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Metody optymalizacji modeli i algorytmów
automatycznego rozpoznawania mowy

pod kątem działania na urządzeniach mobilnych

Streszczenie. Interfejsy głosowe stają się coraz bardziej popularnym sposobem komu-

nikacji użytkownika z urządzeniami elektronicznymi. Obecnie są one już standardem w

aplikacjach typu inteligentny asystent. Dane zawierające komunikaty głosowe charak-

teryzują się znaczną heterogenicznością. Źródła tej różnorodności mogą wystąpić już na

poziomie rejestrowanego sygnału audio. Na jakość tego sygnału wpływ mają czynniki takie

jak: typ mikrofonu rejestrującego dźwięk, szum tła, sposób artykulacji mówcy. Różnorod-

ność może pojawić się również na poziomie językowym, ponieważ ta sama intencja

może być wyrażona na wiele sposobów w tym samym języku. Ponadto liczba sposobów

wyrażania jednej intencji znacząco się zwiększa przy rozważaniu wielu języków. Proces

przetwarzania języka naturalnego przeważnie jest rozłożony na wiele etapów. W niniejszej

rozprawie zaprezentowane są wyniki badań dotyczących pierwszego etapu tego procesu:

konwersji mowy zawartej w strumieniu audio do zapisu tekstowego. W szczególności

badania dotyczyły następujących modułów wykorzystywanych w tym procesie: wykry-

wanie fraz kluczowych w strumieniu audio, wykrywanie końca komendy, czy wreszcie

samo dekodowanie strumienia audio do tekstu. Ponadto badania były ukierunkowane

na opracowanie metod umożliwiających przeniesienie możliwie wielu wspomnianych

modułów na urządzenia mobilne. Może się to odbyć poprzez opracowanie nowatorskich

algorytmów lub modeli, ale również optymalizację działania istniejących rozwiązań.

W przypadku zadania wykrywania fraz kluczowych problematyczne okazało się już

określenie procedury testowania tego typu rozwiązań. Dotychczasowe prace opierały się

na wynikach ewaluacji przeprowadzanych na zbiorach danych, które zawierają bardzo

mało fraz kluczowych, nie zawierają wymagających przykładów negatywnych lub nie

są dostępne publicznie. W ramach pierwszego etapu prac przygotowano zbiór danych

testowych rozwiązujący powyższe problemy i udostępniono go publicznie. Zbiór ten został

nazwany Multilingual Open Custom Keyword Spotting Testset (MOCKS). Jest on oparty

na publicznie dostępnych bazach audio: LibriSpeech i Mozilla Common Voice. MOCKS

zawiera prawie 50 000 fraz kluczowych dla pięciu języków: angielskiego, francuskiego,

hiszpańskiego, niemieckiego i włoskiego.

Kolejnym etapem badań było opracowanie metody poprawiającej skuteczność działa-

nia systemu wykrywania fraz kluczowych opartego na współczesnych modelach akusty-

cznych. Zaproponowana metoda polega na zastosowaniu prostego modelu językowego

z odpowiednio dobranymi wagami ustalanymi w fazie inicjalizacji. Przeprowadzone

eksperymenty z ewaluacjami wykonanymi na zbiorze MOCKS pokazały, że możliwe

jest takie ustawienie parametrów modelu językowego, które zwiększa miarę prawdziwie

pozytywną (ang. true positive rate) o około 30 punktów procentowych, z jednoczes-



nym wzrostem miary fałszywie negatywnej (ang. false positive rate) o około 20 punktów

procentowych. Ponadto przeprowadzono eksperymenty z wykorzystaniem nagrań wy-

generowanych przez syntezator mowy, mające na celu poprawę skuteczności modelu w

przypadku specyficznych i rzadko występujących fraz kluczowych.

Efektywność systemów automatycznego rozpoznawania mowy zależy między in-

nymi od dokładności wyznaczenia początku i końca fragmentu sygnału zawierającego

mowę. W szczególności istotne i skomplikowane jest wyznaczenie momentu końca frazy

wypowiadanej przez użytkownika. W ramach tego problemu badawczego zaproponowano

ulepszoną metodę treningu modeli wykrywających koniec komendy w strumieniu audio.

Innowacją jest tu rozszerzenie standardowej funkcji kosztu o zestaw wag przypisanych do

różnych części danych audio. W trakcie badań zaproponowano również metodę doboru

tych wag. Przeprowadzone eksperymenty potwierdzają skuteczność opracowanej funkcji

kosztu w porównaniu ze standardowym sposobem treningu modeli.

Dekodowanie strumienia audio do tekstu jest przeważnie ostatnim etapem konwersji

mowy do zapisu słownego. W trakcie treningu modele stosowane w tym zadaniu wymagają

dużych ilości wysokiej jakości danych. Łatwo dostępne są obszerne bazy danych audio,

natomiast proces ich anotacji przeważnie jest robiony ręcznie. Z tego powodu jest on

kosztowny i czasochłonny. Metody uczenia częściowo nadzorowanego stanowią próbę

rozwiązania tego problemu. We wcześniejszych pracach eksperymentalnie wykazano

ich skuteczność w przypadku bardzo dużych zbiorów danych audio. Natomiast badania

zaprezentowane w niniejszej rozprawie pokazują, że możliwe jest zastosowanie uczenia

częściowo nadzorowanego również w przypadku niewielkich baz danych. Wykorzystując

zaproponowane usprawnienia do podstawowej metody, udało się obniżyć wyrazową stopę

błędów (ang. word error rate, WER) o 12–22 punktów procentowych (w zależności od typu

zbioru audio wykorzystanego do adaptacji modelu bazowego).

Słowa kluczowe: uczenie maszynowe, głębokie sieci neuronowe, przetwarzanie mowy,

przetwarzanie języka naturalnego, rozpoznawanie mowy na urządzeniu, interfejs głosowy,

urządzenia mobilne, projektowanie korpusów, wykrywanie fraz kluczowych, wykrywanie

końca frazy w strumieniu audio, wykrywanie aktywności głosowej w strumieniu audio,

rozpoznawanie mowy, uczenie częściowo nadzorowane
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Methods of optimizing models and algorithms for
automatic speech recognition in mobile applications

Abstract. Voice-based interfaces are becoming an increasingly popular way of interaction

between humans and machines. Nowadays, they are a standard in applications such as

intelligent assistants. The data containing voice messages is characterized by considerable

heterogeneity. This diversity may occur at the level of the recorded audio signal. The

quality of this signal is affected by factors such as the type of microphone recording

the sound, background noise, or the speaker’s articulation. Diversity can also occur at

the linguistic level, as the same intention can be expressed in many ways in the same

language. Moreover, the number of ways to express one intention increases significantly

when considering multiple languages. Due to the above observations, the natural lan-

guage processing process is usually divided into many stages. This dissertation presents

the research results on the first stage of this process: automatic speech recognition. In

particular, the study concerned the following modules used in this process: keyword

spotting, end-of-speech detection, and decoding the audio stream to text. In addition, the

research was focused on developing methods that would enable the transfer of as many of

these modules as possible to mobile devices. This can be done by developing innovative

algorithms or models and optimizing the operation of existing solutions.

Analysis of the previous work on keyword spotting revealed an issue with the lack of a

good testset that could be used to evaluate models for this task. Previous solutions were

evaluated with the testsets that contain very few keywords, do not contain demanding

negative examples, or are not publicly available. Therefore, in the first stage of work, a

testset solving the above problems was prepared and made publicly available. This testset

was named Multilingual Open Custom Keyword Spotting Testset (MOCKS). It is based on

open-domain datasets: LibriSpeech and Mozilla Common Voice. MOCKS contains almost

50 000 keywords for five languages: English, French, German, Italian, and Spanish.

Once the testset was ready, the next research stage was to develop a method to improve

the effectiveness of the keyword detection system based on modern acoustic models. The

proposed solution uses a simple unigram language model. This thesis also presents a

method for weight selection during the initialization phase. The proposed solution was

evaluated with the MOCKS testset. Experiments showed that with proper choice of the

language model parameters, it was possible to increase the true positive rate by about 30 %

relative while increasing the false negative rate only by about 20 % relative. In addition,

experiments were carried out using recordings generated by a text-to-speech system to

improve the model’s effectiveness with rare keywords unknown during the training phase.

The effectiveness of automatic speech recognition systems depends, among other

things, on the accuracy of determining the beginning and end of a fragment contain-

ing speech. In particular, it is crucial and demanding to locate the position of the



end-of-speech event in the audio stream. This thesis describes an improved method

of training models detecting such an event. The innovation extends the classic binary

cross-entropy loss function with weights assigned to different parts of the audio data.

A method of assigning these weights was also proposed. The experiments confirm the

proposed loss function’s effectiveness compared with the standard model training method.

Decoding the audio stream to text is usually the last step in speech-to-text conver-

sion. Models used in this task typically require large amounts of high-quality data for

training and adaptation. Extensive audio databases are readily available, but the annota-

tion process is mainly done manually. For this reason, it is costly and time-consuming.

Semi-supervised learning methods attempt to solve this issue. Previous work has ex-

perimentally demonstrated their effectiveness for massive audio datasets. However, the

research presented in this dissertation shows that it is possible to use semi-supervised

learning in the case of small datasets as well. Using the proposed improvements to the

baseline method, it was possible to reduce the word error rate metric by 12 %–22 % relative

(depending on the type of audio set used to adapt the base model).

Keywords: machine learning, deep neural network, speech processing, on-device speech

recognition, voice interface, mobile devices, corpus design, keyword spotting, custom

keyword spotting, query-by-example keyword spotting, query-by-text keyword spotting,

end-of-speech detection, voice activity detection, speech recognition, semi-supervised

learning
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1. Introduction

1.1. Intelligent Assistants and Speech Processing

We have the privilege of observing the technological revolution taking place. It is the

revolution in the way we communicate with machines. The variety of tasks performed

by computers has been quickly expanding since the middle of the 20th century. It might

be argued that there has been a feedback loop: the more accessible communication with

computers was, the more helpful they became, which stimulated inventions in machine

interface technologies. In the 1970s, punched cards were replaced by a keyboard and a

computer monitor. Soon, a mouse was introduced. Hence, for many years, the primary

way of human-computer interaction was based on written text and pointing devices. This

is still true, even though computers have changed significantly. Today’s mobile devices

have far stronger processors and use orders of magnitude more memory than Apple

1, the first personal computer released in 1976 [1]. Yet the communication schema is

very similar in both cases: users must enter text by pressing keys on a keyboard. There

were also attempts with steering machines with gestures [2], [3] or using the movement

of the pupil [4], [5]. However, speaking is a very straightforward and natural way of

communication for humans. This observation motivated researchers to develop new

solutions enabling machines to decode speech and parse the transcription.

Speech and natural language are challenging to process since many factors affect the

quality and quantity of the data:

• Background environment (acoustic echo, reverberation, background noise).

• Substantial differences between languages.

• People speak differently (rhythm, tone, accent).

• Speaking disorders.

• The same commands can be formulated with different words.

The number of applications that exploit Speech and Natural Language Processing is

quickly expanding. Some of the most prominent applications in this field are:

• Intelligent Assistants (IA) [6], [7],

• Interactive Voice Response in telephony [8], [9],

• Education (language learning, visually impaired students support) [10], [11],

• Support for people with disabilities in everyday life [12], [13],

• Home automation [14], [15].

Throughout this thesis, the focus will be on Intelligent Assistants. This choice is motivated

by the fact that this is a rapidly growing software branch, and multiple consumer devices

support such applications (mobile phones, watches, TVs, fridges, vacuum cleaners, etc.).

Usually, many distinct components are used in the pipeline designed to convert spoken
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Figure 1. Overview of a generic intelligent assistant solution.

commands into machine actions. An example of such a pipeline, used commonly in the

case of IAs, is shown in Figure 1.

The workflow of this pipeline can be described as follows:

1. The user provides audio data recorded by a microphone (or a microphone matrix).

2. Audio data is decoded by the Automatic Speech Recognition (ASR) module. The

output of this module is a textual transcription of the command, usually called a

hypothesis.

3. ASR’s hypothesis is processed by the Natural Language Understanding (NLU) module.

NLU’s goal is to parse the command into action, which can be performed by the

device.

4. One of the goals of IAs is to simulate conversation with the user. Natural Language

Generation (NLG) is used to create a sentence that would be an answer to a user’s

request.

5. Finally, IA’s textual answer is converted into audio by a Text-to-speech (TTS) module.

In this thesis, we will focus on the ASR module. This module can be further split

into submodules. Figure 2 shows the most generic ASR pipeline. Each module is briefly

described in subsections 1.2-1.6.

1.2. Keyword Spotting

In the early versions of IAs, each conversation would start with a dedicated button

(push-to-talk solution), but soon the hands-free option was introduced. Currently, all lead-

ing IAs use keyword detection for conversation initialization. The goal is to detect all occur-

rences of the given keywords in audio data provided either in streaming or non-streaming

mode. Keyword-spotting systems (KWS) are usually deployed on users’ devices. Therefore,

they need to have low latency and a small memory footprint. In the most basic case, the

models are fitted to support detecting only a fixed number or just one keyword (e.g., “OK

Google”, “Alexa”, “Hey Siri” or “Hi Bixby”). Such models can be minimized well, even to

sizes below 100 kB. However, users of IAs often request the possibility to customize the

keywords, which requires open-vocabulary KWS. In this case, the model must be much

larger to recognize potentially arbitrary keywords. The problem of open-vocabulary KWS

comes in two flavors:
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1. custom keyword is provided by text (in literature: query-by-text keyword spotting or

QbyT KWS for short),

2. custom keyword is provided by audio (in literature: query-by-example keyword spot-

ting or QbyE KWS for short).

In both cases, an additional enrollment phase is necessary to gather the keyword from

the user and extract the features for further comparison. Throughout this thesis, KWS will

mean both QbyT KWS and QbyE KWS tasks.

1.3. Speech Boundaries Detection

Once the KWS module activates the IA, the audio data is gathered for further process-

ing. However, it is not obvious when to start and stop recording. The audio decoder’s

performance depends heavily on the precision of the audio stream truncation. Opening

the stream too late or closing it while the command is still being spoken prevents the

decoder from processing the entire utterance correctly. On the other hand, the Acoustic

decoder’s performance often depends on the amount of data presented to the decoder, so

feeding it with a redundant signal is not advantageous. Furthermore, the user experience

in a real-time application depends strongly on the system latency: only once the Audio

decoder is notified that the utterance is finished can further components start processing

the request. The tasks of detecting the beginning and end of speech are usually called

Beginning-of-speech (BOS) and End-of-speech (EOS) Detection, respectively. They are

sub-tasks of Speech Boundaries Detection (SBD).

Defining precise moments of speech boundaries is a task that needs to be performed at

the very beginning of the speech recognition process. Additionally, since audio decoding
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is usually performed in real-time, detecting speech boundaries, apart from being precise,

should also be done quickly, in a one-time, single-run manner. This means that the models

designed for this task can infer only based on the current data that have been presented,

with no chance for any further corrections of past hypotheses.

1.4. Audio Enhancement

Mobile devices are used in various acoustic conditions, which results in the audio data

containing background noise. Such distortions heavily affect the output of the following

modules. They can cause errors during audio decoding. Those errors propagate to NLU,

which will fail to parse the user’s command. Various techniques can be applied to enhance

the audio data. Some of those techniques can be as follows:

• Acoustic Echo Cancellation (AEC) [16]. Many consumer devices are equipped with

loudspeakers, e.g., mobile phones, TV sets, car audio systems). Microphones also

record sounds generated by those loudspeakers. However, the device’s audio signal

can be subtracted from the recorded signal by the AEC module.

• Noise Reduction (NR) [17] removes noise from the audio signal. It can be split into

two subtasks: stationary and non-stationary noise reduction. Usually, the former is

easier, while the latter is much harder and requires sophisticated models.

• Speech Amplification has a goal opposite to NR: it is meant to amplify frequencies

containing speech data.

1.5. Audio Decoding

Audio Decoding (AD) [18] can be considered the core of ASR since its goal is to generate

a transcription of the command spoken by the user. Usually, this task is performed by the

acoustic engine (AE) and acoustic model (AM). Multiple factors affect the acoustic model’s

performance. The most important are vocabulary, pronunciation variants, context, and

acoustic conditions.

With the most simple use cases of AD, it can be assumed that the vocabulary is closed

and the context is small. It can also be assumed that the acoustic conditions in the produc-

tion environment will be constant. Such assumptions can be made, e.g., for elementary

sets of supported commands or devices used only in one location. In this case, the AM

can be relatively small. Nevertheless, the high level of generality in use cases supported by

the AM requires a large number of parameters in the model and, consequently, significant

computing power.

A language model (LM) can optionally process the output from AE. In this case, the

goal of LM is to capture the most common patterns in a given language and apply this

knowledge to choose the most probable hypothesis generated by the AM.
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1.6. Postprocessing

The last module of ASR is usually postprocessing. However, this step can be optional.

This module is different from the previous ones since it is purely text-based. There can be

multiple tasks performed within this step. Some examples are as follows:

• Inverse text normalization [19]. Users can pronounce phrases such as numbers,

dates, weights, distances, or addresses in numerous ways. However, they can be

written canonically, which might be language-dependent. Different methods can

perform such normalization, among which simple grammar can be considered a

natural candidate.

• Fixing the most common audio decoder errors. The AD usually uses an extensive

neural network to produce the hypothesis. Fine-tuning such models might not be

straightforward, and it might be time-consuming. Once an error in the AD output is

spotted, applying a text-based method to fix it might be much faster and cheaper.

Such methods include simple regular expression rules, grammar, or text processing

models.

1.7. Client-server vs. On-device Processing

Contemporary models used in the ASR process are usually large and require mas-

sive computing power. In previous years, such power was available only on expensive

servers. Hence, the dominant paradigm in ASR was to apply client-server architec-

ture. Some lightweight tasks were performed on-device, yet the most compute- and

memory-consuming tasks were delegated to the cloud. In general, tasks such as KWS

and SBD were performed on the device since their output directly impacted the hardware

(the microphone). Audio Enhancement should be partially performed on the device

(AEC), but a fraction of this task can also be performed in the cloud. Audio Decoding and

Postprocessing were, in general, performed in the cloud.

New versions of consumer devices are equipped with strong processors and large

amounts of memory. Simultaneously, researchers improve model architectures and train-

ing methods. This grants the possibility to move more ASR components to mobile devices,

particularly the most computationally expensive one: Acoustic Decoding. However, we

are only at the beginning of this research.

1.8. Scope and Organization of this Thesis

It should be noted that, as outlined before, ASR is a complex process consisting of

multiple submodules. My work in this thesis concentrates on the below three modules:

• Keyword detector,

• Speech boundaries detector and End-of-speech detector in particular,
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• Audio decoder and acoustic model adaptation with Semi-supervised Learning meth-

ods in particular.

The rest of this thesis is organized as follows. Section 2 presents previous work in

the areas related to the abovementioned modules. In Section 3, the main theses of my

doctoral dissertation are stated and shortly introduced. Detailed work on those theses

is presented in Sections 4, 5, and 6. Conclusions are presented in Section 7. Finally, the

author’s achievements are listed in Appendix A.
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2. Literature Review

In this section, I will present a survey of the previous works on the topics investigated

in this thesis.

2.1. Custom Keyword Spotting

KWS can be split into query-by-text (QbyT) and query-by-example (QbyE). In QbyT,

the keyword is provided by text, while in QbyE, one or more “enrollment” audio recordings

are provided during the initialization phase. Both types of KWS were considered before.

A thorough review of QbyT solutions can be found in [20]. Models designed for this

task evolved similarly to the acoustic models (AM) used in speech recognition. There was

a long phase of solutions based on the hidden Markov model (HMM) – Gaussian mixture

model (GMM) architecture [21], [22] (Figure 3a). In this approach, the acoustic features

were modeled by the GMM. The output of the GMM was used as the HMM emission

probabilities. Finally, Viterbi decoding [23] was used for inference to find the best path in

the decoding graph generated by HMM. Later, the GMM component was replaced by deep

neural networks (DNN) [24], [25]. Finally, with the advent of end-to-end architectures

to speech processing, ideas such as connectionist temporal classification (CTC) [26] and

attention mechanism [27] became standard solutions in KWS as well. In this approach, the

model was usually composed of the encoder and decoder parts (Figure 3b-d). The goal of
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Figure 3. Overview of the most common KWS model architectures.
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the encoder was to generate frame-level embeddings. The decoder was trained to compile

those embeddings into a sequence of posterior probabilities, usually much sparser than

the frame sequence. Proposed solutions differ in how the posteriors are generated by the

decoder and handled in the postprocessing step. Another difference between solutions is

in the keyword encoder module. In some solutions, this was simply an identity function or

translation to phonetic transcription, while in others, a more sophisticated transformation

was applied.

Contemporary solutions to open-vocabulary KWS can be based simply on CTC. In [28],

the model architecture was similar to the schema presented in Figure 3b. The encoder

part of the model contained three long short-term memory (LSTM) layers and a softmax

output layer generating character-level probabilities. The keyword was detected once

the negative log posterior was below a predefined threshold. LSTM-CTC architecture

was also used in [29] (Figure 3b). The solution was designed to detect multiple keywords

simultaneously. In this case, the model operated at the phonetic level. One or more

phone sequences represented the keyword. Those variants were compared with the

hypothesis using minimum edit distance during the inference phase. Each keyword’s

decision threshold was estimated separately based on the training data and the lexicon.

The connection between KWS and acoustic modeling can also be limited to the training

phase. In [30], the model was trained using CTC in a multi-task approach with speech

recognition and KWS outputs. During inference, only the KWS output was used. Such an

approach was intended to improve the model’s generalization ability and performance in

acoustically challenging conditions. However, the number of recognized keywords was

fixed (Figure 3d), and extending the model to support new keywords required retraining.

Hence, its utility for open-vocabulary KWS was limited. The solution presented in [31]

was based on a keyword spotting network and a text keyword encoder (Figure 3b). The

keyword spotting network had two components: an audio encoder network and a convo-

lutional classifier. The audio encoder was trained using the speech recognition task. The

classifier network used filters computed by a keyword encoder. The keyword encoder was

a bidirectional LSTM (BiLSTM) layer processing the text keyword provided by the user.

Some solutions were based on the attention mechanism in the decoder part of the

model. In [32], three types of encoder-decoder models were proposed. In the best-per-

forming architecture, the decoder already used the keyword embedding (Figure 3c). The

idea was to employ such embedding in the attention layer to bias the decoder toward the

keyword and, in effect, improve recognition of the searched phrase. Notably, one of the

models presented in this paper employed a phoneme level 6-gram LM (~1.5 M 6-grams),

which improved the model’s performance. An attention-based model was presented

in [33]. However, this was one of many solutions with a fixed-size output layer (Figure 3d);

hence, supporting new keywords required retraining the model.

Another approach to supporting large vocabulary was the on-the-fly adaptation of the
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model during the initialization phase. In [34], an embedding model was pre-trained on

a significant but limited number of classes (Figure 3d). A classification layer for specific

keywords was added on top of the embedding model and adapted using only a handful of

samples. Such classification layers were independent of each other and used the same

embedding model since only the last layer was modified in the adaptation phase. A similar

solution based on a few-shot transfer learning was described in [35] (Figure 3d). It should

be noted that usually, KWS solutions are deployed on devices with limited resources.

Hence, performing any type of model adaptation might be troublesome.

The goal of QbyE KWS is to compare two audio samples. Hence, the most generic

approach to this task is to generate two embeddings with the same DNN and compare

them (Figure 3e). Many QbyE solutions were also based on the concepts used in speech

recognition. In [36], the AM with CTC was applied to enrollment phase recordings. N-best

phonetic level keyword labels were stored with their log probabilities in the keyword model.

Each audio was processed with a similar AM during the inference phase. Log probability

was computed and added to the final score for each keyword from the keyword model. The

keyword was detected if the score was above a certain pre-determined threshold. Similarly,

in [37], a small-footprint AM based on CTC was employed. In the enrollment phase,

phonetic level posteriorgrams obtained from the model were used to build a finite-state

transducer graph (FST) that modeled the keywords. In the inference phase, the audio was

processed with the AM, and the output was scored using the keyword model FST. Finally,

the score was compared with the threshold, which was chosen automatically based on the

enrollment recordings and negative samples generated by rearranging each enrollment

waveform. Since both solutions operated on the phonetic level rather than directly on the

acoustic level, they can be treated as converting the QbyE task to QbyT.

QbyE can also be approached on the acoustic level. In [38]–[41], audio embeddings

were computed for both enrollment and inference phase recordings. Distance between

those vectors was calculated using different metrics and compared to a predefined thresh-

old.

It should be noted that contrary to the speech recognition task, in KWS, there is no

good public testset that could be used to evaluate models, especially for custom KWS

scenarios. Table 1 contains a list of the most popular testsets. They are also described

below in detail.

Many KWS solutions were tested using the Google Speech Commands (GSC) [42].

It was released in two versions, V1 and V2, containing recordings of 30 and 35 words,

respectively. Ten words were treated as positive samples (keyword), and the remaining

part was used as negative samples (non-keyword). The words were short enough to fit

in the recording, lasting under one second. The GSC testset contained crowdsourced

recordings from 1 881 speakers (V1) and 2 618 speakers (V2). Several studies reported

their results evaluated on V1 [33], [43]–[45], while the others on V2 [33], [43], [46], [47]. The
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Table 1. Testsets used to evaluate KWS solutions.

testset name
publicly
available

pros cons

Google Speech
Commands [42]

✓
– many speakers,
– many samples from each
speaker.

– small number of phrases,
– phrases are very different,
– clean audio.

Multilingual
Spoken Words
Corpus [48]

✓
– massively multilingual,
– many phrases.

– single word phrases,
– no negative test cases.

Mozilla Com-
mon Voice [49]

✓
– many speakers,
– many samples from each
speaker.

– small number of phrases,
– phrases are very different.

LibriSpeech
based [36]

✗

– varied keywords,
– large number of keywords,
– negative test cases.

– contains short phrases,
– not available publicly.

LibriSpeech
based [50]

✗

– large number of keywords,
– multiple subsets with differ-
ent size.

– contains very short phrases,
– not available publicly.

MCV based [34] ✗

– large number of keywords,
– large number of test cases
per keyword.

– no negative test cases,
– not available publicly.

best results so far have been reported by [43] with an accuracy of 98.0 % on V1 and 98.7 %

on V2.

Despite its popularity, the GSC testset could not evaluate KWS solutions thoroughly for

several reasons: the number of keywords was relatively low, and the negative samples were

entirely different from the keywords. All the samples were recorded without background

noise and were cut with high precision. Those issues make GSC inadequate for emulating

actual production conditions.

The Multilingual Spoken Words Corpus (MSWC) [48] contains as many as 23 M key-

words split between 50 languages. Alignments generated with Montreal Forced Aligner

(MFA) [51] were used to extract audio samples. The keywords were selected based on

the word length (minimum three letters) and occurrence frequency (minimum five oc-

currences per language subset). The data was split between train, dev, and test subsets.

Unfortunately, this dataset does not contain keywords longer than one word. Moreover,

it does not provide negative samples to a given keyword, which would allow for a false

positive rate (FPR) analysis.

Mozilla Common Voice (MCV) [49] contains subsets of short phrases called “Single

Word Target Segment”, which could be used for KWS evaluation. This approach was

applied in [34]. However, those subsets are also very limited since they contain only up
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to 14 short keywords (digits and four predefined keywords). Furthermore, there are no

negative samples defined for each keyword.

A few papers used modifications of datasets available in the public domain to evaluate

proposed solutions. One example is [36], where LibriSpeech [52] was the base for creating

the testset. Alignments generated with MFA were used to extract audio samples. The

testset contained recordings 0.5 s–1.5 s long, including n-grams with n ≤ 4. This gave 6 047

different keywords. Positive samples were combined with two types of negative samples:

“confusing” (phonetically similar to the keyword) and “non-confusing” (phonetically dis-

similar). Phoneme-level transcriptions and edit distances were used to select both types

of negative samples. The description of the testset was fairly precise, but the testset itself

has not been published.

In [50], a KWS solution based on triplet loss was evaluated; apart from GSC, the test

suite included recordings extracted from LibriSpeech. Different testsets were created

using 10, 100, 1 000, and 10 000 most popular words. Forced alignments were used to

extract selected phrases. Since the most popular words were “the”, “and”, “of”, etc., the

audio excerpts were relatively short (0.03 s–2.8 s). Unfortunately, no information about the

sizes of the classes in the testset was given, nor has the testset been published.

The GSC testset, excerpts from LibriSpeech based on alignments generated by MFA,

and subsets of MCV were used in [34]. In this case, the testset was built with n-grams

(n ≤ 5) that contained at least ten characters and had at least ten occurrences in the train

split of the dataset. This gave over 15.2 k different keywords. Unfortunately, this testset

has not been made public, either.

In [53], a procedure for creating corpora for KWS was described, and a model for

this task was evaluated. The model was designed to recognize only one keyword: “Fairy”,

pronounced by Japanese speakers. The authors created four types of testsets: positive data,

random words, phonetically-balanced sentences, and “adversarial” words. All the classes

except for the positive data were meant to test the model against the FPR. “Adversarial”

words were created by inserting, deleting, or substituting a single phoneme or swapping

two phonemes in the target keyword. All the sequences of phonemes that were impossible

to pronounce were discarded.

A couple of testsets for speaker verification and keyword detection were based on a

reduced number of wake-up words. In three parts of the RSR2015 [54] database for speaker

verification, the speakers pronounced 30 fixed sentences from the TIMIT [55] database, 30

short audio control commands, and digit sequences. In [31], evaluation was done on GSC

and two small in-house command testsets (10 and 5 commands, respectively). Only four

keywords were tested in [37], and only two keywords in two Chinese testsets: [56] and [57].
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2.2. End-of-speech Detection

The problem of EOS detection has already been approached with various methods.

The simplest is based on a voice activity detection (VAD) model. The model is trained to

classify frames as containing speech signals in this case. Once a frame (or a sequence of

frames) not containing speech is detected, the pause event is activated. The threshold is

set for the maximum pause duration, after which the system decides that the utterance is

finished. For example, this type of approach was considered in [58]. While this method

might work in the case of phrases that are spoken fluently (for example, in read speech),

in the case of commands spoken spontaneously, humans tend to pause in the middle

of a command for various amounts of time. Hence, choosing a threshold length that

will not cause frequent cut-speech errors, i.e., premature closing of the microphone, is

challenging.

EOS detection is often treated similarly to other classification problems for an audio

stream realized on a frame-based level. In this case, a set of features is extracted and pro-

cessed by a classifier for each frame. The classification can be based on prosodic features,

as in [59] or [60], where an SVM model performed the detection using features such as

periodicity, speaking rate, spectral constancy, duration/intensity, and pitch of prepausal

speech. Unfortunately, these models were not evaluated against noisy conditions.

Other researchers have shown that prosodic features alone are insufficient to precisely

describe the EOS: most studies use these features and different data types. This was the

case in [61], where a decision tree model was fed with prosodic features accompanied

by information from the language model. A similar solution was proposed in [62], where

the detection model was trained based on broadcast news audio data. Prosodic features

were processed by a DNN and mapped to boundary/non-boundary probability outputs.

Those posterior probabilities were combined with lexical features and processed by a

linear-chain conditional random field model (CRF) to make the final decision. CRF model

for EOS detection was also proposed in [63]. In this case, the model processed prosodic

and textual features. The proposed solution was evaluated on the task of lecture speech

EOS detection. Such solutions required running the ASR decoder and an EOS detector,

which is unacceptable in most online use cases.

In [64], log mel filterbanks were calculated for each frame and processed by a neural

network composed of convolutional and LSTM layers. The authors compared their solu-

tion with a basic VAD-based approach. Both models were trained with voice search-specific

data and force-aligned to generate the ground truth data. The results proved the superi-

ority of the neural network model compared to the basic VAD-based approach – using

their in-house corpus (15 k voice search-specific utterances), they showed that the neu-

ral network model yielded the median latency (EP50) approximately 100 ms lower than

the VAD-based model while keeping the early EOS score at the same level. The same

improvement was observed for the 90th percentile latency (EP90).
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Figure 4. Overview of the machine learning methods utilizing unlabeled data.

2.3. Semi-supervised Learning for Speech Recognition

Machine learning is set on two cornerstones: models and data. The most popular

paradigm in speech processing tasks is supervised learning. However, with this approach,

the quality of the model depends heavily on the data used during the training. There are

also other training methods utilizing unlabeled data (Figure 4):

• Unsupervised learning aims to discover unknown dependencies in the data through

methods such as clustering, anomaly detection, and dimensionality reduction. Un-

supervised learning has limited application in speech processing.

• Semi-supervised learning is based on labeled and unlabeled data. The labeled data

is used to train a baseline model, which is further adapted with the unlabeled data.

The unlabeled data is sometimes already used at the base model training stage.

• Self-supervised learning is also based on labeled and unlabeled data, but the train-

ing procedure is reversed. In the first step, a generic model is trained using unlabeled

data. This model can be subsequently used in the adaptation for multiple down-

stream tasks. Such adaptation usually requires replacing the model’s output layer

and providing task-specific labeled data. Experiments show that the labeled datasets

can be relatively small.

Note that there is an unfortunate collision in the names of the training methods.

Throughout this thesis, I will abbreviate semi-supervised learning as SSL, while there will

be no abbreviation for self-supervised learning.

Self-supervised learning has become very popular recently due to its ability to discover

good data representation. Models trained with this approach can be used as encoders in

numerous sequence-to-sequence tasks. Downstream adaptation consists of fitting the

decoder to the task-specific labeled data. A thorough review of those methods can be

found in [65]. Furthermore, multiple suggestions on the applicability of self-supervised

learning to new areas can be found in [66]. There are numerous pre-trained upstream
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models available in the public domain. Exemplary models for tasks related to speech

processing are wav2vec [67], [68] and Whisper [69].

Large amounts of unlabeled data are necessary to train the upstream model in a

self-supervised approach. However, I was interested in utilizing small datasets. This

motivates the focus on semi-supervised learning, which uses unlabeled data to adapt a

model instead of training it from scratch.

SSL has been used in solutions to multiple problems. Thorough surveys presenting

such methods can be found in [70]–[73]. A detailed review of selected SSL algorithms can

be found in [74]. This paper also compares the results of the described methods in image

recognition tasks. SSL algorithms can be divided into three classes:

• Consistency regularization where the intuitive goal was to assure that realistic

perturbations of the unlabeled data points would not change the model’s output.

Examples of this method were the Π-Model [75], Temporal ensembling [76], and

Virtual adversarial training [77]. The last method is the most interesting since it

proposed to modify each data sample in such a way that would most significantly

affect the model’s output.

• Entropy-based methods [78] applied the unlabeled data already at the training

phase. The idea was to extend the loss function computed in a standard way over the

labeled samples with values obtained for the unlabeled data. The additional term

was designed to encourage the model to make “confident” (low-entropy) predictions

for all examples.

• Pseudo-labeling [79] is very popular in practice due to its simplicity. The idea is to

generate labels for the unlabeled data by the model itself and perform adaptation in

a standard supervised manner.

SSL was also applied for the speech recognition task. In [80], an additional data

selection step was proposed before the adaptation. The motivation was to exclude the

samples, which would not bring new information to the model. The unlabeled data

consisted of a different domain from the training data. Two scenarios were considered:

when the in-domain labeled data was available for pre-training and without such data.

SSL with data selection strategy introduced 17 % gain relative in the former scenario and

3.7 % in the latter.

Noisy Student Training was applied to the speech recognition task in [81], [82]. The

idea was to mix small labeled and large pseudo-labeled datasets during training. Using

100 h subset of LibriSpeech and the remaining 860 h of this dataset as the labeled and

unlabeled data respectively, the authors obtained WERs 4.2 %/8.6 % on the clean/other

testsets. Experiments performed by extending the unlabeled dataset to LibriLight (60 k

hours of speech data) lowered this metric to 1.4 %/2.6 % on the same testsets.

Extended experiments with SSL methods were performed in [83]. This work aimed

to compare different contemporary speech recognition model architectures and loss
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functions when adapted with pseudo-labels. Another set of experiments utilized different

sizes of the unlabeled data in adaptation. The baseline model was trained with LibriSpeech,

and the unlabeled data was extracted from LibriLight [84] (1 k, 3 k, 10 k, and 54 k hours of

speech data). Already, the 1 k experiment introduced an improvement in WER. Yet, the

best results were obtained with the largest unlabeled dataset (54 k), reducing WER from

2.54 %/6.67 % on dev-clean/-other to 2.11 %/4.59 %.

Iterative pseudo-labeling was introduced in [85]. The idea was based on the intuition

that the AM’s performance should increase during the adaptation; hence, the quality of

the pseudo-labels should also improve. Thus, the pseudo-labels were generated iteratively.

This method proved to have a better impact on the model when compared to the vanilla

SSL (generating pseudo-labels once at the beginning of adaptation). The experiments

were performed with subsets of LibriSpeech as the labeled dataset and LibriVox [86] as

the unlabeled dataset. Once again, the results on WER improved with the amount of

unlabeled data used in the adaptation.

SSL variant based on two models adapted simultaneously was proposed in [87]. One

of the models was called “online” and was trained to predict pseudo-labels generated

by the second model (called “offline”). The “offline” model’s weights were calculated by

the momentum-based moving average of the “online” model’s weights. The models were

trained using subsets of LibriSpeech and TEDLIUM3 [88] dataset. The best results were

obtained using the largest unlabeled dataset.

The multilingual speech recognition model was adapted using pseud-labeling in [89].

The baseline model was trained using the MCV dataset (60 languages). In the following

steps, the model was adapted for different languages. Experiments proved that using only

pseudo-labels gave poor results for under-resourced languages. However, performing

additional adaptation steps with labeled data improved the results significantly.

In [90], the effectiveness of semi-supervised techniques was analyzed, and it was

suggested that the quality of the final result could be high even with the initial model

being relatively poor. However, the experiments were performed using additional LM. The

authors proved experimentally that the quality of LM has a much more significant impact

on the SSL utility than the initial AM. With a carefully chosen recipe, they were able to

reduce WER by 50 % relative, even when the initial system’s WER was more than 80 %.
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3. Contribution of this Thesis

This thesis investigates methods to improve the performance and accuracy of models

applied to the audio stream in any of the steps of the speech transcription process in the

on-device context. Such improvements can be obtained on various levels:

A) model architecture level,

B) model training or adaptation level,

C) inference level.

Levels B) and C) should be considered algorithmic improvements since they do not affect

the models’ architecture. In this thesis, levels A) and B) are considered.

Furthermore, the possibility to run the inference on-device was considered the crit-

ical factor throughout the research presented below. This assumption enforced strong

constraints on the models’ sizes and number of epochs in the adaptations.

In this work, the following theses are formulated and experimentally proved:

1. The performance and accuracy of a keyword spotting model can be significantly

improved by using a unigram language model and audio recordings generated by a

text-to-speech system.

This thesis refers to the QbyT KWS problem and any AM computing frame-level

posterior-gram. It should be noted that both improvements can be applied inde-

pendently. They are applied on the model architecture level since they introduce

additional layers after the AM. Both layers are constructed during the initialization

phase. The unigram LM is a highly lightweight model, and TTS recordings usually

generate only a handful of additional keywords. Hence, they allow more aggressive

compression of the AM and deployment of the entire model to mobile devices. During

the experiments, the AM compression was performed by reducing neural network

layer sizes and applying post-training weights quantization. The critical factor in the

unigram LM method is the model’s weights initialization. A very simple yet powerful

method of such initialization is proposed and evaluated. Recordings generated by a

TTS model are used to improve performance on rare keywords not known during AM

training.

2. The accuracy of an end-of-speech detection model can be effectively improved by

training the model with the proposed loss function.

This improvement is on the model training level since it uses a modified loss function.

The basic procedure for EOS model training was to apply audio frame-level binary

cross-entropy to compute model loss. However, adding weights to this function

positively boosted such training. The critical factor in the proposed function is the

choice of the weights. They are based on the frame distance from the actual end of

the speech signal. This type of loss function is straightforward to compute and can
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be applied to a wide range of model architectures. Especially those models that are

small enough to fit on the mobile device can benefit from the proposed loss function.

3. Semi-supervised learning methods can be effectively used to adapt acoustic models

even with small datasets.

This thesis applies to the model adaptation level. More precisely, it refers to the

adaptation of the models used for audio decoding. Experiments with SSL meth-

ods prove that such adaptations can be successfully performed with small datasets.

Furthermore, it was shown that those datasets could contain much different data

from those used to train the baseline model. The difference between training and

adapting sets can be observed with features such as background acoustic conditions,

microphone type, speaker articulation characteristics, and also, to some extent, the

distribution of the words in both datasets. Since the datasets used in the experiments

were tiny (the total length of the recordings counted in hours) and the adaptations

were short (number of epochs smaller than 50), this method can be applied to adapt

the acoustic models on mobile devices.

Experiments related to Thesis 1 have been described in the article titled “Open vo-

cabulary keyword spotting with small-footprint ASR-based architecture and language

models” [91], presented by the author at the FedCSIS 2023 conference in Warsaw, Poland.

This paper was awarded The 2023 Professor Zdzisław Pawlak Award in the category of

Industry Cooperation. Evaluations of models designed in those experiments were based

on the testset described in the article titled “MOCKS 1.0: Multilingual open custom key-

word spotting testset” [92], presented by the author at the Interspeech 2023 conference

in Dublin, Ireland. Research towards Thesis 2 has been described in the article entitled:

“Improved weighted loss function for training end-of-speech detection models” [93] pre-

sented at the MoMM 2020 conference. Finally, the study of methods corresponding to

Thesis 3 has been published in the article entitled: “Semi-supervised learning with limited

data for automatic speech recognition” [94] presented at the RTSI 2022 conference. The

following sections (Sections 4–6) contain extended versions of the descriptions published

in the publications mentioned above.
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4. Custom Keyword Spotting

Various attempts to solve the problem of KWS have been proposed. Unfortunately,

many of the solutions were evaluated on the proprietary testsets, making a comparison

between models impossible. As previously mentioned in Section 2.1, only a few public

testsets are available to evaluate KWS models. However, those testsets do not allow for an

in-depth evaluation of the models since they contain a limited number of keywords and

they lack challenging negative examples of keywords.

I will describe our attempt to fill in this gap by proposing a public testset built upon

data from LibriSpeech and MCV. The testset was named MOCKS: Multilingual Open

Custom Keyword Spotting Testset and was made freely available to the research community.

Therefore, such a testset can become an effective tool when evaluating or benchmarking

KWS algorithms.

This section will also present a novel solution to the KWS task for the non-streaming

mode. It is based on the acoustic model (AM) architecture. However, to fit the entire

system (model and engine) on the mobile device, we strongly reduced neural network

layer sizes and applied post-training weights quantization. As expected, the baseline

model performance was far from satisfactory. Therefore, we applied hypothesis re-scoring

with a simple language model (LM) to increase the probability of correct hypotheses. We

also explored the idea of using recordings generated by a TTS model in the final decision

step to improve performance on rare keywords not known during AM training. It should

be noted that both improvements can be used independently of each other and can be

applied to any type of AM.

4.1. Requirements for an Optimal Custom Keyword Testset

Analysis of the previous work on KWS shows that the testsets used to evaluate models

suffered from several flaws, e.g., a small number of keywords, keywords being very short,

only positive samples available, negative samples not challenging, or testsets designed

solely for offline evaluation. To create a testset free from these drawbacks, we first defined

a set of requirements that, in our opinion, should be followed when building an optimal

KWS testset. These requirements are presented below, alongside their justification. Any

parametric values were set heuristically during initial experiments.

1. Keywords should be selected among phrases with the phonetic transcription length

p such that 6 ≤ p ≤ 16. Production KWS systems usually have preset requirements

for the length of a keyword. Shorter phrases might result in a high false positive rate

(FPR) since they are usually similar to many other phrases or might be contained

in longer phrases. On the other hand, long keywords are impractical for the user.

Furthermore, KWS systems are usually deployed on devices with limited computing

power, hence the requirement to restrain keyword length.
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2. The testset should contain positive and negative samples for each keyword. Test-

ing with positive data is insufficient, as KWS solutions should also minimize FPR.

Furthermore, the negative samples should be varied and challenging.

3. Similarity between phrases should be measured with normalized phonetic Leven-

shtein distance, which proved to be successful in other studies, such as [36]. It allows

us to decide which phrases are similar or different and, consequently, find which

phrases are difficult to distinguish.

4. Keywords should be selected among the words with at least two occurrences. This

requirement assures that in the QbyE KWS task, each keyword will have at least two

test cases consisting of pairs of samples in the positive part.

5. Positive samples for each keyword should contain phrases with the same phonetic

transcriptions to measure the true positive rate (TPR).

6. Negative samples for each keyword should contain:

• Recordings containing “similar phrases”, i.e., the phonetic distance between

the keyword and the tested phrase is in the interval (0.0,0.5). These samples

should be the most challenging for the model since they would be pronounced

similarly to the given keyword.

• Recordings containing “different phrases”, i.e., the phonetic distance between

the keyword and the tested phrase is in the interval [0.5,∞). The goal of this

type of recording is to ensure a low FPR on the general types of speech.

7. The testset should allow for evaluating performance in noisy conditions and online

mode. Production systems usually work in a challenging environment with different

types of background noise. Additionally, keyword spotters most often work in stream-

ing mode. Some solutions assume non-streaming mode, but they receive recordings

processed by end-point detectors, which do not work perfectly, either.

4.2. Proposed MOCKS Testset

4.2.1. Source Audio Data

Producing and validating new audio data is usually a costly and time-consuming

process. However, numerous datasets are extensive and varied enough to select subsets of

data for tasks other than speech recognition. For this purpose, we used LibriSpeech and

MCV corpora.

LibriSpeech has become a standard dataset for speech processing tasks, primarily due

to its size (960 h) as well as the variety of speakers and vocabulary. However, the recordings

in this dataset are very particular since they are extracted from English audiobooks read by

professional speakers, and each audio sample contains a single sentence. The vocabulary

is specific, and the average length of the recording is higher when compared to other

datasets (7.42 s in test-clean, 6.54 s in test-other and 4.94 s–5.33 s in MCV, depending on

32



Custom Keyword Spotting

the language). However, its large vocabulary makes LibriSpeech a good candidate for a

custom keyword spotting testset when one extracts only short parts of the recordings. In

MOCKS, we used data extracted from test-clean and test-other splits. We will refer to the

resulting testsets as en_LS_clean and en_LS_other, respectively.

MCV is another large dataset available in the public domain. It is based on crowd-

sourcing and offers many annotated recordings in multiple languages. To prepare our

MOCKS testset, we used Version 12.0 of the MCV dataset. We focused on five languages

commonly used in Europe: English, German, Spanish, French, and Italian. We will refer to

the resulting teststs as en_MCV, de_MCV, es_MCV, fr_MCV and it_MCV, respectively.

4.2.2. Creation of our Testset

We used an internally developed, rule-based grapheme-to-phoneme (G2P) algorithm

to prepare phonetic transcriptions for each sample. Even though numerous phrases

contained multiple variants of such transcriptions, we decided to use the most popular

ones to reduce the number of compared phrases. In this case, their popularity was assessed

by language experts.

The datasets designed for speech recognition tasks usually contain phrases with pho-

netic transcriptions that are much longer than the upper bound in our requirements. We

used selected fragments of all phrases in the processed datasets to increase the num-

ber of potential keywords. We used word-level alignments generated by the Montreal

Forced Aligner (MFA) and models available in the public domain [51] to extract audio data

containing keywords. For each keyword, “similar phrases” and “different phrases” were

selected so they would not include the keyword as a subphrase.

While creating “similar phrases” sets, we decided to use no more than ten phrases

phonetically closest to the given keyword. Random selection was performed in case many

phrases had the same phonetic distance. For each phrase, the “different phrases” set

contains ten randomly selected recordings of the types described in the requirements

above.

Our testset contains two versions of the audio samples: online and offline. For the

Table 2. Properties of MOCKS subsets based on LibriSpeech and MCV.

Property en_LS_clean en_LS_other de_MCV en_MCV es_MCV fr_MCV it_MCV

# Keywords 6 883 6 918 6 581 6 534 7 694 5 540 8 062
# Total positive 97 924 115 334 159 890 105 126 195 246 101 764 208 626
# Total similar 195 360 200 350 182 305 178 747 271 258 166 338 266 288
# Total different 208 760 215 200 204 820 201 840 275 460 175 540 275 360

Offline min. len. [s] 0.23 0.35 0.33 0.34 0.24 0.32 0.34
Offline avg. len. [s] 0.80 0.79 0.83 0.89 0.80 0.86 0.90
Offline max. len. [s] 2.54 4.54 5.65 6.20 2.86 2.82 4.06

Online min. len. [s] 1.28 1.31 1.00 0.72 1.11 0.99 1.01
Online avg. len. [s] 2.89 2.87 2.82 2.87 2.75 2.80 3.08
Online max. len. [s] 5.72 6.88 8.48 9.20 7.54 6.60 7.59
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Figure 5. Distribution of keyword lengths in MOCKS subsets.

offline version, we used MFA-generated timestamps with additional 0.1 s at the beginning

and end of the extracted audio sample to mitigate the cut-speech effect in the keywords.

For the online version, we used MFA-generated timestamps with additional 1 s or so at

the beginning and end of the extracted audio sample. This simulates the streaming mode

since other words surround the keyword. The additional audio data might be smaller

than 1 s if the keyword appeared at the beginning or end of the recording. If other words

surrounded the keyword, the amount of additional audio data might be larger than 1 s

since the cut was performed on the nearest aligned timestamp beyond 1 s. The online

version of the testset contains timestamps of the keywords.

The testset preparation procedure’s final step consisted of manually checking the

transcriptions to exclude incorrect samples.

4.2.3. MOCKS Description and Analysis

Below, we describe in more detail the contents of MOCKS. In Table 2, several basic

statistics on its subsets are presented, such as:

• # Keywords – number of keywords,

• # Total positive/similar/different – number of pairs in “positive/similar/different

phrases” subsets,

• Offline/Online min. len. [s] – minimum keyword recording length in offline and

online scenarios,

• Offline/Online avg. len. [s] – average keyword recording length in offline and online

scenarios,

• Offline/Online max. len. [s] – maximum keyword recording length in offline and

online scenarios.
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Figure 6. Gender distribution in MCV and MCV-originated MOCKS subsets.

Using the requirements described in Section 4.1, we obtained 5 000–8 000 keywords

for each subset. Analysis of the keywords lengths is presented in Figure 5. Most of the

keywords are short: in each subset, the keywords with six or seven phonemes constitute

approximately half of all the keywords; hence, the average length of the recording in the

offline scenario is under 1 s. The shortest recordings in the online scenario also have the

length under 1 s, which is caused by the fact that the whole recording for the selected

keyword was that short. Since test-other and MCV already contain data in challenging

acoustic conditions, we decided not to mix the data with additional noise.

Both en_LS_clean and en_LS_other splits are balanced regarding speaker gender dis-

tribution. However, the original MCV datasets do not have this property: in most of the

considered languages, nearly 60 % of the samples are marked as “male”, 8 %–23 % are

marked as “female” and less than 2 % of the samples are marked as “other”; there is also a

large number of samples with unspecified gender (see Figure 6). We randomly drew 2 500

“female” and 2 500 “male” samples for each language to generate keywords to remedy this

issue.

The data is stored in a 16-bit, single-channel WAV format. 16 kHz sampling rate is used

for en_LS_clean and en_LS_other, while 48 kHz for en_MCV, de_MCV, es_MCV, fr_MCV

and it_MCV. This difference is a result of the source datasets’ sampling rates. Each testset

split contains approximately 500 k test cases, which can be difficult to process, so we also

add a subset of MOCKS to allow faster evaluations. Those subsets contain 20 k test cases

in each scenario, and each testset split.
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Figure 7. Architecture of the baseline QbyE KWS detection model.

4.3. Initial Experiments with MOCKS

To estimate the utility of the proposed testset, we evaluated a baseline model for the

QbyE KWS offline task. Our model was based on the solution described in [95], and its

architecture is presented in Figure 7. It consisted of an encoder with six bidirectional LSTM

layers with 124 cells each and a linear layer generating 320-dimensional embeddings for

audio data. The total number of trainable parameters was 2 M. We pre-trained the encoder

model as a part of the Listen, Attend, Spell model [96] on the ASR task using all trainsets

from LibriSpeech. Next, we appended the output layer to the pre-trained encoder and

fine-tuned it for 20 epochs using the contrastive loss function. The dataset in the KWS

fine-tuning step consisted of recordings generated by an in-house TTS solution from

approximately 400 English keywords not included in MOCKS. The Euclidean distance

between keyword and test sample embeddings was calculated and compared with a preset

threshold during inference. We did not perform any hyperparameter fine-tuning.

To compare the results obtained on MOCKS and previously available testsets, we

decided to use GSC, even though it was not prepared for the QbyE task. For each key-

word recording in the GSC testset, we randomly selected 100 samples with the same

phrase, 100 with a different phrase, and 100 samples from the “Silence” class. There were

approximately 400 k test cases in each of those subsets.

Figure 8 shows the DET curves for GSC and MOCKS testsets. The DET curve for MOCKS

was prepared after merging all the subsets of this testset. Appendix B contains additional

figures with DET curves for different subsets of MOCKS (Figures 25 and 26). It should

be noted that even though the model performed relatively well on GSC, the results were

much worse on MOCKS. This clearly shows room for improvement and confirms how

demanding MOCKS is. The estimated equal error rate (EER) value for all MOCKS subsets

is 41.64 % with a confidence interval of ±0.15 % (at a 95 % confidence level).
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Figure 8. DET curve for MOCKS compared to GSC testset.

4.4. Query-by-text Keyword Spotting Model Architecture

After creating MOCKS and testing its utility on QbyE KWS, we moved our attention

to another version of KWS: query-by-text, where the keyword is given by text. This task

assumes that the keyword might be any phrase, most likely not known during model train-

ing. This means the model architecture cannot be based on a classifier with a fixed-size

softmax-type output layer. A more elaborate solution is necessary for this problem. Fig-

ure 9 provides a general overview of our solution. We decided to adopt the AM architecture

developed for the large vocabulary speech recognition task. AMs usually contain hundreds

of millions of trainable parameters to gain high accuracy. However, since KWS is simpler

than speech recognition, we decided to leverage knowledge distillation to minimize the

model size but still keep the capability of dealing with large or open vocabulary. Our

solution employed AM in a standard way to generate frame-level subwords. This was

followed by a beam search to create the best path, which was converted to the final

Audio
processing

Beam
search

Convert IDs
to subwords

Keyword
classifier

keyword

audio data

vocabularyAM

hypo
thesis

best
path

Inference phase

scores 0/1

output

Figure 9. Overview of the baseline solution.
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Table 3. AM architecture for QbyT KWS.

component teacher student

input power-mels, 40-dim, 25 ms window, 10 ms step
cepstral mean, variance normalization

encoder
BiLSTM 2 x 512 2 x 124

max-pooling ✓ ✓
BiLSTM 2 x 512 2 x 124

max-pooling ✓ ✓
BiLSTM 2 x 512 2 x 124

max-pooling ✓ ✓
BiLSTM 2 x 512 2 x 124
BiLSTM 2 x 512 2 x 124
BiLSTM 2 x 512 2 x 124

decoder
LSTM 1 000 256

embedding 621 156
readout 1 000 256

soft attention 512 124
hard attention 512 124

chunk size 2 2

output 500 subwords

parameters 50.1 M 3.1 M

hypothesis using model vocabulary. The last step consisted of keyword classification,

which compared the hypothesis with the given keyword to decide whether a keyword was

present in the recording.

4.4.1. Acoustic Model Architecture and Training

Our solution was based on AM implementing a monotonic chunkwise attention mech-

anism (MoChA) [97]. This type of model is based on the encoder-decoder architecture. In

this approach, the encoder generates frame-level embeddings, which are processed by

the decoder equipped with the attention mechanism.

We applied knowledge distillation to compress the model, as in [98]. There are two

steps in this paradigm:

1. training large teacher model,

2. training small student model leveraging the knowledge obtained by the teacher.

In our solution, both models shared the same architecture but differed in layer sizes. A

detailed description of teacher and student models is presented in Table 3. The input

normalization parameters were computed over all training samples. The model’s output
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Table 4. AM training for QbyT KWS.

component teacher student

loss
CTC + distillation loss (weight 0.4) +

cat. cross-entropy cat. cross-entropy (weight 0.6)
training length 23 epochs 22 epochs

validation period 5 000 steps 5 000 steps
init. learning rate 1×10−4 4×10−4

learning rate decay 0.95 0.95
learning rate schedule apply decay every 10 validation steps without change

trainset LibriSpeech + MCV + 4 h non-speech data

trainset augmentation
noise + RIR +

noise + RIR
SpecAugment [100]

quantization ✗ 8-bit post-training

vocabulary was generated using the adaptation of byte pair encoding (BPE) [99] over all

transcriptions from the trainset.

Table 4 describes the training procedure for teacher and student models. We used all

the training splits from LibriSpeech and all the samples from MCV (version 7.0), which

were not included in the testset. The data was mixed with background noise (with random

signal-to-noise ratio in the range −2 dB–12 dB) and augmented with randomly selected

room impulse response (RIR). RIR dataset contained simulations of distances from one to

five meters and reverberation time between 0.2 s–0.9 s.

The final model size was approximately 3.2 MB, and the model scored the follow-

ing word error rates (WER): 16.0 % on LibriSpeech test-clean and 30.9 % on LibriSpeech

test-other.

4.4.2. Language Model Architecture and Initialization

LM can be used to modify scores generated by AM. This process is known as re-scoring.

We decided to use a very simple unigram LM, where the model is a vector of the same

length as the AM output layer size. Such a type of LM introduces only a minor additional

memory footprint and a slight increase in latency. With this kind of LM, re-scoring consists

of element-wise multiplication of the scores returned by the AM and the LM vector. The

initialization of weights is the key to a LM of this type. This step should be performed only

once for each novel keyword; hence, it does not influence latency during the inference

phase.

We decided to use a very simple initialization method, which we named Static LM. In

this method, LM weights were initialized only with two values: 1 and boost weight, which

was treated as a model hyper-parameter. A general overview of the Static LM method

is shown in Figure 10. The BPE algorithm was applied to the keyword with the same

vocabulary used to convert the AM scores to obtain the hypothesis. Subwords included

in the keyword were assigned a boost weight, and all the remaining subwords were
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Figure 10. Overview of the solution with static LM.

assigned 1. Note that setting boost weight to 1 would not change AM scores, and setting

boost weight to values smaller than one would decrease the probability of recognizing

the keyword.

4.4.3. Keyword Classifier

Generating an ASR-based hypothesis was only the first step in the KWS solution. Based

on this hypothesis, deciding whether the recording contained the required keyword was

necessary. The pseudocode of the procedure we employed for this purpose is presented

in Algorithm 1. Note that the recording processed by the AM might contain more speech

data than just the keyword. To remedy this issue, we compared the keyword with all the

subsequences of the hypothesis of the same word length. We calculated the character

level normalized Levenshtein distance between each such subsequence and the keyword.

If the distance was smaller than a predefined threshold, the system returned the positive

value (keyword detected), and the negative value was returned otherwise (keyword not

detected).

4.4.4. Multi-keyword Classifier

In the generic text-based KWS task, the keyword is provided by text. Often, additional

audio data can be leveraged to improve recognition rates. This can be done, for example,

by requesting the user to provide a spoken version of the keyword. Since such an approach
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Algorithm 1 Keyword classifier algorithm.
ke y wor d – custom keyword
hy p – hypothesis returned by AM
t – recognition threshold

1: l ← len(ke y wor d) ▷ number of words in keyword
2: for s ∈ {sub : sub is substring of hy p ∧ len(sub) = l } do
3: if di st (ke y wor d , s) ≤ t then
4: return tr ue
5: end if
6: end for
7: return f al se

Algorithm 2 Multi-keyword classifier algorithm.
ke y wor d s – list of custom keywords
hy p – hypothesis returned by AM
t – recognition threshold

1: for ke y wor d ∈ ke y wor d s do
2: l ← l en(ke y wor d) ▷ number of words in keyword
3: for s ∈ {sub : sub is substring of hy p ∧ len(sub) = l } do
4: if di st (ke y wor d , s) ≤ t then
5: return tr ue
6: end if
7: end for
8: end for
9: return f al se

requires additional action from the user, we decided to pursue an automatic solution. An

overview of this method is presented in Figure 11. We employed the TTS system to generate

synthetic recordings representing the spoken version of the keyword. The number of those

recordings depends on the TTS solution and can also be set as a system parameter. Each

of those recordings was processed by the AM, followed by the beam search algorithm to

generate a hypothesis. The original keyword was appended to the hypothesis list, and

duplicates were removed. This list was treated as containing additional variants of the

original keyword and was later used by the keyword classifier during inference.

Algorithm 2 presents the multi-keyword classifier pseudocode. It is the extended

version of the keyword classifier described in Section 4.4.3. Once more, substrings of the

hypothesis were selected for comparison, but this time, they were compared with each

keyword from the list prepared during the initialization phase. As previously mentioned,

normalized character level Levenshtein distance and a predefined threshold were used to

make the final decision.

The main idea behind the multi-keyword classifier was to improve the recognition

rate on keywords that were very distinct from the phrases presented to the AM during

training. In such cases, the AM most likely would return an incorrect hypothesis. However,
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Figure 11. Overview of the multi-keyword solution.

provided those errors were similar across different samples of the same keyword, adding

them to the classifier should increase the TPR. This procedure might also have negative

results. Phrases similar to the keyword but different from it might be recognized with the

same, wrong hypothesis. This would increase the FPR.

Note that the keywords list used by the multi-keyword classifier can be prepared

during the initialization phase; therefore, this step did not influence inference phase

latency. The impacts of the multi-keyword approach on memory and latency were linear

with respect to the number of TTS recordings used. However, the memory footprint was

negligible since the multi-keyword solution required, at most, one additional string for

each TTS recording. The same reasoning can be applied to the impact on latency since

the Levenshtein distance calculation is much faster than ASR decoding.

4.5. Experimental Results

4.5.1. Evaluation Procedure

Our solution was tested with the MOCKS 1.0 testset [92] and the GSC v2 testset.
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Since the AM was trained with English data, we used en_LS_clean, en_LS_other, and

en_MCV subsets of MOCKS. Each test case was composed of two audio files and a keyword.

One of those files was treated as initialization (enrollment) phase data, and the other was

treated as inference phase data. However, since our goal was to limit the user’s interaction

with the device, we skipped the initialization phase data for static LM. Furthermore, in

the case of a multi-keyword classifier, we replaced the initialization phase recording with

synthetic data. We will refer to the inference phase data as test audio.

Each of the MOCKS subsets used for evaluation is split into three distinct parts:

• positive test cases – where the test audio contains a given keyword; we will call this

part pos,

• similar test cases – where the test audio contains a different phrase than the given

keyword, but both are close phonetically; we will call this part sim,

• different test cases – where the test audio contains a different phrase than the given

keyword, and the phonetic distance between both is large; we will call this part dif.

GSC is not suited for the open-vocabulary version of KWS since it contains few key-

words. Nonetheless, we present the evaluation results of our solution on this testset for

the sake of comparison with previous works. The most popular metric used with GSC is

simply accuracy [101]. The negative test cases should be recognized as either _unknown_
or _silence_ special classes. The former contains words not included in the positive

classes, and the latter contains silence and non-speech events. Evaluation on GSC is a

12-class classification problem, while our solution was designed for the generic case of

open-vocabulary classification. To remedy this issue, evaluation for the negative test cases

(labeled _unknown_ or _silence_) was performed in the following way:

• In the initialization phase for each positive keyword, we prepared an LM and ex-

tended keywords list (if the multi-keyword classifier was enabled).

• After audio processing was done, for each positive keyword, we performed re-scoring,

applied beam search, converted the result to the hypothesis, and finally computed

the character level Levenshtein distance between the hypothesis and the given

keyword.

• Finally, we found the minimal distance from the previous step. If this distance was

less than or equal to the threshold, this sample was counted as a false positive and a

true negative otherwise.

We used an internally developed end-to-end TTS system to generate synthetic record-

ings for the multi-keyword classifier. The system was composed of a neural AM and

a vocoder supporting ten different voices. The AM mapped sequences of phonemic

labels to acoustic features, while the vocoder mapped those features to audio samples.

The set of phonemic labels contained language-specific (English) symbols of phonemes,

word delimiters, and end-of-sentence marks. However, during synthesis, keywords were

stripped of those marks. Acoustic feature vectors were derived from F0 (interpolated
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in unvoiced regions), mel-spectra, and band-aperiodicity as in the case of the WORLD

vocoder [102]. The vocoder architecture was based on [103], and AM was similar to the

Tacotron 2 [104] architecture as described in [105], with the use of the mutual information

loss (MILoss) function [106]. Audio data included in The LJ speech dataset [107] and Hi-Fi

Multi-Speaker English TTS Dataset [108] were used to train the entire system. The vocoder

was trained separately for each voice. The AM was trained for 10 k epochs on the full

training data, followed by 450 k epochs of each voice-specific data.

For each keyword in MOCKS and GSC, we generated ten synthetic recordings. We

chose one male and one female voice for the experiments with a multi-keyword classifier

based on two synthetic recordings. Two further types of experiments with this type of

classifier were performed:

1. using clean audio data.

2. using audio data mixed with background noise and convolved with RIR.

We used the same types of noise and RIR as during AM training.

For confidence interval estimation, we used bootstrap resampling of the testsets. The

trainset and model remained fixed during the evaluation. Each testset was resampled 200

times with replacement, and an evaluation was performed with such data. To provide

a 95 % confidence interval, we calculated the [2.5,97.5] percentile boundaries over all

resampled evaluation results.

4.5.2. Impact of the Boosting Weight

To test the impact of the static LM and different boost weights, we performed evalua-

tions using values from the set {2n : n ∈ {0,1, . . . ,11}}. Note that setting the boost weight to

one means that none of the subword scores will be modified during re-scoring, and only

the AM scores will be considered in the beam search. We treat this case as the baseline

solution.

Figure 12 shows the acceptance rate as a function of the threshold applied in the

keyword classifier for en_LS_clean. Similar results for en_LS_other and en_MCV can be

found in Appendix B (Figures 27 and 28).

Let us start the analysis of the results with boost = 1. For thr eshol d ∈ [0,0.05], in all

the testsets, acceptance rates in pos, sim, and dif were constant. This was because all

keywords in MOCKS were relatively short (phonetic transcription length p ≤ 16). As long

as the thr eshol d was greater than 0.05, acceptance rates in both pos and sim increased.

However, those values in the former subsets grew slower than in the latter. This means

that increasing the threshold improved the TPR but increased the FPR even faster. Values

of acceptance rate in dif started to increase only with thr eshol d > 0.4 since this test set

contained test cases that were very different from the given keyword. For such test cases,

the AM returned very different hypotheses from the keyword, even if they did not match

the proper transcription. Similar observations also apply to cases with boost > 1, except
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Figure 12. Boosting results with static LM, without multi-keyword classifier, for en_LS_clean
testset.
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Figure 13. Boosting results with static LM, without multi-keyword classifier, threshold 0, for
MOCKS testset.
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Figure 14. Boosting results with static LM, without multi-keyword classifier, for MOCKS testset.

for dif, for which the higher the thr eshol d , the sooner this function started to grow. This

analysis suggests that it is safe to use thr eshol d = 0.

For clarity, Figure 12 shows evaluation results only for boost ≤ 32. In Figure 13,

we present evaluation results for all the testsets and boost values up to 2 048 using

thr eshol d = 0. For boost ≤ 32, for all the testsets, acceptance rates in pos were growing

faster than in sim. Low acceptance rates characterized boost ≤ 32 values in dif in all

the testsets. However, the larger the boost got, the faster acceptance rates in sim grew

compared to pos. This was also accompanied by a rapid growth of those rates in dif. This

observation suggests that there was a limit for boost , after which static LM brought more

harm than benefit.

We used EER to estimate the optimal boost value. For each testset, FPR was calculated

after summing sim and dif subsets. Figure 14 shows EER for all the testsets and boost ≤
128 (for higher boost values, EER was growing; hence it is omitted). The width of the lines

in Figure 14 represent confidence intervals for EER estimation. It should be noted that the

minimal EER values were located at boost equal to 32 or 64, depending on the testset. The

rapidly growing value of EER for large boost was caused by the fact that in those cases,

FPR was always more significant than the false negative rate (FNR). Since there was no

point for which FPR and FNR were equal, the largest of those values was chosen as EER.

Detailed values of EER for MOCKS can be found in Table 5.

Figure 15 shows the evaluation results for different boost values on the GSC testset

using thr eshol d = 0. Applying static LM improved accuracy from 84.60 % for the baseline

model to 95.97 % at boost = 32. For higher boost values, accuracy dropped rapidly.

This was because, with those large boost values, the keyword subwords were favored
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Table 5. EER in % for different values of boost on MOCKS, without a multi-keyword classifier.

boost en_LS_clean en_LS_other en_MCV

1 30.05±0.28 37.27±0.26 27.30±0.16
16 16.56±0.24 26.04±0.23 14.46±0.19
32 15.18±0.14 22.65±0.13 14.22±0.10
64 19.86±0.11 20.34±0.17 21.57±0.12
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Figure 15. Boosting results with static LM, with and without multi-keyword classifier, for GSC
testset.

during beam search. Therefore, the number of negative test cases that were recognized as

keywords grew. Detailed accuracy values for GSC can be found in Table 6.

4.5.3. Impact of the Multi-keyword Classifier

The primary motivation for applying a multi-keyword classifier should be the increase

in TPR, which ideally would not be accompanied by the rise in FPR. Our experiments

show that this was not the case for MOCKS. Figure 16 shows the evaluation results using

en_LS_clean for multi-keyword classifiers initialized with 2 and 10 clean and noisy TTS

recordings. Those results are compared to a single-keyword classifier solution. Appendix B

contains similar figures for en_LS_other and en_MCV (Figures 29 and 30). Furthermore, in

Table 7, we present exact evaluation results (acceptance rate) for each English testset in

MOCKS. For clarity, we limit those results to boost = 1 (no LM) and boost = 32 since this

value gave the highest results as shown in Section 4.5.2.

We observed that the improvement in acceptance rate on pos was more significant
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Table 6. Accuracy in % for different methods tested on GSC.

method accuracy

boost 1 (baseline) 84.60
boost 1 + multi 2 x TTS 85.13
boost 1 + multi 2 x noisy TTS 86.09

boost 32 95.97
boost 32 + multi 2 x TTS 96.07
boost 32 + multi 2 x noisy TTS 96.75
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Figure 16. Boosting results with static LM, with and without multi-keyword classifier, for
en_LS_clean testset.

than a similar increase on sim and dif only for small boost values. This difference was

minimal for the multi-keyword classifier initialized with two synthetic recordings. How-

ever, with ten such recordings, the improvement of the acceptance rate on pos was almost

2 % relatively higher than on sim. As soon as boost = 8, the multi-keyword classifier

introduced a larger increase in acceptance rate on sim than on pos, which was visible in

all testsets. Mixing synthetic recordings with background noise and RIR did not improve

the situation. The increase in acceptance rate on pos was smaller than on sim.

Evaluation results on GSC with a multi-classifier show a similar increase in accuracy

(0.78 %–2.3 % relative depending on the boost ). This improvement seems to be insignifi-

cant; nonetheless, it should be noted that it was gained in the range of 85 %–96 %. Even a

minor increase in this metric is difficult to achieve at this level of accuracy.
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Table 7. Acceptance rate in % for different methods on MOCKS.

en_LS_clean en_LS_other en_MCV
method (boost value) pos sim dif pos sim dif pos sim dif

boost 1 (baseline) 48.39 1.28 0.00 28.56 1.12 0.00 50.29 1.34 0.00
boost 1 + multi 2 x TTS 49.78 2.47 0.01 29.98 1.90 0.02 51.56 2.38 0.02
boost 1 + multi 10 x TTS 52.65 3.96 0.02 31.89 3.01 0.03 52.88 3.70 0.02
boost 1 + multi 2 x noisy TTS 50.88 3.81 0.05 30.76 2.94 0.07 52.94 3.83 0.04
boost 1 + multi 10 x noisy TTS 54.80 7.73 0.11 34.85 5.89 0.17 56.22 7.48 0.11

boost 32 84.15 22.01 4.79 73.05 21.10 4.96 86.40 24.16 5.40
boost 32 + multi 2 x TTS 84.66 23.17 4.95 73.46 21.92 5.12 86.82 25.44 5.58
boost 32 + multi 10 x TTS 85.55 24.90 5.22 74.45 23.61 5.46 87.46 27.10 5.82
boost 32 + multi 2 x noisy TTS 85.04 24.70 5.45 73.92 23.40 5.65 87.43 27.09 5.94
boost 32 + multi 10 x noisy TTS 86.54 29.22 6.24 76.14 27.46 6.65 88.52 31.18 6.59

4.6. Discussion

Two major observations can be drawn from our experiments:

1. The increase of boost in static LM improves TPR; however, the larger the boost gets,

the more dominant the increase of FPR compared to the increase of TPR.

2. The multi-keyword classifier introduces a positive impact on TPR only for very low

boost values, while for high values of boost , the increase of FPR is much larger than

the increase of TPR.

Using boost = 32 seems the right choice in general cases since this value resulted in the

minimal EER in en_LS_clean and en_MCV and the largest accuracy in GSC. Nevertheless,

it should be noted that EER was minimal in en_LS_other with boost = 64; hence, this

parameter has no universal value.

The positive impact of the multi-keyword classifier is especially visible with many TTS

recordings generated for each keyword. This number can be potentially unbounded, but a

rule of thumb suggests using only a small amount (not exceeding 10) of such recordings.

This suggestion is based on the observation that the longer the list of additional keyword

variants is, the more likely the chance of false acceptance of phrases similar to the given

keyword.

Evaluation of MOCKS and GSC with a multi-keyword classifier shows a significant

difference in both testsets. With MOCKS at boost = 32, adding ten keyword variants

increases FPR on sim more than TPR on pos. On the other hand, with GSC at boost = 32

and ten keyword variants, we still observed an improvement in accuracy. This can be

explained by the fact that GSC contains short phrases, and the negative samples differ

significantly from the keywords regarding the character-level Levenshtein distance. On

the contrary, MOCKS contains longer phrases and a subset of negative samples similar to

the keywords; hence, they are difficult to distinguish. This means that adding additional

keyword variants also increases the probability of false acceptance in this subset (sim).
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This analysis also leads to the conclusion that a multi-keyword classifier is an effective

solution as long as one does not expect to deal with such challenging negative cases.

It might seem that a solution with accuracy equal to 96.75 % on GSC is far behind the

current leading architecture, which was evaluated on this testset and gained 98.37 % [50].

Still, it should be noted that our solution was designed for a far more complex task. GSC

contains a very limited number of keywords, all very short and distinct. Finally, there are

no challenging negative test cases in GSC. On the other hand, our solution was designed

for the open-vocabulary case, in which the model needs to deal with keywords that are

very similar to each other. Hence, the evaluation results on MOCKS are much more

informative, and the decrease in accuracy on GSC evaluation is the cost paid for much

broader generalization.

4.7. Conclusions

In this section, I described the Multilingual Open Custom Keyword Spotting Testset

named MOCKS. This testset aims to provide a unified means of custom keyword spotting

model evaluation and, in this way, to foster research on open vocabulary KWS solutions.

This section also contains a list of requirements used while creating MOCKS. These re-

quirements can be easily applied to develop new testsets in various languages based on

other large vocabulary datasets. To create such testsets, two types of additional data are

required: phonetic transcriptions and word-level alignment.

Once the testset for KWS was ready, it was possible to search for efficient models for

this task. This was another topic that I tackled in this section. The result of this search

was based on AM equipped with additional LM. The introduction of a simple unigram LM

allowed for significant performance improvement. Furthermore, this type of LM can be

used with different architectures of AMs.

50



5. End-of-speech Detection

Speech boundary detection (SBD) is usually performed at the very beginning of the

audio processing pipeline. The precision of cutting the audio stream has a substantial

impact on the remaining modules. As mentioned before in Section 1.3, SBD can be solved

with two sub-tasks: Beginning-of-speech (BOS) and End-of-speech (EOS) detection. EOS

is usually much more complex than BOS. This is especially true while processing the data

collected from the users of virtual assistants. Often, people hesitate or make mistakes while

speaking commands. This is visible as long pauses without speech, which are challenging

for the EOS module. My goal in the topic of SBD was to improve the performance of

a speech detection model in noisy environments, e.g., in the case of far-field speech.

I decided to concentrate on detecting the end-of-speech (EOS) event, assuming that

detecting the start of an utterance is performed by another module. Furthermore, I

focused on improving the training procedure by extending with weights the function that

is the most commonly used in this task.

5.1. Model Description

The model for EOS detection that we used in the following experiments was based on

a binary classifier. As the input, we used feature vectors extracted from each signal frame,

enriched by the past context. Our model was trained with 16-bit, 16 kHz audio data. Each

recording was processed in a frame-by-frame manner, with no overlap, where the frames

contained 256 samples, i.e., 16 ms of the signal (except for possibly the last frame of the

file). We used 20-dimensional mel-frequency cepstral coefficients (MFCC) as the feature

vector.
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audio
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ReLU

feature extractor
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64 nodes
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Figure 17. Architecture of the EOS detection model.
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We used the architecture proposed in [64]. Figure 17 shows its schematic overview.

The neural network contained a single one-dimensional convolutional layer, followed

by a 64-node ReLU dense layer, two 64-node LSTM layers, and another 64-node ReLU

dense layer. Such a combination of convolutional, LSTM, and feed-forward layers is called

CLDNN [109]. The models that we trained were equipped with a 1-dimensional output

layer. The output from this layer was interpreted as the probability of EOS. Each model

was trained for 50 epochs. The decision of the classifier was made using the fixed threshold

on the output layer:

f (x) =
0 for x ≤ 0.5

1 otherwise
(1)

The model should return false (0) for all frames that appeared before the EOS. Note that

such a condition implied that the model should also return 0 for the frames that did not

contain speech but appeared at the stream’s beginning. The same assumption was applied

to all the silent frames between spoken words. The model should return true (1) for all the

frames in the audio stream that appeared after the speech has ended. This means that the

ground truth vector for every recording should match the regular expression: 0+1+.

5.2. Proposed Loss Function

This section describes an improved loss function for training the EOS detector. Con-

trary to the binary cross-entropy loss function used by most machine learning-based

detection algorithms, we proposed a weighted version that considers the distance from

the EOS event.

Let us define this loss function H , calculated for the ground truth p and predicted

probabilities q , as:

H(p, q) =− 1

N

N∑
i=1

wi · (yi · log (ŷi ))+ (1− yi ) · log (1− ŷi ))) (2)

where yi is the label of frame i in the ground truth data; ŷi is the value returned by the

model, interpreted as the predicted probability of frame i having label 1; wi is the weight

assigned to frame i and N is the number of frames for which the loss is computed (e.g.,

one batch).

The choice of weights was crucial for the method to work. We decided they should

meet the following requirements:

A) set high weights for all frames marked as 0 (i.e., before EOS),

B) set low weights for frames marked as 1 (i.e., after EOS),

C) weights set for frames marked as one should be monotonically increasing.

The motivation for such requirements was as follows: detecting EOS too early tends to

be highly problematic for most applications that use the output from the EOS detecting
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module. Hence, during the training process, the model should be strongly penalized for

returning values close to 1 before the actual EOS – this was guaranteed by requirement A).

On the other hand, a slight delay in returning values close to 1 after EOS is acceptable;

however, the penalty should grow with the distance from this event – this was guaranteed

by requirements B) and C).

Therefore, we proposed the weights described by the following function:

hw (i ) =


⌊
i−iEOS

k

⌋
+1 for iEOS ≤ i < iEOS +M

w otherwise
(3)

where i is the frame index in the ground truth data, iEOS is the index of the frame with EOS

event, and w is the additional weight parameter that we will modify in our experiments.

The w parameter controls the aggressiveness of the loss function. The higher this value

is set, the more reluctant the model will be to output 1. M is the hyperparameter that

controls the number of frames with lower weights. k is the hyperparameter that impacts

the speed with which the weights grow after the EOS event. The higher the value of k, the

slower the weights will grow after the EOS event. We assumed that M ≥ 0 and k > 0.

By running a set of preliminary experiments, we heuristically set M = 32 and k = 4.

Thus, the weights vector generated by the function defined in Equation 3 will look as

follows:
(w . . . w,1 . . .1︸ ︷︷ ︸

4

,2 . . .2︸ ︷︷ ︸
4

,3 . . .3︸ ︷︷ ︸
4

,4 . . .4︸ ︷︷ ︸
4

,5 . . .5︸ ︷︷ ︸
4

,6 . . .6︸ ︷︷ ︸
4

,7 . . .7︸ ︷︷ ︸
4

,8 . . .8︸ ︷︷ ︸
4

, w . . . w) (4)

Considering that the length of one frame was 16 ms, we decided that the period with

a lower penalty during the training should not last longer than 512 ms, as extending this

period would result in higher latency. Such an assumption was the motivation for setting

M equal to 32 frames.

5.3. Experimental Setup

5.3.1. Data

We trained our model using the TIMIT corpus. Despite its age, it suited our task very

well since it contains hand-verified phonetic transcriptions, adjusted with a signal sample

precision. We used sample-level word transcriptions to prepare the ground truth for this

dataset. The entire TIMIT-train was used in the training process. We split the TIMIT-test

into two equal and disjoint parts and used one of them as the validating set during the

training, while the other was used to evaluate the models. The evaluation set was not

presented to the models during the training process.

Similarly to the majority of other works on EOS detection, we also used an in-house

corpus collected in Samsung R&D Institute Poland in the evaluation process. This corpus

will be called hereinafter INHOUSE. We used it to assess the generality of our models since

this type of data had different acoustic characteristics from the training data and was not
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Table 8. Characteristics of datasets used in experiments.

Dataset
type

No. of
utterances

Approximate
No. of

samples

Average
samples
No. per

utterance

Average
samples

No. before
EOS

Average
samples
No. after

EOS

TIMIT train 9 240 2 933 k 317 179 138
TIMIT val 1 680 564 k 316 179 137

TIMIT eval 840 269 k 320 183 137
INHOUSE eval 9 753 3 261 k 334 171 163

presented to the model during the training. The in-house dataset contained free speech

and was recorded in a far-field environment with natural acoustic echo. The distance

between the audio source and the microphone was approximately 1.5 m. The ground truth

for the INHOUSE corpus was generated based on the phonetic alignment generated by an

ASR decoder. While the TIMIT contained recordings in American English, the INHOUSE

dataset contained spoken commands in German, Spanish, French, and Italian, which

should further test the model’s generality.

All recordings in training, validating, and testsets were extended with 2 s of silence at

the end. This was done to measure the model latency. Such a measurement would be

impossible in the original recordings since they contained a marginal amount of frames

after the actual EOS.

To test the performance of our model in a noisy environment, we mixed all the record-

ings with background noises. We used the LibriSpeech corpus for the noise set, which

introduced a cross-talk type of noise. Both clean and mixed data were presented to the

models during training, so the training and validating datasets were twice as large in frame

numbers as the original ones. All the models were evaluated separately on clean and

mixed data. We will refer to the testsets without background noise as “clean", while those

mixed with LibriSpeech will be referred to as “LibriSpeech”.

Evaluation recordings were additionally mixed with two types of background noise,

which was not presented to the model during training. For this purpose, we used Google

AudioSet [110]. We used Speech and Music tags. We will refer to those modifications as

“AudioSet Speech" and “AudioSet Music”, respectively. Table 8 briefly characterizes these

datasets.

5.3.2. Metrics

Frame-level accuracy is a natural candidate for a metric used in binary classifier

evaluations. Nevertheless, accuracy alone would not be informative enough as an as-

sessment method in the case of EOS since only a limited number of frames just after

the end-of-speech event is crucial. It could happen that the model would return correct

answers for all the frames but one at the very beginning of the stream, as a result truncating
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the stream at the beginning. This would mean the accuracy would be very high, but the

model’s response would be utterly useless as it would discard all the information from the

stream. On the other hand, models returning only false values would score high accuracy

while also being useless. Therefore, we decided to use other types of metrics (adopted

from [64]) to evaluate our model:

• Early EOS – the proportion of the recordings in which the model mistakenly returned

true before the actual EOS event, as a percentage.

• Fine EOS – the proportion of the recordings in which the model correctly returned

true during or after the actual EOS event, as a percentage.

• Fail EOS – the proportion of the recordings in which the model mistakenly did not

detect any EOS event, as a percentage.

• EP50 – median latency over all utterances, in ms,

• EP90 – 90th percentile latency over all utterances, in ms.

EP50 and EP90 were the main metrics used in [64] to evaluate models. Those are

metrics based on the latency. We decided to use additionally Early EOS, Fine EOS, and Fail

EOS, which are more similar to accuracy.

The Early EOS metric was defined rigorously: even if the model returned a positive

value for a single frame before the actual EOS, it would be considered an error. Also, the

Fail EOS metric was defined strictly: if the model showed too high latency, its response

would be classified as a failure. This was motivated by considering the user experience: if

the model had too high latency and detected EOS too late, users would have to wait too

long for their command to be processed. Latency measured by EP50 and EP90 was defined

as the difference in time between when the EOS occurred and when the model returned

the first positive value. Note that this value can be negative for utterances counted as the

Early EOS. Additionally, we set the latency to infinity in case of the Fail EOS. Hence, the

EP50 and EP90 measure the typical and tail latency, respectively. We observed that the

models did not detect any EOS at all for several test cases, which was reflected by higher

EP90 values. This motivated us to use the Fine EOS and Fail EOS metrics to show precisely

the ratio of successful and failed test cases.

For confidence interval estimation, we used bootstrap resampling of the testsets. Each

testset was resampled 200 times with replacement. Evaluations were performed with

such resampled testsets and metrics described above were calculated. The trainset and

model remained fixed. Such a method was applied due to the long model training time.

To provide a 95 % confidence interval, we calculated the [2.5,97.5] percentile boundaries.

The maximum size of the confidence interval was ±0.34 %. We omit those values in Table 9

to improve the readability of the results.
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5.4. Experimental Results

To verify the EOS detection using the proposed loss function, we compared it with the

generic method, using binary cross-entropy as the loss function. Therefore, we performed

two types of experiments:

1. with no penalty for early or late activation and generic binary cross-entropy loss,

similar to the one used in [64],

2. using our training method with the proposed weighted loss based on the distance

from the EOS event.

We also researched the impact of the input size and weights w used in the loss function

(see Equation 3) on the EOS detection. The results are described in detail in the following

subsections.

5.4.1. Experiments with Input Length

We started our experiments using various lengths of the temporal size of the input.

We checked the following lengths: 8, 16, 24, 32, 40, and 48 frames of context, both for the

generic and proposed weighted loss functions. In the case of the weighted loss function,

we used 10 as the weight for 0 in the ground truth. These experiments are summarized in

Figures 18 and 19.

The results showed that Early EOS yielded lower results for models trained with the

proposed weighted loss than models trained with the generic loss, while for the Fine EOS,

the opposite was true. Unsurprisingly, Fine EOS grew with the input length for both model

types: the more history the model could see, the better it was at predicting the EOS events.

We observed that the clean TIMIT was by far the easiest testset. Models trained with

concise input gained excellent results in terms of Early EOS (below 20 % for input length

8) and Fine EOS (above 80 % for input length 8). However, adding background noise

(cross-talk) made TIMIT slightly more challenging. With short input lengths, models

trained with the proposed loss function suffered a significant increase in Fail EOS, accom-

panied by a similar drop in Fine EOS. Somewhat surprising was the observation that for

input length 8, the model trained with the proposed loss function obtained a lower value

of Fine EOS than the model trained with a generic loss function. However, the longer the

input context was, the better the results were in both Fine EOS and Fail EOS, with the

best results for input length 40 (approximately 80 % and 15 % respectively). Unfortunately,

none of the models trained with the proposed loss function could gain better results than

the generic models in terms of Fail EOS on noisy data. With the best models, the difference

in this metric was 5 %–10 % relative.

TIMIT is a specific dataset containing recordings of speakers reading given sentences

in clean acoustic conditions. This means the speech is fluent, and the breaks between

words in sentences are relatively short. Furthermore, the models in our experiments were

trained on this data type. Hence, the good results even in the case of models trained with
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Figure 18. Impact of various input lengths on EOS detection for generic and proposed loss func-
tions (for TIMIT and TIMIT+LibriSpeech testsets).

the generic loss function. Evaluations with the INHOUSE testsets (Figure 19) showed

the actual usefulness of the proposed loss function. Models trained with the unweighted

cross-entropy obtained high values in Early EOS and low values with Fine EOS. INHOUSE

contains spontaneous speech, which is much closer to how people speak. Recordings

have longer breaks between words, which trick EOS models into returning positive values

too early, regardless of the input length. The introduction of the weighted loss function

changed the results. With short input lengths, the models started failing to recognize
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Figure 19. Impact of various input lengths on EOS detection for generic and proposed loss func-
tions (for INHOUSE and INHOUSE+LibriSpeech testsets).

EOS at all (high Fail EOS values). However, providing the models with extended context

fixed this issue, and Fail EOS dropped significantly. This change was accompanied by an

increase in Fine EOS and Early EOS.

Adding cross-talk background noise to INHOUSE made this testset even more chal-

lenging. We observed that even with considerable input length, Early EOS and Fine EOS

dropped, while Fail EOS increased. This means the models struggled to distinguish both
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types of speech. This is an issue that could be solved with speech diarisation techniques.

However, this is outside the scope of this thesis.

Based on these results, we decided to use 40 as the input length in the consecutive

experiments since further increments of the input length did not improve the results. How-

ever, it might have a negative impact on a different aspect of the performance. Choosing

the correct input is a trade-off between accuracy and speed since the longer the context,

the more data that needs to be processed for each frame, and hence, the slower the system

might become.

5.4.2. Experiments with Weights

With the most promising input size chosen, we moved on to training models with

different weights for non-EOS frames in the weighted loss function (parameter w in equa-

tion 3). Figure 20 summarizes the evaluations of the models trained with various weights.

We observed that adding a small weight did not improve the results when compared to the

generic loss function. But as soon as the weight reached 10, the situation changed. Early

EOS dropped, while Fine EOS grew rapidly for all the testsets. Increasing the weight values

improved slightly Fine EOS in clean testsets (especially in INHOUSE data). However, with

noisy testsets, Fine EOS started dropping in favor of Fail EOS. This tendency was visible for

both clean and noisy data with weight 40, where Fail EOS on the INHOUSE testset reached

almost 40 % and 60 % respectively. This means that the higher the weight, the more test

cases were for which the model did not return any positive values. An intuitive explanation

for this phenomenon could be that large weights set to non-EOS frames introduced a

significant imbalance in the training data towards negative values; hence, the model was

trained to output only zeros.

We concluded from these experiments that a weight equal to 10 assigned to the

non-EOS frames in the weighted loss function was the best compromise between the

Early, Fine, and Fail EOS metrics. We used this value to compare the performance of the

models trained with the generic and weighted loss for various types of background noise.

The results of these evaluations can be found in Table 9. When comparing the generic loss

to its weighted counterpart for the clean testsets, we observed a remarkable increase in

Fine EOS. At the same time, the Fail EOS score remained at a similar level, close to 0 %. In

the case of testsets mixed with noise, we observed significant drops in the Early EOS (more

than 50 % for all the testsets) and significant increases in the Fine EOS. Unfortunately, they

were accompanied by the rise in the Fail EOS (by approximately 10 % relative) and in the

EP90. Nevertheless, they seem to be minor compared to the improvements in the Early

EOS (decrease from 58 % down to 25 % on average) and Fine EOS (increase from 40 % to

almost 68 % on average) metrics. Such an increase in Fail EOS in noisy conditions can be

explained by the model’s tendency to classify background noise as the continuation of the

utterance. This type of behavior was clearly visible in the cross-talk type of noise.

Notably, the EP50 turned from negative in the case of the generic loss function into
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Figure 20. Impact of various weights on EOS detection for proposed loss function (for clean and
noisy audio data).

positive for the proposed one, which means a drastic decrease in the cut-speech cases.

This was also reflected by the drop in the Early EOS and the increase in the Fine EOS, as

the model stopped returning positive values too early. We also observed that the EP50

ranged between 100 ms and 200 ms, which means that the model was able to spot the EOS

instantly once it happened. This observation was further supported by the EP90 results,

which ranged from 200 ms to 650 ms.

As mentioned before, the proposed Early EOS metric was very rigorous: even if the
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Table 9. Evaluation of EOS detection for testsets mixed with various types of background noise
(best results in bold).

Testset
Loss Early EOS Fine EOS Fail EOS EP50 EP90

function [%] [%] [%] [ms] [ms]

TIMIT clean
generic 37.98 62.02 0.00 64 112

proposed 9.17 90.71 0.12 128 240

TIMIT +
LibriSpeech

generic 39.88 57.89 2.26 64 224
proposed 11.07 79.40 9.52 176 480

TIMIT +
AudioSet Speech

generic 46.79 50.36 2.86 64 192
proposed 13.57 76.35 10.08 176 597

TIMIT +
AudioSet Music

generic 53.10 44.64 2.26 -32 176
proposed 15.95 73.93 10.12 160 625

INHOUSE clean
generic 74.71 25.28 0.01 -384 112

proposed 38.99 60.85 0.15 96 240

INHOUSE +
LibriSpeech

generic 70.51 27.17 2.32 -368 176
proposed 35.48 52.81 11.71 128 640

INHOUSE +
AudioSet Speech

generic 71.17 27.05 1.78 -368 160
proposed 38.11 52.49 9.40 112 464

INHOUSE +
AudioSet Music

generic 73.61 24.85 1.54 -432 144
proposed 38.88 53.52 7.60 112 384

average TIMIT
generic 44.43 53.72 1.85 40 176

proposed 12.44 80.10 7.46 160 486

average
INHOUSE

generic 72.5 26.09 1.41 -388 148
proposed 37.86 54.92 7.22 112 432

average TIMIT +
INHOUSE

generic 58.47 39.90 1.63 -174 162
proposed 25.15 67.51 7.34 136 459

model returned a positive value for a single frame before EOS, the test case was counted

as failed and included in this metric. During our experiments, we observed that models

occasionally produced very short sequences of positive values before the actual EOS event

for some samples. Such samples would be counted as Early EOS. This could be fixed in the

post-processing step by setting a threshold on the minimal length of such a series. All the

series shorter than this threshold would be treated as negative values. However, it should

be noted that such an approach would introduce additional latency.

5.5. Conclusions

In this section, I proposed an improved method of training models for detecting EOS

events. It is based on the established model architecture but adds a new ingredient of

weights to the loss function used during training, significantly improving EOS detection.
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The system was trained on a clean read speech from the TIMIT dataset. The excellent

performance of the proposed method was confirmed on more challenging far-field record-

ings of spontaneous speech from an in-house corpus and in the presence of noise from

the AudioSet data.
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6. Semi-supervised Learning for Speech Recognition

ASR models and machine learning tasks depend heavily on the amount and quality

of data used during training. Even though large amounts of audio data can be gathered

quickly, the transcription process is slow and usually expensive. To overcome this problem,

semi-supervised learning (SSL) methods have been proposed. The goal of those methods

is to use unlabeled data to improve the performance of a baseline model.

Numerous experiments prove that SSL is effective. However, there are known limita-

tions to these methods. For example, it was shown that SSL is most effective in cases of

large unlabeled datasets, exhibiting the same distribution as the labeled data used to train

the baseline model [74]. A similar approach was used in the domain of ASR, where the

size of unlabeled datasets was counted in hundreds or even thousands of hours [82], [87].

This constraint limits the use of SSL to server-side models. The client-server architecture

has been the most commonly used approach in commercial applications based on ASR.

This was the obvious choice since the computing power of end-user devices, such as

smartphones, was too low to perform inference with large vocabulary continuous speech

recognition models. However, on-device inference has become possible with the constant

minimization of microchips and recent advancements in neural network architectures.

Currently, the question about on-device ASR is not whether it is possible but rather how

strong models can be deployed to end-user devices and even what modifications can be

applied to those models. Hence, in this section, I would like to do the following:

• Verify whether it is possible to employ SSL with datasets limited in size, targeting,

e.g., on-device scenario.

• Try to use SSL with data much different from the data used to train the baseline

model.

• Propose simple improvements to the basic SSL method, which can be used in small

datasets.

6.1. Proposed Method

The basic SSL method uses pseudo-labels generated by the adapted model itself [83],

[111]. This method can be represented by Algorithm 3 with variables update pseudo

(line 11) and adapt baseline (line 14) set to false. In this case, the set of labels is invariant

during the entire training. This method will be referred to as keep pseudo in this thesis.

It should be noted that in the generic version of the pseudo-labels method, a threshold

is used to select only those samples for which the model generates a hypothesis with

significant scores. This means that the confidence score of those labels is high enough.

In the case of our experiments, the baseline (labeled) training data was different from

the unlabeled data in terms of acoustics and vocabulary. Hence, the confidence score of

almost all unlabeled samples was very low. Furthermore, unlabeled datasets were tiny by
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Algorithm 3 Semi-supervised adaptation with modifications.
Input:

B asel i ne – baseline model
U – unlabeled audio dataset
Gp = {(audi oi ,r e fi )} - labeled dataset for pretraining
Ga = {(audi o j ,r e f j )} - labeled dataset for adaptation
m – number of pretraining epochs
n – number of adaptation epochs

1: M ← B asel i ne
2: if Gp ̸= ; then
3: for i ∈ [0..m] do
4: M ← ad apt (M ,Gp ) ▷ pretraining
5: end for
6: B asel i ne ← M
7: end if
8: L ← M(U ) ▷ Generate pseudo labels
9: for i ∈ [0..n] do

10: M ← ad apt (M ,L∪Ga)
11: if update pseudo then
12: L ← M(U ) ▷ Generate pseudo labels
13: end if
14: if adapt baseline then
15: M ← B asel i ne
16: end if
17: end for

design. Applying a threshold on the hypothesis scores in extreme cases would empty the

chosen sample sets.

A simple improvement to the keep pseudo method consists of iterative updating

pseudo-labeling [85]. This idea leverages the fact that in each epoch, the model’s output is

becoming closer to the distribution represented by the data used for adaptation. Hence,

the labels generated by the model after each training epoch should be closer to the ground

truth. We used a similar approach to develop a new set of labels after each training epoch

in Algorithm 3 with variable update pseudo set to true in line 11. We will call this method

update pseudo.

6.1.1. Improvement 1: update pseudo, adapt baseline

In this work, we proposed additional improvements to the methods described above.

First, we introduced the idea of training the baseline model (which is not overfitted yet)

with the pseudo-labels generated by the model from the previous epoch. This concept

is implemented with the adapt baseline (line 14) set to true and will be referred to as

update pseudo, adapt baseline. We justify this approach by the fact that however good the

labels generated by the model are, they can still contain errors. Furthermore, performing

training using small datasets can quickly lead to model overfitting.
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6.1.2. Improvement 2: update pseudo, adapt baseline, ground

Even with the help of update pseudo and adapt baseline modifications to the basic

SSL method, the models sooner or later became overfitted to the pseudo-labels and

degraded. To overcome this issue, we decided to use additional data which would be

equipped with the ground truth. This idea is implemented in Algorithm 3, where Ga

is the dataset containing ground truth. This dataset is added to the pseudo-labels set

during the adaptation in line 10. Note that the additional data in this case was taken

from a different dataset than the unlabeled data. In our experiments, we used a subset of

the Mozilla dataset. We performed experiments with two flavors of this method: update

pseudo, ground and update pseudo, adapt baseline, ground, where the former gradually

adapts the same model throughout all the epochs. At the same time, the latter uses a

baseline model for adaptation in each epoch.

6.1.3. Improvement 3: update pseudo, adapt baseline, pre-train

The last idea we wanted to explore was to loosen the constraint of using only the

unlabeled data from the target distribution. In this case, the idea was to use a small dataset

with ground truth from the target distribution to adapt the baseline model. This step was

followed by adapting the model with pseudo-labels (possibly mixed with another labeled

dataset). This approach is shown in Algorithm 3 with variable Gp set to a non-empty set of

(audi o,r e f er ence) pairs.

6.2. Experimental Setup

6.2.1. Model Architecture and Data

We trained the baseline model using Monotonic Chunkwise Attention (MoChA) archi-

tecture [112]. This is one of the contemporary architectures based on the encoder-decoder

approach. We trained it using the sum of CTC and Cross-Entropy losses. The encoder

comprised a stack of LSTM layers, while the decoder contained two attention layers (mono-

tonic and chunkwise) followed by an LSTM layer. Such type of attention in the decoder

allows for online inference, which is crucial in production use cases. Furthermore, MoChA

models can be strongly compressed without performance loss using methods such as the

low-rank matrix approximation method by employing DeepTwist [113]. Online inference

and strong compression make MoChA architecture a good candidate for on-device use

cases.

To train the baseline model, we used 960 h of speech from LibriSpeech (train-clean-100,

train-clean-360 and train-other-500 subsets) as the labeled dataset, obtaining the model

which achieved the WER of 7.24 % and 19.23 % on test-clean and test-other LibriSpeech

subsets, respectively.

It should also be emphasized that the characteristics of the training data in LibriSpeech

are very specific since it contains sentences extracted from audiobooks. The average
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Table 10. Statistics of data used in our experiments.

dataset No. of rec. unique
sentences

unique
tokens

total length
[h]

avg. length
[s]

LibriSpeech 281 241 281 071 89 114 960 12.3
TIMIT 4 620 1 735 4 919 4 3.1
Mozilla 50 000 37 890 39 148 70 5.0
en-SE 6 992 2 113 6 728 12 6.2
INHOUSE 7 500 6 037 2 303 7 3.2

recording length in LibriSpeech is much greater than the user commands in production

systems, and the vocabulary distribution is entirely different. Obviously, production

systems vocabularies depend heavily on the domain they support. Hence, it is challenging

to prepare a generic model for different products. Therefore, to emulate various types of

speech data, we decided to add the following datasets to our experiments: TIMIT, MCV,

Southern English (en-SE) [114], and the INHOUSE dataset prepared by the Samsung R&D

Institute Poland.

In the case of TIMIT, we used only TIMIT-train. Out of the MCV dataset, contain-

ing over 2000 h (1 271 213 recordings) of en-US audio, only 50 000 randomly selected

recordings were used. We will refer to this subset as Mozilla throughout this section. The

INHOUSE dataset contained a random selection of the most common commands, which

an intelligent voice assistant processes. Those commands represent a specific vocabulary

distribution and acoustic characteristic (far-field speech and heavy background noise).

Basic statistics of the abovementioned data can be found in Table 10. For reference,

we have provided the statistics for LibriSpeech (all the train splits).

For each unlabeled dataset listed in Table 10, we used separate testsets. In the case

of TIMIT, we used the TIMIT-test, while for Mozilla, en-SE, and INHOUSE, we randomly

selected 1 000 recordings and excluded them from the adaptation dataset. Finally, in the

case of en-SE and INHOUSE, we also randomly selected 500 recordings for the experiments

with pre-training. Those recordings were treated as being manually transcribed.

Using this setup and data, we performed the SSL training using the basic methods and

the methods proposed in Section 6.1.

6.2.2. Metrics

To evaluate our experiments, we used the token-level Levenshtein distance between

the ground truth and the model’s hypothesis averaged over all the samples (recordings)

in the testset, known as WER in the ASR research. However, we also split this metric into

three separate components:

• deletions (Del) – number of omitted tokens divided by the total number of tokens in

the testset,
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• insertions (Ins) – number of unnecessarily added tokens divided by the total number

of tokens in the testset,

• substitutions (Sub) – number of misrecognized tokens divided by the total number

of tokens in the testset,

so that W ER = Del + Ins +Sub. By “tokens,” we mean the longest continuous sequence

of non-blank characters. Splitting the metric facilitated a better insight into the model’s

performance and allowed for optimizing its training process.

For confidence interval estimation, we used bootstrap resampling of the testsets. Since

the adaptation was the most compute-intensive part of the experiment, we decided to

perform it only once for each method. Thus, the unlabeled datasets and models remained

fixed during the evaluation. Each testset was resampled 200 times with replacement

(audio and transcriptions), and an evaluation was performed with such data. The average

WER was calculated. To provide a 95 % confidence interval, we calculated the [2.5,97.5]

percentile boundaries over all resampled evaluation results.

6.3. Experimental Results

Figure 21 presents evaluation results for different SSL adaptation methods. Models

obtained in each epoch were evaluated with the testsets corresponding to the adaptation

data.

6.3.1. Results for Fixed Pseudo-labels

The first method that we tested was based on fixed pseudo-labels generated by the

baseline model (keep pseudo). We observed that in the case of TIMIT, the model’s perfor-

mance improved in the initial epochs but soon degraded and reached WER 7 % relatively

higher than the baseline model. In the case of Mozilla, surprisingly, this method gave the

best results, especially since the model had a very stable performance in the later epochs.

Adaptations using the en-SE and INHOUSE datasets showed minor improvements in the

initial epochs, but just as in the case of TIMIT, the models degraded in the subsequent

epochs.

6.3.2. Results for Updated Pseudo-labels

The introduction of updating pseudo-labels after each epoch (update pseudo) had

already improved the results for all the datasets but Mozilla. However, this was at the

expense of model degradation after just a couple of epochs for all the datasets except

en-SE, which remained stable for as many as 50 epochs. Such degradation was most

visible with Mozilla, where the model degraded heavily already during the third epoch and

reached WER twice as large as the baseline model.

Both keep pseudo and update pseudo methods rely on the gradual adaptation of the

same model. Our experiments showed that resetting the model to the baseline after each

pseudo-label update might give good results in some cases. This method (update pseudo,
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Figure 21. Evaluation results of different SSL methods (our improvements labeled in bold).

adapt baseline) used with TIMIT and en-SE produced good models. The former was

stable for more epochs than update pseudo, while the latter gave the best results in all the

experiments performed on this dataset. The model adapted with Mozilla degraded at the

same rate as with the update pseudo method, while INHOUSE degraded even sooner than

in the previous experiment.
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adapt baseline, E: update pseudo, ground, F: update pseudo, adapt baseline, ground).

6.3.3. Results for Additional Labeled Data

In the two remaining experiments presented in Figure 21, we used additional data

randomly selected from the Mozilla dataset. We used 5 000 recordings, which were treated

as manually labeled during the adaptation (no pseudo-labels generation). We decided

to skip such experiments for the Mozilla dataset itself since the previous experiments

(update pseudo and update pseudo, adapt baseline) gave inferior results while being very

time- and resource-consuming.

Joining the idea of mixing unlabeled and labeled data with updating pseudo-labels

(update pseudo, ground) yielded better results than only updating pseudo-labels. However,

combining all three modifications: update pseudo, adapt baseline and ground gave the

best results for TIMIT and INHOUSE datasets. The models performed at their best in such

a configuration, and the training was stable even for 50 epochs.

A summary of the experiments described in Sections 6.3.1–6.3.3 can be found in

Figure 22. The width of the lines in this figure represents confidence intervals for WER in

each method. For each SSL method and dataset, checkpoints from all the epochs were

compared, and the model with the lowest WER was chosen.

Table 11. WER results (in percentages) for learning with pre-training.

dataset baseline model pre-train pre-train, update pseudo,
adapt baseline, ground

en-SE 77.42 ± 0.89 37.82 ± 0.52 33.71 ± 0.67
INHOUSE 78.67 ± 0.96 59.58 ± 1.12 47.86 ± 1.41
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Figure 23. TIMIT and en-SE datasets detailed results (update pseudo, adapt baseline experiments).

6.3.4. Results for Pre-training with Labeled Data

In the last improvement, a small amount of labeled data from a similar dataset as the

unlabeled data was used for pre-training. We used only 100 randomly chosen recordings.

In the case of Mozilla, such a small amount of data did not change the model performance

at all, while for TIMIT-train, the dataset was too small to extract additional recordings

for the pre-training. Hence, we decided to perform SSL adaptations with en-SE and

INHOUSE only. The pre-training phase was followed by update pseudo, adapt baseline and

ground. Results of those adaptations can be found in Table 11. Combining pre-training

with minimal amounts of data and SSL adaptations with limited datasets allowed for a

significant reduction of WER from 77.42 % to 33.71 % for en-SE and from 78.67 % to 47.86 %

for INHOUSE.

6.4. Discussion

In our experiments, we were able to reduce WER 2 %–17 % relative, depending on

the testset. The studies presented in Section 2.3 used different experimental set-ups;

hence, comparison in terms of WER reduction would not be appropriate. However, it

is noteworthy that, in contrast to the aforementioned studies, we used much smaller

unlabeled datasets. The datasets used in our experiments contained 4 h–70 h of audio

data, while the smallest datasets used in the previous studies contained much more than

100 h of data. Hence, the adaptation process was much faster and can be applied in an

on-device scenario.

We investigated separate components of WER. In Figure 23, we analyzed the results

from two experiments with the TIMIT and en-SE datasets, performed using pseudo-labels

updating and adaptation of the baseline model in each epoch. We observed that Del
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Figure 24. TIMIT and en-SE experiments (update pseudo, adapt baseline): comparison of TIMIT
and en-SE testset WER and the total number of words returned by the models for Mozilla testset.

had the highest impact on the model performance. In the majority of cases, this value

dropped in the initial epochs. This was followed by a small number of stable epochs.

However, eventually, Del started to rise. On the other hand, Sub and Ins tended to decrease

slowly throughout the entire adaptation process. This means that the more the model was

adapted to the pseudo-labels, the more it tended to omit tokens.

The observation that Del is the most varying value in this type of training has led us to

search for the method of epoch number optimization. One obvious solution would be to

employ a manually transcribed testset with a token distribution similar to the unlabeled

dataset. This idea was used to estimate the model’s performance in Figure 22 and Table 11.

However, this solution requires human intervention; therefore, we decided to search for a

heuristic that would eliminate this issue. We checked the total number of tokens returned

by the model for a given test set. As it turned out, even for test sets that represented

a distribution different from the unlabeled data, this number was linked to the model

performance (Figure 24). The models adapted with TIMIT and en-SE datasets (update

pseudo, adapt baseline method) were evaluated with a random sample of 1000 utterances

extracted from Mozilla. The total number of words returned by the ASR models for this

testset was computed in each epoch. We also present WER in each epoch for reference.

Adaptation with the TIMIT dataset gave the best results between epochs 2 and 16, with the

minimum in epoch 10. The model produced the best results for en-SE between epochs 14

and 21, with the minimum in epoch 15. The number of words returned for the Mozilla

testset also started dropping significantly after epoch 16 (for TIMIT) and epoch 20 (for

en-SE). Therefore, we think a heuristic method can be proposed based on the total number

of tokens returned by the ASR model.

As expected, our experiments confirm a significant difference in the performance
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improvement that can be achieved using the same adaptation method with different

datasets. We observed the great difficulty in gaining even minor improvements in the case

of the Mozilla samples. We suspect this was caused by the fact that this dataset contained

a wide range of vocabulary. The number of unique sentences was almost the same as

the total number of recordings (see Table 10). On the other end was INHOUSE, where by

using only unlabeled data and a small amount of labeled data from MCV, we reduced WER

from 78.67 % to 61.06 %. INHOUSE contained a relatively small number of unique words

repeated in numerous recordings. Hence, the model had a chance to learn the correct

labeling for many of those words.

6.5. Conclusions

In this section, I have demonstrated that SSL methods can improve ASR performance

even for very small datasets and also for data with token distributions significantly different

from those of the data used to train the baseline model. I analyzed a couple of variants of

the SSL algorithms in terms of WER and also detailed values of this metric’s components.

I proposed using a combination of update pseudo, adapt baseline and ground methods,

which allowed for a reduction of WER by 2 %–17 % relative, depending on the dataset. I

have also shown that the characteristic of the unlabeled dataset has a major impact on the

gain caused by SSL. Finally, I have proposed a heuristic that could be used as a stopping

criterion during evaluation.
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7. Summary

This dissertation proposed improvements in speech processing modules in the realm

of on-device use cases. The following theses were formulated and experimentally proved:

THESIS 1: The performance and accuracy of a keyword spotting model can be signif-

icantly improved by using a unigram language model and audio recordings generated

by a text-to-speech system.

The key to proving this statement was a careful choice of weights. Evaluations using

MOCKS showed that the EER was reduced by 13 %–17 % relative depending on the subset.

Additionally, with GSC, the accuracy increased from approximately 84 % to 96 %. The value

of boost can be treated as the model’s hyperparameter, and its optimal value depends on

the testset. However, 32 seems a good choice, yielding good results for most test cases.

Introducing the multi-keyword classifier gave less impressive improvements than the

unigram LM. However, its utility was visible in evaluations with GSC with the increase of

accuracy from 95.97 % to 96.75 %.

It is noteworthy that the proposed improvements can be used independently and with

different types of models. Unigram LMs can be applied to rescore outputs of any kind

of AM, which uses the beam search algorithm to choose the most probable hypothesis.

AM generating textual hypothesis can be considered an embedding model for audio data.

The keyword classifier used in our solution can be extended to any embedding type by

applying different distance functions. Thus, the multi-keyword approach can be applied

to any solution based on a binary classifier comparing audio and text data embeddings.

THESIS 2: The accuracy of an end-of-speech detection model can be effectively

improved by training the model with the proposed loss function.

The validity of this statement also depends heavily on the choice of the weights. The

proposed weighting schema was evaluated with two distinct types of testsets: TIMIT and

INHOUSE, with the latter being more demanding and close to the actual production audio

data. The weight function proved to increase the Fine EOS metric by more than 27 %

relative on average, with a maximum 35 % relative in INHOUSE clean (an improvement

from 25 % to 60 %). It should also be noted that those improvements in Fine EOS were

gained by reducing the Early EOS metric (decreased 33 % relative on average) and only a

slight increase in Fail EOS (5 % relative on average).

The proposed loss function improvement can be applied to various model architec-

tures. Binary cross-entropy is a standard function in this task, and extending it with

additional weights is straightforward. Hence, the proposed solution can benefit any model

trained with this loss function.

THESIS 3: Semi-supervised learning methods can be effectively used to adapt acous-

tic models even with small datasets.

Throughout the work on this statement, the goal was to adapt a generic model to

significantly different data from the original training data. Even the simplest SSL method
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based on fixed pseudo-labels proved this thesis. However, the gains were minor concerning

the WER metric. Adding simple improvements to the primary SSL method expanded

gains in WER even further. The most significant drop in this metric was observed after

performing a short adaptation with a small amount of manually transcribed data before

the modified SSL method. With such an approach, it was possible to lower WER from

approximately 77 % to 33 %–47 %, depending on the testset. SSL is model invariant by

design; hence, it can be used with different architectures.

All the research activities described in this dissertation were performed within projects

at Samsung R&D Institute Poland. A prototype supported proving each of the abovemen-

tioned theses. QbyT KWS solution is still under development with the plan to further

improve the results. The EOS model trained with the proposed weighted loss function

is successfully used to prepare the data for tasks such as KWS or ASR. The EOS model is

beneficial when audio data is provided as one long stream, but the training or evaluat-

ing procedure requires separate sentences. Finally, the methods developed for SSL are

implemented for AM adaptation to new domains with the usage data. This removes the

requirement to manually transcribe the data, which reduces the overall model production

cost.

Many speech-processing modules are already deployed to end-user devices. However,

it is just the beginning of this migration. The most computationally demanding modules,

such as AMs, are still designed for the client-server architecture. Deployment of AMs

to mobile devices can be supported by improving any of the modules used in speech

processing pipelines. The improvements described in this thesis are good examples to

support this claim:

• The lower the FPR in the KWS model, the smaller the amount of data processed by

the AM, and the smaller the load of the device’s resources. There is also another side

of this picture, which is not connected directly with the AM: the higher the TPR in

the KWS model, the higher the user experience becomes.

• Improving the precision of the EOS model can facilitate generating correct hypothe-

ses by the AM and lower the amount of data to be processed.

• Developing methods for AM adaptation with limited unlabelled data can also allow

for more aggressive compression of the model.

I firmly believe that moving multiple components of AI-based applications to mobile

devices is the future in this field of science and technology. I also think the improvements

presented in this thesis will be a valuable contribution to foster future work on on-device

use cases of speech processing.

The results presented in this thesis open multiple interesting research problems, such

as:

• What are the other unigram LM weight initialization strategies in the solution pro-

posed for QbyT KWS?
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• Does using bigram LM improve the results in the solution proposed for QbyT KWS?

• What is the impact of the multi-keyword classifier proposed for QbyT KWS if it was

used with different embedding types?

• What are the other strategies for weight initialization in the proposed loss function

for EOS model training?

• What is the impact of the proposed loss function for EOS model training on different

model architectures?

• What is the characteristic of the dataset that works well with SSL and AM adaptation?

• How good is the heuristic based on the number of returned tokens when applied as

the stopping criterion for SSL and AM adaptations?

Addressing these questions might provide further improvements in the topics which

were considered in this thesis. Thus, the performance of the mobile applications based on

ASR would also improve.
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częściowo nadzorowanego w automatycznym rozpoznawaniu mowy”, Poster at XV
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inarium Doktoranckie. Na pograniczu chemii, biologii i fizyki – rozwój nauk, vol.

4, 2022 [117], Contribution: confront Domestic conferences subsection, 20 MEiN

points.

Patents
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B. Custom Keyword Spotting, Additional Figures

Figure 25 presents DET curves for different subsets of MOCKS. Each curve was gener-

ated by all samples from “positive”, “similar”, and “different” test cases in the given subset.

Even though the model was trained solely with English speech data, the DET curves for

en_LS_clean, en_LS_other, and en_MCV were similar to de_MCV and fr_MCV. The DET

curves for es_MCV and it_MCV show that the baseline model’s performance was slightly

worse for those languages.
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Figure 25. DET curves for different MOCKS subsets.

We also analyzed the DET curves with negative samples taken separately from “similar”

and “different” subsets. Figure 26 presents the results of such analysis. As could be

expected, test cases in the “similar” subset are more challenging than “different”. The

distances between both curves are different for all subsets in MOCKS.
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Figure 26. DET curves for different MOCKS subsets split between “similar” and “different” subsets.
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Figure 27. Boosting results with static LM, without multi-keyword classifier, for en_LS_other
testset.
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Figure 28. Boosting results with static LM, without multi-keyword classifier, for en_MCV testset.
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Figure 29. Boosting results with static LM, with and without multi-keyword classifier, for
en_LS_other testset.
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Figure 30. Boosting results with static LM, with and without multi-keyword classifier, for en_MCV
testset.
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