-IV give better performance for disease

prediction problems based on the history collected during hospital admission. This may

be the first step leading to domain-specific portfolios for a broader class of problems than

defined in this work and transferring hyperparameters between different problems without

requiring the datasets to share the same variable definitions partially.
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The code needed to reproduce the metaMIMIC and the whole study can be found in

this repository: https://github.com/ModelOriented/metaMIMIC.

139

https://github.com/ModelOriented/metaMIMIC




Chapter 7

SeFNet: Linking Tabular Datasets with

Semantic Feature Nets

This chapter corresponds to the article Katarzyna Woźnica, Piotr Wilczyński, and

Przemysław Biecek. SeFNet: Linking Tabular Datasets with Semantic Feature Nets.

(arXiv:2306.11636), 2023, submitted to Knowledge-based Systems.

AutoDS background in relation to the Hypothesis 5

One of the primary challenges in Data Exploration is the incorporation of domain

knowledge. Domain knowledge is essential for understanding the problem context,

identifying key variables, and addressing missing information. So far, most devel-

oped approaches have been largely universal, primarily due to their greater potential

for automation. However, the lack of mechanisms to input additional, domain-

specific information into these systems has been identified as a significant barrier to

users’ broader adoption of AutoDS systems.

It is widely acknowledged that incorporating domain knowledge typically requires

the involvement of a machine learning (ML) expert to discern domain-specific nu-

ances. An alternative approach involves utilizing external knowledge sources that

systematize domain information, such as ontologies. Incorporating domain knowl-

edge has the potential to provide a more comprehensive perspective on predictive

problems, enabling the linkage of current analyses with other experiments within

the same domain.
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This chapter outlines a methodology for integrating domain knowledge into Data

Exploration using ontologies.

7.1 Introduction

Tabular datasets play a significant role in machine learning (ML) applications since they

are the most common data type [40]. Their prevalence results in a great diversity of num-

bers and types of features, understood in this paper as variables encoded in dataset

columns. Each dataset can include a different set of variables such as age, gender, in-

come, or education. Thus, considering a broad set of tabular data, we generally refer to

a heterogeneous feature space [101]. Because of the features’ heterogeneity, most tabu-

lar datasets remain unrelated, lacking established relationships to assess their similarity

in meaning. This lack of structured semantic information about datasets is a relevant

constraint in the development of methods pursuing the paradigm of going beyond one

dataset and leveraging other information available in meta-learning [217] and informed

machine learning [220]. For example, in Alzheimer’s diagnosis, 75% of the works use

cognitive tests [124], but their varied description makes it difficult to use transferable ML

methods. An analogous situation also happens in other multi-center studies where some

tests can be used interchangeably, e.g. creatinine and myoglobin in acute kidney injury

diagnosis [226].

To fill this gap, this research article proposes Semantic Feature Net (SeFNet)

methodology to set up semantic relations between disparate datasets. In SeFNet, vari-

ables create the net of relations based on semantic information extracted from ontology.

This resource of related features and datasets hold significant potential in incorporating

additional information to machine learning pipelines. As of today, it can assist machine

learning specialists in collaborating with domain experts, facilitate the exploration of sim-

ilar experiments, and leverage prior insights about various stages of the data analysis pro-

cess, such as feature selection, data imputation, or model optimization. It is the missing

link to support the exploration of semantically similar experiments and can be an impor-

tant resource for methods that fit into the broad field of Automated Data Science [47].

Beyond establishing links between features, the integration of ontologies into SeFNet of-

fers an additional external prior information from the perspective of every single dataset.
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Figure 7.1: An example of subset of SeFNet for the two tabular datasets: GOSSIS [173] and
metaMIMIC [233]. This resource encodes the structure of the relations between their fea-
tures. Features are mapped on terms from the SNOMED-CT ontology [223]. The diagram
shows the tree structure of these features relations. The blue nodes highlight features found in
the metaMIMIC dataset, and the green ones highlight in the GOSSIS dataset. White nodes de-
note the common ancestors of the presented concepts. A solid line means that the lower node is
a direct child of the upper node, and a dashed line means that there are other nodes on the path
between them.

This is a significant resource for informed machine learning approaches. In the long

term, SeFNet can serve as a foundation to enhance meta-learning methods in Automated

Machine Learning [98, 88] that automatically extract information from machine learn-

ing experiments [60, 229, 98]. In particular, it can also be an important contribution to

the development of methods targeting the heterogeneous feature space [101, 111, 102, 240].

SeFNet is primarily designed for domain-centric applications as it evaluates the seman-

tic similarity of variables given the domain knowledge encoded in ontologies. One notable

advantage of the proposed framework is its versatility, as it can be applied in any domain

with existing ontology. To demonstrate this methodology, we prepared a prototype for

the healthcare domain. That field is an ideal starting point for applying SeFNet. Firstly,

medicine requires a holistic perspective when addressing prediction problems, considering

the complex interplay between various variables. Additionally, medical datasets often

exhibit unique characteristics, such as small sample sizes resulting from rare diseases,

emphasizing the need for innovative approaches to extracting meaningful insights [2].

Moreover, the medical domain offers an extensive collection of datasets [74, 109, 204, 53],

providing a rich source of information for meta-learning analyses. Finally, medical on-

tologies and knowledge bases can be further developed more actively due to the new

applications provided by SeFNet.

143



CHAPTER 7. SEFNET: LINKING TABULAR DATASETS WITH SEMANTIC FEATURE NETS

Contributions. In this work, (1) we introduce a Semantic Feature Net

(SeFNet) methodology that enables the semantic structuring of features found in

tabular datasets. Building and applying SeFNet could become a relevant practice in data

collection and curation since it can enable sharing of information about features across

diverse tasks and potentially improve meta-learning methods. The SeFNet methodology

is highly versatile and can be applied to any ontology, making it widely applicable across

various domains. (2) We create and share a comprehensive repository focused

specifically on healthcare datasets used in machine learning. The features within these

datasets have been carefully structured and published in SeFNet, resulting in a network

of 216 distinct features derived from 16 different datasets. This repository can serve as

a valuable resource for researchers and practitioners working in the healthcare field. (3)

We propose a method for quantifying the semantic similarity between any pair

of datasets by utilizing the similarity of features and employing the Dataset Ontology-

based Semantic Similarity (DOSS) aggregation. The DOSS representation is a novel

approach that can incorporate semantic meaning into meta-learning methods. (4) Fi-

nally, we show benefits for Automated Data Science resulted from implementation

of the SeFNet methodology into machine learning process. Including domain knowledge

is necessary to enhance collaboration between domain experts and data scientists, while

SeFNet’s methodology allows for further development of automation.

7.2 Related work

7.2.1 Collections of datasets

Machine learning researchers exploit open repositories containing a wide spectrum of tasks

to properly evaluate their novel methods or algorithms. Consequently, these reposito-

ries contain extensive collections of tabular datasets, each representing a separate source

of information. Various methods have been introduced to establish links between these

datasets, but they lack specificity with regard to domain characteristics. Medical datasets

that could be useful in domain-centric approaches are becoming more abundant, yet these

datasets remain standalone.

Domain-agnostic collection of tabular data. One of the first repositories

of datasets used in benchmarks for tabular data is the UCI repository [52]. Its origins
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date back to 1982, and this repository became the foundation for the next one, currently

the most widely used repository OpenML [218]. Since any user can upload their dataset

there, OpenML is a diverse and very broad collection of datasets. Thus, it is a good

reflection of the diversity of data in various fields, but on the other hand, the data is

of very different quality. For this reason, benchmarks using a fixed subset of tasks have

been created – OpenML100 and OpenML-CC18 [19]. A separate benchmark has also been

determined for AutoML research [71]. A parallel initiative was the creation of the Kaggle

platform1, where anyone can create a challenge with a specific prediction problem. Its

primary purpose is to allow different teams to compete in preparation of the most accu-

rate solution to a problem, but in addition, Kaggle also became a vast data repository.

Another platform aiming at improving collaboration is the Hugging Face 2. Using this,

researchers can share pre-trained models and datasets for a wide range of problems in nat-

ural language processing. Some of the uploaded tasks are available as tabular datasets.

Also at conferences, such as NeurIPS with Track Dataset and Benchmarks, more and more

attention is being paid to expanding dataset repositories and using them to validate new

or existing methods. Despite all these efforts to collect more data, many ML researchers

use the mentioned repositories to obtain data for benchmarking new machine learning

methods, but they are treated mostly as standalone tasks, and this may result in a loss

of relevant information.

Similarity between pairs of tabular datasets. One way to find the relations

between diverse datasets is through the use of meta-features [217]. Meta-features account

for information about the tabular datasets’ statistical characteristics. So far, most papers

have summarised the distribution of each feature in the dataset. The basic meta-features

are based on statistical definitions (such as kurtosis or skewness) [179], the performance

of simple machine learning models or features extracted from them [164]. In addition

to the prior defined meta-features, automatic feature extraction models [54, 111] are de-

veloped to extract noninterpretable meta-features. However, all available representations

of tabular datasets focus on reflecting the structure ignoring potential of the specificity

of the domain and the semantic meaning of the features [233].

Medical (domain) databases. In medicine, specialization and specificity of datasets

are very important and researchers pay much attention to the high quality of data.

1https://www.kaggle.com/
2https://huggingface.co/
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The richness of the available medical domain datasets is very well demonstrated by

the PhysioNet platform [74], which was created so that potentially sensitive medical data

could be shared responsibly. This allows large datasets such as MIMIC [109], HiRID [100]

or GOSSIS [173] to be available for the community. What is more, many country is devel-

oping BioBanks, potential sources for the vast amount of data used in machine learning.

One of the most popular in the machine learning community is the UK BioBank [204].

Moreover, medical specialities also provide similar data, e.g., UNOS in transplantology or

SEER [53] in oncology. Very broad collection of diverse datasets is published also journals

such as Scientific Data. Considering the medical category, datasets are divided there into

ten different subcategories such as anatomy, healthcare or pathology. Datasets are also

collected, as it were, in the course of software development, and interesting datasets can

also be found in packages published in Bioconductor 3 where contributors should follow

guidelines from ExperimentHub [153]. Despite the great similarity in the information

contained in the various data, most of the data is prepared with one specific use in mind

rather than integrating it with other sources. Thus,the standards for integrating data

from various experiments leave much to be desired.

Data management. Because of the large volume of such diverse databases, there

is a real need to create guidelines for proper dataset facilitating. The most known are

FAIR principles [227] according to that data should be findable, accessible, interoperable

and reusable. These principles are widely recognized as essential prerequisites for data

management but also for successful data mining and machine learning applications [188].

Because of this subsequent standards are based on FAIR principles . For instance CARE

principles, extending FAIR’s, postulate collecitve benefit, authority to control, respon-

sibilty and ethics [31]. CARE principles place additional emphasis on the ethical and

societal dimensions of data handling and impose this responsibility on the dataset own-

ers or authors. In the CTSA’s National Center for Data to Health (CD2H)4, guidelines

are being developed for the creation, normalization and sharing of meta-data to support

reusability. Yet there is still little attention paid to giving semantic meaning to individual

features and leveraging this knowledge in meta-learning.

3https://www.bioconductor.org/
4https://cd2h.org/
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7.2.2 Reaching beyond one dataset

Extending machine learning beyond a single dataset involves integrating information from

various experiments or incorporating domain knowledge, which falls within the realms of

meta-learning and informed machine learning, respectively.

Meta-learning involves extracting insights from multiple experiments to improve

the efficiency of creating new machine learning models. Instead of treating each experi-

ment in isolation, meta-learning techniques seek to generalize across experiments, lever-

aging similarities and differences to inform model design, parameter selection, and opti-

mization strategies. By synthesizing knowledge from diverse experiments, meta-learning

facilitates the creation of more robust and adaptable machine learning systems.

Establishing relationships between different datasets is crucial for meta-analysis [148].

Particularly with heterogeneous data originating from different domains, this is often

achieved through predefined statistical meta-features described in Section 7.2.1. Despite

their simplicity, these meta-features have proven to be effective in transferring hyperpa-

rameters. For instance, Feurer et al. [60] introduce a technique to speed up Sequential

Model-based Bayesian Optimization (SMBO) by using knowledge from previous optimiza-

tion runs, while Kim et al. [117] use meta-features to warm-start Bayesian hyperparameter

optimization. Feurer et al. [61] further enhanced this approach by developing a scalable

meta-learning model for Bayesian optimization, which significantly reduced optimization

time.

However, when dealing with datasets related to specific domains, an additional layer

of semantic meta-features can be introduced to enrich the relations between datasets.

They can be complementary to a set of existing meta-features encoding the mathematical

aspects of datasets. What is more, this approach can facilitate informed decision-making

and the development of domain-specific machine learning models [47].

Informed machine learning. According to the paradigm of informed machine

learning [220], external information is especially important if data-driven methods that

rely only on the information contained in a given dataset fail – in terms of model per-

formance or constraints which model needs to meet. Some algorithms employ univer-

sal methods that incorporate graph-based knowledge directly into their architecture as

a core element [132, 69]. Alternative approaches prioritize generating representations

of instances while considering domain-specific knowledge encoded within graph struc-
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tures [39, 138, 237]. However, these approaches are not model agnostic – they create

representations dedicated to specific input data associated with the problem definition.

Incorporating the structure of dependencies between features into feature selection mech-

anism is more universal [165].

Aside from injecting ontologies directly into the models, Beckh et al. [11] stress the sig-

nificance of integrating knowledge into explainability methods. Systems like DoctorXAI

and FairLens [158, 159] utilize a semantic similarity score derived from the representation

of ICD codes for diagnoses, followed by the selection of nearest neighbors based on visit-

to-visit distances. Confalonieri and Besold [42] extends the existing algorithm Trepan [44],

which extracts surrogate decision trees from black-box models, by incorporating ontologies

that model domain knowledge.

7.2.3 Ontologies as bridge between datasets

Domain datasets often describe very similar concepts, and to fully comprehend differences,

we need to understand nuances between them. Often, various concepts are described at

different levels of generality. In one dataset, we have a more precise definition of a variable,

while in another, we don’t have full, detailed information and have to use a a broader term.

An example is "blood pressure" and "non-invasive systolic blood pressure". Encoding

this hierarchy of semantic meaning of individual features requires using an appropriate

knowledge base – an ontology.

In simple words, an ontology may be understood as a graph of terms represented as

vertices and edges defining relations between them [80]. Usually, ontologies are directed

graphs in which a hierarchy of concepts can be specified; from more general concepts

to specific ones. Thus, ontology enables the storage of domain-specific vocabulary and

provides means to describe phenomena within a particular domain in digital format.

Every domain has its own knowledge bases, with terms and relations reflecting

the specificity of the domain. In the medical domain, there are many widely used of on-

tologies such as Gene Ontology (GO) [8, 70], Human Phenotype Ontology (HPO) [119] or

Systematized Nomenclature of Medicine – Clinical Terms (SNOMED-CT) [223]. Ontolo-

gies often encode thousands of different terms, so the annotated set of specific concepts

forms a sparse subset of all terms. The semantic similarity between terms is defined to

assess the semantic proximity of terms considering primarily taxonomic relationships [85].
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Semantic similarity allows us to grasp the proximity between concepts by looking at

the graph structure of the ontology and the information content. Because this may be

differently defined, it is challenging to provide an unambiguous definition of semantic simi-

larity as a formal measure [190, 144, 84, 20]. It is usually assumed that a measure is better

the more similar its output would be to the experts’ assessment of similarity [190, 84].

Pedersen et al. [160] proposed a benchmark that can be used to evaluate the correlation

between the similarities returned by measures and those determined by domain experts.

The choice of semantic similarity depends on the application and ontology.

Measures of semantic similarity are successfully used in disciplines such as natural

language processing [107], geoinformatics [10] or even neuroscience [118]. Among other

fields, wide applications have been found for it in the biomedical domain, where it has

been used to compare biological entities by meanings [236, 77]. In this work, we apply

this meaning to structure and represent semantic nets of features and datasets.

7.3 Semantic Feature Net (SeFNet)

In this section, we present Semantic Feature Net – a methodology introducing semantic

knowledge between tabular datasets. Datasets organized according to SeFNet serves as

a system that structures a collection of features originating from the considered domain

and used in the machine learning process. This is a universal approach, applicable to

many domains [92, 38, 37].

To define SeFNet and adapt it to a specific application, we need to specify three

essential components. The first is a set of tabular datasets from a selected domain.

These datasets serve as the basis for extracting and structuring features. The second is an

ontology that covers the relevant concepts from the considered domain and the datasets.

The choice of ontology is the responsibility of domain experts. The last one is a semantic

similarity measure consistent with the selected ontology.

After defining the key components, the first step of building resource with SeFNet

methodology is feature annotation, which produces the mapping of features found in

datasets to terms in the selected ontology. This process can be done manually, preferably

with the support of a domain expert, but in the future, it is possible to automate this

process. In the SeFNet methodology, we assume that the same ontology is used for

annotations of each dataset. In this step, the features gain representation in the domain
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Table 7.1: A summary of the annotated datasets and their origins. Each was assigned to one
of two categories. We also provide the number of unique variables in each dataset (No.Feat.)
and the number of annotated features with terms from SNOMED-CT.

ID Dataset Origin Cat. No.Feat. No.Ann.

1 Cardiovascular Study [Kaggle] Survey 16 15
2 Diagnosis of COVID-19

(Subset)
[Kaggle] EHR 19 18

3 Diabetes Health Indicators [Kaggle] Survey 22 21
4 Diabetes 130 US [UCI,OpenML,Kaggle] EHR 49 38
5 GOSSIS-1-eICU Model Ready [PhysioNet] EHR 68 60
6 Stroke Prediction [Kaggle] Survey 11 11
7 Heart Disease Indicators [Kaggle] Survey 22 21
8 Heart Disease

(Comprehensive)
[OpenML] EHR 12 11

9 HCV data [UCI,OpenML,Kaggle] EHR 13 13
10 Hepatitis [UCI,Kaggle] EHR 20 19
11 HiRID Preprocessed [PhysioNet] EHR 18 17
12 Pima Indians Diabetes [OpenML,Kaggle] EHR 9 8
13 ILPD [UCI,OpenML,Kaggle] EHR 11 11
14 Breast Cancer [UCI,OpenML] EHR 10 9
15 metaMIMIC [Paper] EHR 184 175
16 Thyroid Disease [UCI,OpenML,Kaggle] EHR 30 27

knowledge graph.

It is worth noting, that SeFNet as the network of semantic links between features

and thus between datasets is the next level in assessing similarity between sets of tables.

Because of the complex structure of features – in addition to semantic meaning, each

feature is a random variable with a specific distribution – it is necessary to consider

multiple definitions of similarity between features. To date, the focus has been mainly on

statistical descriptions of variables aiming to capture the characteristics of univariate and

multivariate random variables. SeFNet adds another layer of systematization of datasets.

Using SeFNet methodology we build a high-level system dependent on the selections

made for datasets and ontologies. We present its components using healthcare datasets

as an example. We refer to this created repository in the following sections as SeFNet-

Healthcare.

7.3.1 Datasets in SeFNet-Healthcare

To set up the prototype of dataset collection built according to SeFNet methodology for

the healthcare domain, we need to specify the selected datasets. In Section 7.2.1, we

present a diversity of medical datasets, but due to limited resources, we have to limit

the scope of the search. Our goal is to systematize the medical datasets used in machine
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learning. We target data describing individual cases, enabling the identification of risk

factors in medical research. For this reason, we focus mainly on two types of data sources:

1. Kaggle, OpenML, and UCI repository, where medical datasets from not always well-

verified sources are available for immediate download. These reflect the resource that

an average machine learning researcher works with.

2. PhysioNet platform where high-volume medical datasets are published and available

for credentialed usage. These datasets are commonly used in multi-center retrospec-

tive studies. For this data, preprocessing is necessary to transform the data into

a single plain table. We use preprocessing either prepared by database authors or

in other research projects.

We have collected 16 datasets (see Table 7.1), which can be divided into two groups due

to tha method of data collection and specificity of features in each dataset: (1) datasets

based on survey data (Survey), (2) a group of datasets where predominate electronic

health records (EHR).

The resources collected within SeFNet-Healthcare can be expanded, however, we

aimed to include representative examples of datasets from various sources. The overview

of the presented datasets can be easily accessed on the provided website https://sefnet.

mi2.ai/.

7.3.2 SNOMED-CT Ontology

We employ the SNOMED-CT ontology to describe medical and demographic concepts

encoded in variables. SNOMED-CT is not the only valid choice of ontology, but it is sup-

ported by its universality and the numerous works that map other vocabularies onto this

ontology [49, 207, 116]. SNOMED-CT ontology is being actively developed and contains

more than 350 thousand terms relating to anatomy and demographic data often attached

to patient descriptions [198]. The SNOMED-CT terminology is becoming the standard

in various countries, such as Canada, France, the USA, and the UK.

The annotation process is demanding. Because of the brief and often inconsistent

feature names in the considered data, it is challenging to automate that process without

additional resources, so it is done manually at the moment. Annotations are based on fea-

ture names but also on descriptions emerging from dictionaries provided with the dataset.
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The latter is especially important for PhysioNet data since internal system codes are often

used to describe the variables. We establish consistent criteria for annotating ambiguous

terms. The SeFNet-Healthcare repository is the first of its kind to be systematized and

made available. The entire resource of annotations is also available on the repository2

and can be easily explored via SeFNet website1.

SNOMED-CT ontology is well suited to the task of annotating medical data used

in machine learning; 216 different features are included in the selected datasets, and

up to 92% of them are annotated. Looking at each dataset separately, we also observe

a high percentage of variable coverage with terms from the ontology (see Table 7.1).

The Diabetes 130 US dataset has the lowest percentage of annotated variables. However,

the variables that have no equivalent in SNOMED-CT terms were administrative in na-

ture, such as admission_type_id, discharge_disposition_id. It is worth noting that

for two datasets it was possible to annotate 100% of the variables. On the one hand,

all of the data concern medical problems, but on the other hand, they touch on different

specificities of diseases, e.g., diabetes or Covid-19. Nevertheless, a significant number

of terms occur in more than one dataset. In Table 7.2, we present the most frequently

recurring terms and examples of original variable names found in the data. Patient age

and gender are the most common, but disease information is also prevalent.

Table 7.2: The most common terms in all datasets, along with examples of how the variables
describing these terms were originally named.

SNOMED-CT
term ID

No.
datasets

No. unique Names used in datasets

397669002 15 3 Patient age quantile, age, Age
263495000 11 4 Gender, sex, Sex
73211009 6 5 diabetes, diabetes_diagnosed, Outcome
359986008 5 8 Total_Bilirubin, bilirubin, BIL
38341003 5 4 HighBP, prevalentHyp,

hypertensive_diagnosed

7.3.3 Semantic similarity of terms

Annotation of variables allows for the analysis of datasets regarding jointly occurring

variables encoded as terms. However, the biggest advantage of using ontologies over

dictionaries is using relations between concepts. As mentioned in Section 7.2.3, there is
2https://github.com/MI2DataLab/SeFNet-Healthcare
1https://sefnet.mi2.ai/
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Figure 7.2: Similarity between the annotated features occurring in SeFNet-Healthcare. In panel
A, we show the similarity matrix between each pair of features. The features’ order corresponds
to the clusters’ belonging, illustrated in panel B. We can distinguish five groups of features named
based on the high-level concepts.

no one universal measure of similarity, but they are application-dependent. In the case

of SNOMED-CT, Harispe et al. [84] conducted a benchmark on 29 terms derived from that

ontology and found that the most concurrent measure with expert intuition is Tversky’s

abstract Ratio Model measure [212] with specific values of parameters.

The measure is formulated in the sense of common and distinctive information con-

tained in terms. Let A(t) be a set consisting of a term t and its ancestors in a given

ontology, and Θ(t) = |A(t)| be the cardinality of this set. Common information between

terms t1, t2 may be encoded as A(t1) ∩ A(t2), and we assume that this information is

measured as Ψ(t1, t2) = |A(t1) ∩ A(t2)|. So we use similarity measure (SMRM) between

terms t1, t2 defined as follows:

SMRM(t1, t2) =
Θ(t1)

(1 + α) ·Θ(t1) + β ·Θ(t2)− (α + β) ·Ψ(t2, t1)
(7.1)

Constants α, β are determined in [84] so we assume that α = 7.9 and β = 3.9. This

measure is symmetric, and values of (1−SMRM) can be considered the distance between

terms. Whenever we refer to semantic similarity, we calculate it using Equation 7.1, as

it seems to be fairly effective in determining the proximity of terms in the SNOMED-CT

ontology.

153



CHAPTER 7. SEFNET: LINKING TABULAR DATASETS WITH SEMANTIC FEATURE NETS

In Figure 7.2A, we show the values of SMRM for each pair of terms occurring

within SeFNet-Healthcare. Figure 7.2B visualizes projected vectors of similarity using

UMAP [145] technique. To define the groups of features, we use HDBSCAN [29] and

then name them based on high-level concepts in the ontology. The determined clusters

also form a distinct box structure on the similarity matrix in panel A.

7.4 Dataset Ontology-based Semantic Similarity

(DOSS)

In this section, we introduce a Dataset Ontology-based Semantic Similarity (DOSS) mea-

sure that aggregates the similarity between two sets of terms in particular between sets

of variables contained in two datasets.

Figure 7.3: An illustrative scheme for calculating DOSS between D1 and D2. Sets V1 and V2

contains features mapped to {term1
1, . . . , term

1
m} and {term2

1, . . . , term
2
k} respectively. Function

h is an aggregating function. In individual cells, a higher saturation of purple indicates a higher
SMRM value between terms.

Let V1 and V2 be two sets of terms included in datasets D1, D2 respectively. Let each

set consist of a set of terms V1 = {t11, . . . , t1m} , V2 = {t21, . . . , t2n}. Then we define DOSS

as

DOSS(D1|D2) = h({max
t2k∈V2

SMRM(t1i , t
2
k)|i ∈ {1, . . . ,m}}), (7.2)

where h : [0, 1]n → [0, 1] is discretionary summarizing function.

An overview of the DOSS calculation scheme is shown in Figure 7.3. For each pair of

terms derived from V1 and V2, the SMRM measure is determined, and then the maximum

SMRM value is determined for each term from the reference dataset. The question remains

how to aggregate results across features to guarantee the invariance of size regardless of

dataset dimension. The mean function is the most intuitive choice of h since it determines

the average similarity of V1 terms relative to V2.

154



7.5. APPLICATION OF SEFNET

Figure 7.4: Matrix of DOSS values between any two annotated datasets. The matrix is not
symmetrical since the DOSS measure does not have this property.

DOSS measure is not symmetric – we define the similarity of one set relative to another.

In case of similar cardinality of V1 and V2 this measure is close to symmetric, but if one set

is much bigger than the second, then the difference is significant – for instance, V2 ⊆ V1,

the DOSS(D2|D1) = 1 but DOSS(D1|D2) < 1.

We apply the proposed DOSS measure to the SeFNet-Healthcare database. Figure 7.4

indicates the values for each pair of datasets. This matrix is not symmetric, the similarity

of smaller datasets (containing a small number of features) to large datasets is higher than

in the opposite case. What is more, the DOSS similarity is highly correlated with a number

of shared features between two datasets. However, DOSS is more robust when dealing

with terms that are close in meaning but not exactly the same even i.e., if the intersection

of a feature set is empty, the DOSS of such datasets is greater than zero.

7.5 Application of SeFNet

In this section, we present the motivation for why SeFNet methodology should be used to

systematize tabular data. In the following sections, we trace three potential development

directions: the first relates to data scientist’s interaction with domain experts. The second

shows the potential of using SeFNet in meta-learning. The third application refers to

informed machine learning and resource for explainable machine learning techniques.
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7.5.1 Assistance for Data Scientists

In today’s world, where automation is on the rise, there’s a growing need to understand

predictive problems. In specific fields, involving experts from that domain and keeping

open communication during automation is crucial [140]. SeFNet plays a dual role in that

challenge by tapping into domain expertise and using data to broaden both the data

scientist’s and domain expert’s perspectives. By establishing connections among different

factors and datasets, SeFNet assists semantic exploration of past experiments, making it

simpler to understand their outcomes.

Figure 7.5: Similarity analysis between the target ILPD dataset (id=13) and the collections
in SeFNet-Healthcare. We start the analysis at the level of whole datasets and then proceed
down to the analysis of individual features. In panel A: DOSS measure for target ILPD dataset
(id=13) and datasets collected in SeFNet-Healthcare. With dataset metaMIMIC (id=15), 12
tasks are associated because of different target and explanatory variables (see [233]). Among all,
data scientist can pay more attention to the first five most similar datasets, indicated with color.
In panel B: Going down to the level of analysis of individual variables, we can see for which
features in the target datasets in other datasets in SeFNet-Healthcare their exact counterparts
or at least correlated features have been found.

Consider an experienced data scientist specializing in developing machine learning

models for disease diagnosis. This expert has a track record of utilizing SeFNet-Healthcare

to organize and execute previous projects and experiments. When confronted with a

new predictive challenge, the initial phase involves grasping the essence of the problem,

identifying the most informative features, and unraveling their interactions. Let’s assume

we have a developed SeFNet-Healthcare repository, and we want to solve a new prediction
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Figure 7.6: Average distance to maximum (ADTM) for two portfolio-based HPO. Navy blue
line corresponds to optimization based on DOSS weighting. Yellow one indicates HPO with a
portfolio built for OpenML experiments without any weighting.

problem represented as dataset with id 13 - ILPD dataset. In Figure 7.5A, we see a

comparison of the DOSS measure between the considered dataset and the others. We can

clearly see that the 5 datasets are most similar to our new dataset. The DOSS measure

for all sets ranges from 0 to 0.8, but for the most similar sets it is above 0.4.

We can then compare similarity to features in datasets whose DOSS is greater than

0.4. In Figure 7.5B, we presented for each variable contained in ILPD dataset information

about its SM similarity to variables occurring in other datasets. The datasets are divided

into two categories – those most similar (DOSS greater than 0.4 – top 5) and the remaining

datasets. For some features, such as Total_Bilirubin or Albumin in a some datasets,

the exact equivalent of a given variable is found. The high similarity but slightly below

one means that this variable may have been observed in different datasets but comes

from other medical procedures. Analysis provided in Figure 7.5B allows us to verify

whether the predictive problem is properly defined, and whether variables that were used

in another study and were significant in the corresponding models are included in this

dataset. This often allows validation of the analysis assumptions at an early stage of

the collaboration between the data scientist and the domain expert.

7.5.2 Additional level of dataset similarity in meta-learning

By introducing the structure of features and assessing similarity, SeFNet enables the ex-

ploration of semantic representations for tabular datasets. It is important in meta-learning
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where we search for descriptive meta-features to assess the potential of transferring infor-

mation.

The semantic information embedded in DOSS can enhance the pool of existing meta-

features (see Section 7.2) or be used as a standalone representation. For example, in

hyperparameter optimization, DOSS between datasets can serve as weights for tasks from

the meta-train set to pay more attention to experiments containing features close to

these in meta-test tasks. In Figure 7.6 we show results of hyperparameter optimization

of XGBoost algorithm [36]. Based on the meta-training set and A-SMFO[229] algorithm,

we determine portfolios of the potentially best configurations of the ML algorithm’s hy-

perparameters, and their performance is evaluated on the new dataset (meta-test). We

compare two strategies. In the first, we build a meta-training set from SeFNet, and in

the second, we build a meta-test set from an independent OpenML datasets (not included

in SeFNet-Healthcare). In both cases, the meta-test is a dataset from SeFNet-Healthcare,

but in the case of the first approach we used a one-dataset-out. In the case of SeFNet,

we introduce the DOSS similarity measure of the new dataset to the other datasets.

The portfolio determined for the independent OpenML datasets in this use case is a base-

line approach to meta-learning portfolio construction. In the first iterations, portfolios

determined based on OpenML were more successful, but after 12 iterations, a portfolio

determined based on SeFNet-Healthcare using DOSS is better.

7.5.3 Enhance human understandability of domain models

SeFNet injects external knowledge into each dataset independently, which broadens

the perspective for explainable machine learning techniques. In the case of highly special-

ized models based on data containing very specific variables, consideration of ontologies

and hierarchical structure of concepts can help in the perception of explainability tech-

niques.Depending on the audience, it may be desirable to use variables that are fairly

general, but if we have an expert audience our goal may be to emphasize the impact

of specialized factors that are lower in the hierarchy of concepts. This adaptability of

the depth of analysis is important in informed machine learning techniques, which, us-

ing additional information, are intended to improve the performance of models but at

the same time preserve their interpretability.

A very good example is the modified Trepan algorithm [44] – used to explain neural
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networks through decision tree splitting rules. In [42], the authors used the semantic

meaning of individual variables and modified their weights in the selection of variables

used to create an explanation (see Figure 7.7). Through an empirical study, they showed

that this way of creating an explanation is better received by users. Hierarchy and links

between features may be also informative while creating counterfactual explanations [166].

Figure 7.7: Explanation prepared without and without domain knowledge by Trepan technique
[42]. Hierarchical structure of features in single datasets inject new information about semantics
and can be applied in XAI methods.

7.6 Discussion

Automated Data Science. In the preceding section, we illustrate potential applica-

tions of heterogeneous tabular data systematized with SeFNet. Given SeFNet’s versatility

across various stages of the machine learning pipeline, it aligns seamlessly with the Au-

tomated Data Science [47]. Considering the breadth of this field, De Bie et al. [47]

segmented the entire process into four stages and delineated two dimensions for assessing

their complexity. The first dimension pertains to the incorporation of domain knowledge,

while the second evaluates the extent of qualitative assessment feasible for the methods

presented, delineating how open-ended the process is. The SeFNet touches on both di-

mensions. Through the use of ontologies, it makes possible to inject additional knowledge

into a single dataset, and through connections to other data as new transfer learning

techniques develop, it is possible that more advanced techniques may become available.

So far, the aspect of semantic similarities has been overlooked in automated machine

learning, but SeFNet could be the foundation for new data-driven methods. Based on
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similar features we can enhance existing methods of specific preprocessing techniques,

e.g. in the imputation of missing data. Using feature similarity comparison, data can

be selected to compare ranges of values or entire distributions from which the considered

feature should be imputed.

Semantic similarity may also be incorporated into tabular dataset embeddings. Be-

cause of the new level of similarity based on semantic relations, representations can be

validated in terms of the expressivity of the semantic features. Existing representations

were not provided with this additional information but users expect that some similar-

ity between results may come from the similarity in the definition of prediction prob-

lem [2, 111]. This is a place to benefit from SeFNet which can be used as a resource to

take into account the creation of representations but also to verify what features encode

the obtained representations.

SeFNet also provides the missing layer of relationships between different experiments.

Filling this gap makes navigation between available experiments more accessible and in-

tuitive for domain experts.

Semantic layer in Bussiness Intelligence. SeFNet mirrors the concept of Seman-

tic Layer in Business Intelligence (BI) in Automating Data Science, aiming to integrate

knowledge and provide users with a comprehensive understanding of the problem at hand.

While the business community has long recognized the importance of semantic layers in

enhancing data analysis and decision-making processes, the machine learning community

has largely overlooked this aspect. SeFNet, however, serves as a pivotal foundation for

bridging this gap and fostering the development of techniques that are more attuned to

the needs and preferences of end users. SeFNet also addresses the challenge of how to

store domain meta-data effectively [175].

Limitations. In order to ensure the proper use of the individual datasets, we

strongly advise researchers to refer to the official documentation and resources. We must

emphasize that we are not the creators of the datasets and, therefore cannot offer any

endorsement or guarantees regarding their accuracy. Due to SNOMED-CT policy, we

cannot share the entire structure of this ontology, but we can share information about

the terms used. To gain insight into the graph structure, it is necessary to acquire access

to SNOMED-CT.
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7.7 Conclusions

In this paper, we introduced the SeFNet methodology reflecting the semantics of features

found in tabular datasets. To our knowledge, this is the first work incorporating semantic

feature information in the representation of tasks based on tabular data. This additional

layer of information allows us to gain insights into the semantic structure and may lead to

more informed decision-making in designing machine learning solutions for specific tasks.

It aligns well with the concept of Automated Data Science as it facilitates the leveraging of

external knowledge and provides users with a comprehensive understanding of the problem

at hand.

A very important aspect of future work is the integration of SeFNet into end-to-end

machine learning pipelines. Investigating how SeFNet can be seamlessly incorporated

into various stages of the machine learning processes, such as feature selection, data

imputation, or model optimization, would enhance its practical utility and adoption in

real-world applications. The next point that can be developed is refining the methods for

quantifying the semantic similarity between datasets using SeFNet. The current approach

utilizes the Dataset Ontology-based Semantic Similarity (DOSS) aggregation, but further

research can explore alternative techniques.

This project lays the foundation for feature-centric approaches in machine learn-

ing. Creating semantic links between stand-alone datasets provides new possibilities in

the realm of tabular data. It transforms groups of singular machine learning algorithms

into manifolds of interconnected tasks from which we can derive information to achieve

new, previously unattainable results.
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Summary

The primary objective of automated data science (AutoDS) is to assist users in creating

decision-making systems through machine learning models. The developers of AutoDS

methods aim to cater to a diverse audience with varying needs. Ensuring that AutoDS

systems are user-centric rather than merely technical support is critical for their practi-

cal adoption and success. A black-box approach to AutoDS is insufficient, as users need

transparency and understanding of how these systems operate. The effectiveness of ma-

chine learning models alone does not justify their deployment. Users must comprehend

the decision-making processes and rationale behind the selection of operations within the

AutoDS pipeline to trust and effectively utilize these systems.

This thesis focuses on evaluating and incorporating domain knowledge into AutoDS

systems. In the first part, the thesis emphasizes the importance of going beyond numer-

ical evaluation to provide deeper insights into why certain operations are applied within

AutoDS.

The first thesis contribution is the independent validation of data imputation meth-

ods during Data Engineering. Given the prevalence of missing data, benchmarking these

methods narrows down the techniques for AutoDS, reducing the search space and simpli-

fying the process for users. Also, from the perspective of users building AutoDS systems,

such an experiment gives a conclusion about the possibility of just simplifying this space.

The second hypothesis explores the potential of explanatory machine learning tech-

niques in validating the usefulness of meta-features in hyperparameter optimization for

tabular datasets. Traditionally, XAI methods have been used to analyze the impact of

hyperparameters on model performance. This thesis introduces a methodology to explain

meta-models and evaluate the effectiveness of meta-features, addressing a crucial issue in
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the field.

The third hypothesis aims to enhance the explainability of machine learning model

benchmarks using the EPP score. EPP’s probabilistic interpretation of model quality dif-

ferences aids users, especially non-experts, in drawing conclusions. This simple interpre-

tation improves communication between data science experts and end-users, facilitating

a better understanding of model selection.

The fourth contribution focuses on applying domain knowledge in AutoDS systems

by proposing a consolidated learning methodology. This approach builds a portfolio of

datasets for meta-learning in hyperparameter transfer, leveraging preliminary knowledge

of new datasets. Incorporating results from experiments on similar data can enhance

hyperparameter transfer and optimization, boosting user confidence and ensuring high-

quality meta-learning.

The final original contribution is a methodology for describing tabular datasets through

their semantic meaning using a domain ontology. So far, tabular datasets are treated inde-

pendently. The SeFNet methodology structures datasets based on the semantic meaning

of their features, improving communication with domain experts and enhancing the ex-

ploration of experiments and datasets.

A limitation of this work is its focus on medical datasets, necessitating further eval-

uation and validation on other datasets. Despite this, the methodologies and resources

provided, such as the novel metaMIMIC and SeFNet-Healthcare datasets, offer valuable

benchmarks for new AutoDS approaches. Future work should extend these methodologies

to diverse datasets and explore additional domains to validate their generalizability and

effectiveness. Additionally, further research could focus on refining these methodologies

to enhance their robustness and applicability in various real-world scenarios.

This thesis demonstrates that addressing user needs, particularly the integration of do-

main knowledge, can overcome significant barriers to developing more interactive AutoDS

methods. By incorporating methodologies that bring domain knowledge into the system,

the work highlights the potential for advancing AutoDS to better meet user requirements

and enhance system interactivity.
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