
WARSAW UNIVERSITY OF TECHNOLOGY
DISCIPLINE OF SCIENCE INFORMATION AND COMMUNICATION

TECHNOLOGY
FIELD OF SCIENCE ENGINEERING AND TECHNOLOGY

Ph.D. Thesis

Mikołaj Markiewicz, M.Sc.

Evaluation of data partitioning strategies for distributed
clustering and classification algorithms

Supervisor
Piotr Gawrysiak, Ph.D., D.Sc.

Additional supervisor
Jakub Koperwas, Ph.D.

WARSAW 2023

Abstract

The sizes of the various datasets collected worldwide are growing rapidly. These data are stored
in different independent locations, and increasing numbers of new algorithms have been imple-
mented to work with these distributed data, especially for classification and clustering tasks.
However, there is no standardised way of validating such algorithms, and they are typically
tested on independent and identically distributed (IID) data, which are uniformly distributed.
The real data distribution across independent nodes is typically unknown, which affects the
processing results. This work is devoted to improving the assessment of distributed algorithms
by applying new non-IID partitioning methods to mitigate the impact of undefined data dis-
tributions. Moreover, a standard set of new partitioning strategies to simulate non-IID data
distributions for the evaluation of such algorithms is proposed, and hidden shortcomings in
algorithm processing results are revealed.

Additionally, the work introduces a new, easy-to-use and extendable platform with plug-
gable components to address the lack of comprehensive benchmarking tools in an actual dis-
tributed environment for distributed data mining (DDM) methods. The proposed platform en-
ables a proper analysis of the results in terms of the multiple dimensions that impact the algo-
rithm, such as the final quality, transfer load and detailed measurements of processing times for
the different stages of processing.

Furthermore, this paper reveals the negative impact of various data distributions on the qual-
ity results of processing with distributed algorithms by evaluating a set of distributed classifica-
tion and clustering methods. The author also introduces an adapted clustering hybrid algorithm
that can achieve high quality and overcome the problem of specific data partitioning without the
need for assumptions about a uniform data distribution.

Lastly, the results and a detailed discussion of the experiments that prove the validity of the
study, the usability of the proposed tool, and the improvements to the clustering methods are
presented.

Keywords: Data distribution, Non-IID data, Data partitioning strategies, Algorithm evaluation,
Benchmarking platform, Distributed data mining, Classification, Clustering

3

Streszczenie

Rozmiary różnych zbiorów danych gromadzonych na świecie gwałtownie rosną. Dane te są
składowane w oddzielnych, niezależnych lokalizacjach. Z tego powodu wzrasta liczba nowych
algorytmów do przetwarzania tak rozproszonych danych, w szczególności na potrzeby zadań
klasyfikacji i grupowania. Nie ma jednak ustandaryzowanego sposobu walidacji takich algoryt-
mów. Typowo są one testowane na niezależnych, lecz identycznie rozłożonych danych (IID),
które są równomiernie rozproszone. Jednakże prawdziwy rozkład danych między niezależne
węzły jest zazwyczaj nieznany, co wpływa na wyniki jak i samo przetwarzanie. Ta praca jest
poświęcona poprawie oceny rozproszonych algorytmów przez zastosowanie nowych metod nie-
równomiernego (non-IID) partycjonowania danych. Ma to na celu złagodzenie wpływu niezde-
finiowanego rozkładu danych na wyniki działania algorytmu przez ukazanie jego niedoskonało-
ści. Ponadto w pracy zaproponowano standardowy zbiór nowych strategii partycjonowania do
symulowania rozkładu non-IID na potrzeby ewaluacji algorytmów rozproszonych celem ujaw-
nienia ukrytych niedoskonałości w ich przetwarzaniu i poprawienia jakości testowania.

Dodatkowo przedstawiona została nowa, prosta w użyciu i rozszerzalna platforma umożli-
wiająca dynamiczne dołączanie komponentów. W pracy zaadresowany został tym samym pro-
blem braku kompleksowych narzędzi do oceny (benchmarkingu) metod rozproszonej eksplora-
cji danych (DDM) w rzeczywistym środowisku rozproszonym. Proponowana platforma umoż-
liwia właściwą analizę wyników pod kątem wpływu na algorytm różnych aspektów przetwarza-
nia takich jak końcowa jakość, obciążenie transferu i szczegółowe pomiary czasu w kolejnych
etapach przetwarzania.

Poza tym w niniejszej pracy ujawniony został negatywny wpływ różnych rozkładów danych
na jakość wyników przetwarzania algorytmów rozproszonych na przykładzie ewaluacji zestawu
metod rozproszonej klasyfikacji i grupowania. Wprowadzono również zaadaptowany algorytm
hybrydowy, który jest w stanie osiągnąć wysoką jakość niezależnie od specyficznego rozkładu
danych i bez konieczności przyjmowania założeń o jednolitym rozkładzie przetwarzanych da-
nych.

Na koniec przedstawione zostały wyniki wraz ze szczegółowym omówieniem eksperymen-
tów, które potwierdzają zasadność badań, użyteczność proponowanego narzędzia oraz pokazują
ulepszoną metodę grupowania rozproszonych danych.

Słowa kluczowe: Rozkład danych, Dane non-IID, Stragetie partycjonowania danych,
Ewaluacja algorytmu, Platforma porównawcza, Rozproszona eksploracja danych, Klasyfikacja,
Grupowanie

4

Contents

1 Introduction 7
1.1 Motivation . 8
1.2 Thesis and goals . 10

1.2.1 Goals . 10
1.2.2 Thesis . 10

1.3 Scope and limits of this work . 11
1.4 Structure . 11

2 Foundations 13
2.1 Types of data . 13
2.2 Data partitioning . 13

2.2.1 IID data distribution . 14
2.2.2 Non-IID data distribution . 15

2.3 Data mining algorithms . 16
2.3.1 Clustering . 17
2.3.2 Classification . 19

2.4 Data similarity . 21
2.4.1 Metrics . 21
2.4.2 Custom measures . 22

2.5 Measures of the quality of results . 23
2.5.1 Clustering evaluation metrics . 24
2.5.2 Classification evaluation metrics . 25

2.6 Distributed processing . 26
2.6.1 Federated Learning . 27
2.6.2 Spark . 27
2.6.3 Docker . 28

3 Related work and methods 29
3.1 Categorisation of non-IID data distributions 29
3.2 Uneven data distribution . 30

3.2.1 Naturally partitioned datasets . 31
3.2.2 Generation of partitioned datasets . 31
3.2.3 Simulation of data distributions . 32

5

3.3 Benchmarking datasets and tools . 34
3.3.1 Dataset-based benchmarking frameworks 35
3.3.2 Evaluation platforms . 36

4 Partitioning methods and algorithm evaluation 37
4.1 Data-distribution-based evaluation method . 37

4.1.1 Taxonomy for non-IID data partitioning 37
4.1.2 Non-IID data partitioning strategies 40

4.2 Adapted and robust clustering algorithm . 54
4.2.1 Distributed k-means . 54
4.2.2 OPTICS-Distributed k-means . 56

4.3 Comprehensive evaluation platform . 59
4.3.1 Architecture . 60
4.3.2 Execution pipeline . 63
4.3.3 Key components . 64
4.3.4 Limitations of the platform . 67

5 Experiments 69
5.1 Evaluation method . 70

5.1.1 Data distributions . 72
5.1.2 Algorithms . 73
5.1.3 Datasets . 75

5.2 Non-distributed execution . 79
5.3 Evaluation results . 80

5.3.1 Quality results . 80
5.3.2 Processing time . 93
5.3.3 Transfer load . 95

5.4 Summary of negative impact . 97

6 Conclusion 99
6.1 Limitations . 100
6.2 Future research . 101

References 109

7 Attachments 111
7.1 DDM-PS-Eval technical details . 111

7.1.1 Communication . 111
7.1.2 Environment setup . 112

7.2 Detailed quality results . 114
7.3 Detailed processing time statistics . 116
7.4 Detailed transfer load statistics . 118

6

Chapter 1

Introduction

Classification, clustering and other data mining (DM) and machine learning (ML) methods have
existed for a long time, and these terms are frequently used interchangeably. Many different ap-
proaches have emerged for processing the different types of data collected worldwide. Authors
have usually verified the correctness of their algorithms by applying them to a small, local
dataset, which typically then becomes a benchmarking set for similar new methods. The world
has started to evolve rapidly, and massive amounts of data are now produced, which require
changes in the approaches towards processing them. Initially, multiple parallel methods began
to gain popularity; however, in the modern world, the data generated by organisations have
started to be stored in independent remote storage, and privacy issues have arisen. Alongside
optimisation, this requires the development of complete distributed algorithms that do not op-
erate on the entire dataset, and has opened up a new area of application called distributed data
mining (DDM). New challenges have been discovered that require new approaches and involve
the need to overcome multiple limitations, such as the abovementioned privacy aspects, a lack
of access to the whole dataset, increasing network transfer consumption and synchronisation
issues. All of these challenges must be addressed when existing modern algorithms operate in
distributed environments, and must also be considered in the design of new ones.

The continuous growth in the data collected worldwide accelerates every day, and has
reached sizes on the order of zettabytes (ZB, or 1021 B) [13]. These sizes are predicted to
reach between 163 [35] and 175 [3] ZB by 2025. Moreover, the countless devices that form
the Internet of Things (IoT) also produce quintillions of bytes (1018 B) [18] of data every day.
A total of 500 ZB of data was generated by such IoT sources in 2020 [54], due to their large
numbers. However, a constantly growing number of new methods are still using a traditional
approach to evaluation using the same existing datasets, with the strong assumption that the data
characteristics will be equivalent for every independent storage method. Although an algorithm
may achieve good results in a single setup scenario, authors typically do not investigate whether
their algorithms will fail on multiple corner cases and thus will dramatically slow down in terms
of processing or require that all the data are transferred to a single location for processing. These
issues have initiated a strong interest in examining such algorithms, since non-uniform data dis-

7

tributions remain an open problem, especially since federated learning (FL) was introduced in
2017. The strong interest in FL arises from the data collected by the countless IoT devices.
However, much of the data from these devices are typically gathered in data centres for ’data-
centre computing’, which is more closely associated with other DDM techniques in which the
order of magnitude is smaller [12]. Data of this type are typically collected and stored in differ-
ent geographic regions, and there is no guarantee of an equal distribution of data samples at each
location. The data are then not independent and identically distributed (non-IID). These data
are not only used for FL processing, but also other DDM techniques, and none of them should
deteriorate results because of distribution characteristics. Finding a suitable dataset to evalu-
ate a given method is also problematic. Nevertheless, one question that remains unanswered
when a particular dataset is available is how to scatter the data to show that the algorithm works
without a uniform data distribution. Another issue is that of how to perform a comprehensive
evaluation.

1.1 Motivation

Various methods of data mining have been developed, and in the last few years, there has been
growing interest in the study of FL techniques. In this approach, a large amount of data is
distributed over huge numbers of devices that cooperate in the learning process. The concept of
FL represents a particular case of general DDM methods, which also deal with distributed data
but at different scales; for example, the processing of megabytes of data stored on millions of
devices requires a different approach from the processing of petabytes of data stored in a few
data centres. The DDM approach is not limited to the FL technique, and has been neglected
in current research on the impact of data distributions and the evaluation of algorithms. We
cannot forget the standard scale based on a low number of collaborating data centres and non-
FL techniques of DDM, where the number of computing nodes is lower than in the collaboration
between IoT devices. Moreover, most FL approaches in the literature are based on neural
network architectures that are mainly dedicated to image classification tasks.

A lack of knowledge about the characteristics of the data distribution and an inability to
download all of the data locally pose challenges for modern algorithms operating in distributed
environments. No analyst can be certain of a complete data representation at every independent
node in the real world, and there are countless possibilities for spreading an entire dataset among
multiple nodes. A great deal of research has been done on simulating different data distributions
to benchmark FL algorithms, mainly since the authors of [33] identified open problems associ-
ated with non-IID data distributions. The focus of recent research has primarily been on popular
and available datasets as a fixed set of inputs for benchmarking. Methods of dividing a dataset
into non-IID partitions are often briefly and vaguely described, with implementations that are
rigidly dependent on the dataset, such as MNIST [40], CIFAR-10 [37] or Sentiment140 [20].

8

Such methods generally focus on image or textual datasets, which are currently of interest for
FL, and neglect the more typical numerical and nominal data. New techniques of data parti-
tioning for the evaluation of algorithms are required, but with approaches that are agnostic in
terms of dataset type where possible. The need for standardisation is evident when preparing
test suites, and an understanding is required of which distribution aspect is examined during
experiments on data partitioning, especially in view of the lack of consensus on the metric of
"non-IID-ness" for data [43, 28].

The dataset used to evaluate an algorithm is crucial. Several aspects of the evaluation pro-
cess are important, such as how to perform it under similar conditions, collect results with
numerous execution statistics and compare them. Multiple methods and approaches have been
extensively used in recent studies; however, there is an ongoing discussion concerning how to
verify the correctness of an algorithm in a standard way. There is a need to test a new approach
against other methods under similar conditions. A typical algorithm evaluation is performed
using a random, uniform data distribution or a cross-validation method. For strongly unbal-
anced sets, the number of class samples during scattering is usually also considered to simulate
an even class distribution; however, in a completely distributed environment, the entire dataset
cannot be accessed or is deliberately restricted for privacy reasons. In order to fully examine the
algorithm, the algorithm should also be evaluated on a specific data distribution rather than in
typical scenarios. As mentioned previously, every evaluation of a DDM algorithm involves an
independent partitioned dataset, which implies communication between computational nodes.
This takes time, consumes transfer bandwidth, and is a potential security issue when too many
data are transferred. We have identified a gap in the area of tools for evaluating determinis-
tic DDM algorithms, in terms of providing comprehensive and comparable results for various
execution aspects. There is a lack of generic, easy-to-use tools that use different test suite pa-
rameterisations for data partitioning and consider the abovementioned issues related to time and
transfer statistics analysis.

The provision of any platform for algorithm verification or benchmarking involves several
challenges related to both flexibility and simplicity of use. Moreover, a major drawback in
many studies is a lack of information about the similarity measures used in clustering and some
classification algorithms, which makes it almost impossible to reproduce results on a specific
dataset. Although it is important to allow developers and researchers to implement algorithms
in their own way and to provide verification tools that require minimum effort to use, an al-
gorithm still needs to follow certain rules when applied to enable execution and measurement,
e.g., of the data loading time or the size of the transfer among worker nodes during execu-
tion. The quintessential example is the MapReduce [17] framework, in which the application
has to implement both mapping and reducing functions. Secondly, the majority of the recent
algorithms are not as generic as they were in the last century, and are designed to work with
certain datasets. Many researchers still use data from the well-known UCI Machine Learning

9

Repository or KDD Cup 1999 Data for evaluation, and apply simple Euclidean similarity mea-
sures. However, an increasing number of new classifiers have been dedicated, e.g., to financial
datasets for fraud detection [1] or to clustering methods used for the selection of reference sets
from genomic data [39], and so on. As a result, it is essential for a benchmarking platform
to handle the comparison of different data objects for algorithm execution and data scattering
among nodes in a non-uniform manner using data partitioning strategies. An easy way of using
custom similarity measures between samples must be available in the system. The way in which
data are distributed in a distributed processing environment dictates the execution performance
and the quality of the algorithm.

1.2 Thesis and goals

1.2.1 Goals

The main goal of this work is to develop various methods of simulating different non-IID data
distributions, which can affect the deterioration of distributed clustering results and the quality
of classification algorithms. A further objective is to design and implement a fast, reliable
algorithm that does not require any assumptions regarding the data distribution. In addition,
an evaluation platform will be implemented to conduct reproducible experiments efficiently
using various datasets, data partitioning and algorithms to verify the influence of the proposed
methods. The results will be analysed in terms of the impact of the data partitioning strategies
on the quality of the results, particularly with regard to partitioning-type clustering methods and
SVM classification.

1.2.2 Thesis

The various strategies that can be used for data dispersion among independent computational
nodes strongly impact the results of distributed clustering and classification algorithms. Current
methods of examining distributed algorithms that operate on independent datasets are incom-
plete, and require consideration of the impact of uneven data distributions on the operation of
the algorithm. It is possible to define an initial assessment of the scale of such impact of the
partitioning strategy on the type of algorithm.

The proposed data partitioning methods, an analysis of their influence and the proposed
evaluation approach extend the possibilities of verifying the quality of an algorithm, and include
the following:

• A set of methods to simulate uneven dataset dispersion among independent computational
nodes, which allow for an examination of the correctness of the algorithm’s operation
without requiring assumptions about a uniform data distribution;

10

• A reference hybrid clustering algorithm that is adapted to work with uneven data distri-
butions;

• A tool dedicated to the evaluation of distributed algorithms with non-IID data distribu-
tions;

• An identified scale of the impact of particular data distribution on different algorithm
groups.

1.3 Scope and limits of this work

The areas of data mining and distributed processing involve various methods, approaches, data
and applications. The range of possibilities is further increased by modern methods that are de-
signed to work in distributed environments by mixing different approaches, thus creating hybrid
algorithms. Many surveys have dealt with this constantly growing variety of methods and tools,
and have described these topics in a few sentences. In view of this fast-growing diversity, and to
develop a more profound insight, we focus on a set of methods including the probabilistic and
SVM classifiers, and partitioning clustering algorithms enhanced by density and hierarchical
approaches. Studies that mention non-uniform data distributions typically consider neural net-
work classifier applications, which are omitted from this work, although these are mentioned in
the review of data partitioning. The scope of this study is also limited to horizontal partitioning,
as the more common method, and numerical and nominal data, although other types will be
mentioned as they occur in related work.

1.4 Structure

This work is structured as follows. In the next section, we introduce basic information related
to the topic, including data partitioning and similarity, types of algorithm and distributed data
processing. In Section 3, current work on benchmarking of the distributed algorithms is sum-
marised, and an overview of different data distribution categories is provided. The proposed
evaluation method, including new data partitioning methods, the algorithm and the platform, is
described in Section 4. Section 5 reports the results of experiments based on our evaluation pro-
cess, and presents a discussion. Finally, Section 6 concludes the thesis and suggests directions
for future work.

11

Chapter 2

Foundations

2.1 Types of data

We can distinguish between many types of data that are collected and stored across the world.
Such data consist of observations or measurements, which are represented as numbers and
strings. The most basic distinction is between numerical and nominal (categorical) data. The
ordinal type can also be distinguished as nominal data with a defined order.

We can also distinguish textual datasets, consisting of structured characters or entire docu-
ments, as a distinct data type. However, this is a rather specific data structure that is created to
represent some knowledge or information. Other types of data are derived from the main groups
but involve certain semantics, or follow predefined structures. Various other types of data exist,
such as sequential, image, or domain-specific data. For instance, time-series data may have
any type, and can represent anything marked with a timestamp which defines the occurrence of
each entry over time. In contrast, an image representation is limited by a finite set of numbers
in two-dimensional space. Domain-specific data depend on the problem; for instance, genomic
data involve long structures consisting of specific and rare sets of values, and are both nominal
and sequential.

2.2 Data partitioning

Datasets can be divided into two primary ways. The most common is horizontal partitioning,
although many types of structured data can also be partitioned vertically. These approaches are
illustrated in Fig. 2.1. In the first type, each partition contains all of the attributes describing the
data entries, but not the whole dataset. In contrast, vertical partitioning involves the splitting
of the attributes of the whole dataset between the partitions. The most common application
is in relational databases and table normalisation, but this approach is not limited to this type
of issue. The choice of a data partitioning method depends on the problem to be solved, and
defining a data model depends on the requirements and read/write optimisation. Some types of
data partitioning in real production systems may arise spontaneously across independent data

13

storage centres; for example, structured data collected in different but related data centres can
be naturally split horizontally.

Identifier Shape Colour Area
1 Circle Red 5.2

2 Square Blue 84.1

3 Triangle Red 14.37

4 Circle Yellow 8.84

5 Rectangle Cyan 77.93

Identifier Shape Colour Area
1 Circle Red 5.2

2 Square Blue 84.1

Identifier Shape Colour Area
3 Triangle Red 14.37

4 Circle Yellow 8.84

5 Rectangle Cyan 77.93

Identifier Shape Colour
1 Circle Red

2 Square Blue

3 Triangle Red

4 Circle Yellow

5 Rectangle Cyan

Identifier Area
1 5.2

2 84.1

3 14.37

4 8.84

5 77.93

Original data

Horizontal partitioning

Partition H1

Partition H2

Vertical partitioning

Partition V1 Partition V2

Figure 2.1: Examples of horizontal and vertical data partitioning.

Horizontal partitioning may vary across partitions, depending on the characteristics of the
stored data. For instance, in relational databases, rows can be partitioned with different criteria
based on ranges, hashes or round-robin strategies. This type of division involves intentional
placement, whereas the collected data may be naturally characterised by different distributions
in the distributed independent storage centres.

2.2.1 IID data distribution

Data located on separated partitions and sharing equivalent distribution characteristics of their
attributes are known as independent and identically distributed (IID). A dataset distributed
across partitions is referred to as IID when the data samples are uniformly spread over the
partitions; in other words, if each data sample with certain characteristics or attributes can
be found on any partition with the same mutual independent probability distribution, then the
whole dataset is IID.

The original formalism comes from statistics based on the definition of the independence
of random variables. We assume that a data sample from a dataset D can be considered as a
realisation of a multidimensional random variable x. We also assume n separated partitions and
the function FXk(x), defined as the probability of finding sample x on partition k. We can then
formally define the following dependence for a dataset distribution which is IID:

Definition 2.2.1. The distribution of dataset X = {X1, . . . ,Xk} is independent and identical if

14

and only if:

∀i, j ∈ {1, . . . ,n}, FXi(x) = FX j(x) (2.1)

and is mutually independent if:

FX1,...,Xn(x1, . . . ,xn) = FX1(x1) · . . . ·FXn(xn) (2.2)

2.2.2 Non-IID data distribution

Data can be unbalanced between partitions, and thus located non-uniformly, in many ways.
Referring to the definition of IID data, we can define a non-uniform data distribution as the
negation of Definition 2.2.1. When data are non-ideal or non-identically distributed, regard-
less of the cause, they are called non-IID data. According to the taxonomy of non-IID data
regimes [33], we can distinguish five main categories of possible real-world distributions for
any partitioned dataset:

• Feature distribution skew (covariate shift): This category refers to the situation where
different attributes are distributed on separate partitions. Examples include typical differ-
ences in handwriting characteristics, speed limit signs that differ slightly between Euro-
pean countries [21], or attributes describing the same plant species based on their size,
colour, etc., which vary depending on the weather conditions and sunlight exposure;

• Label distribution skew (prior probability shift): This relates to the distribution of data
samples in object classes present on different partitions. This category is probably the
most likely, especially when processing data from different geographic locations. A typ-
ical example of this would be the presence of kangaroos in various regions around the
world: this animal lives in the wild only in Australia, although single individuals can be
found in a few zoos around the world. Another situation is represented by people from
different countries who emigrate and settle in groups, which affect the distribution of lo-
cal communities. A third situation is the use of English in books or conversations, which
is of course mainly found in the US or UK, although this particular language is also used
all over the world. These examples involve numerous label-skew combinations depend-
ing on the presence and counts of data samples on different partitions. We can distinguish
between them further for the purposes of partitioning;

• Same label, different features (concept drift): This distribution category describes a
situation where possibly non-intersecting attribute values of data samples located on sep-
arate partitions represent the same class of objects. The most common example is the
classification of pictures of houses, where photographs of houses are taken at different
times of the year or under different weather conditions. Another example is the features

15

of people from different regions of the world who differ in terms of their height, weight,
hair colour, etc., which has an impact when exploring data on medical conditions;

• Same features, different label (concept shift): This refers to the situation where data
are understood differently or are misclassified on separate partitions with data samples
representing the same object class. The concept underlying this issue relates to diver-
gence in the class identification of data objects described by the same features in different
regions, or simply a different understanding of what is represented by the characteristics
when marking the data used for training. This is closely related to the natural language
processing (NLP) process for sentiment analysis problems, where words can be tagged
in different ways in the training dataset depending on the understanding. An example of
nominal data might be a different understanding of what constitutes a powerful or wealthy
person in different countries;

• Quantity skew (unbalancedness): This is where data are highly unbalanced across par-
titions in terms of sample quantity. In this case, we assume that some nodes have more
data samples, and others have significantly fewer.

2.3 Data mining algorithms

To extract information or find knowledge from data, we need to process them by applying
dedicated algorithms. There are many types of algorithms that were developed for different
purposes, and the basic groups are as follows: classification, clustering, regression or prediction
and association rules. All of these are included in the general concept of data mining and ML
methods. Moreover, these methods can also be classified at various levels due to the approach
used, the results produced or even the models used in processing. An approach may involve
a distinction between supervised or unsupervised learning methods. The results produced by
these algorithms may be precise or fuzzy.

Most types of algorithm create a model to solve a particular problem using different tech-
niques. For instance, classification tasks can be solved using either decision trees or neural
networks, and the models used in these cases are entirely different. These methods, however,
are not limited in application to this single task.

Modern techniques also combine core algorithms to achieve better results and to exploit
the advantages of each one. This type of combination is called an ensemble method or hybrid
algorithm, in which two or more existing algorithms are combined. The present work focuses
on clustering and classification tasks in the processing of distributed data.

16

2.3.1 Clustering

Clustering is a technique for grouping similar objects together based on an arbitrarily chosen
measure. The similarity between two objects depends on the objective and the data, and simi-
larity measures are discussed in more detail in the following section. We can divide clustering
algorithms into five main types or categories (depending on the nomenclature), as recently sum-
marised in [19] and extensively described in [59]. Each describes the approach to processing
taken by the algorithms to perform final clustering. We distinguish the following clustering
types:

• Partitioning: This type of algorithm divides the space of the processed dataset into a
predefined number of partitions. Each partition represents the final cluster, consisting of
data within the partition boundary. Iterative relocation is performed by moving data from
one cluster to another, starting from an initial partitioning. The most well-known type of
partitioning clustering is the k-means algorithm [23], which is illustrated with an example
in Fig. 2.4 below;

Figure 2.2: Example of partitioning in Euclidean space by a partitioning clustering method
(colours define the found clusters, with black dots as centres; letters indicate the reference
object class, which was ignored during unsupervised learning).

• Hierarchical: A data cluster representation is organised in the form of a dendrogram,
with objects as leaves. This type of clustering may use two methods of building a clus-
tering structure, depending on the starting point: agglomerative (bottom-up) or divisive
(top-down). The former starts with the processing of clusters containing single objects
and then iteratively merges them based on mutual distance, while the latter performs the

17

reverse operations, and the whole dataset is split into smaller clusters. Both algorithms
stop processing when they reach a defined stopping criterion, usually based on a par-
ticular number of found clusters. Using this type of approach, we can obtain different
clusters, even consisting of nested groups, by changing the stopping criterion for process-
ing. An example is presented in Fig. 2.3. Algorithms of this type include BIRCH [71]
and CURE [22];

 |
 35

 | |
 30.41 |
 ___________________ |
 | | |
 18.03 | |
 ____________ | |
 | | | |
 18.03 | 14.14 25
__________ | ________ _____________
| | | | | | |
| 11.18 | 14.14 | 11.18 11.18
| _______ | _______ | _______ _______
11.18		14.14		10	11.18								
_____		_____		_____	_____								
A A A A A B B B B C C C D D D
 _ _____________________

 _ _ _ _

(a) (b)

Figure 2.3: (a) Example dendrogram showing the hierarchical clustering method; (b) changes
in clustering results depending on the stop criterion (two or four groups) for processing data.

• Density: In this method, data objects are grouped into clusters based on the connectivity
between the objects. Depending on the parameterisation for the chosen algorithm, data
samples take the form of dense groups in terms of the specified distance measure. Pro-
cessing usually starts with a single object and grows until the boundary is reached, defined
as a non-connective neighbour. In the density-based approach, algorithms naturally find
outliers, anomalies or simply noise in data. An example of the processing results of the
OPTICS [4] algorithm depending on the ’density’ parameterisation is shown in Fig. 2.4;

Figure 2.4: (a) Example of the resulting structure of the OPTICS algorithm as ordered points
and their neighbour reachability distance; (b) differences in the possible clustering results de-
pending on the ε ′ parameter.

18

• Grid: This method divides the data space into a grid with a specified size. Each grid
cell is then processed by analysing the density of the objects present within it, and by
combining neighbour cells into clusters when the neighbour density reaches a specified
threshold. This behaviour is similar to the agglomerative approach of a hierarchical clus-
tering algorithm. The processing time and complexity depend more on the size of the grid
than the size of the dataset;

• Model: In this type, we assign data objects into groups based on a predefined mathemat-
ical function. The assumption is that based on the statistics of the data, we can define a
function that describes the data characteristics and hence form a clustering model. The
algorithm then tries to optimise the assignment of data into clusters by fitting the data to
the defined model.

The complexity, parameterisation, and types of data that an algorithm can process depend on the
particular implementation. In general, assigning an algorithm to a particular type is an arbitrary
decision based on an analysis of how the algorithm processes data samples to form groups.

The range of applications of clustering is wide, from exploring data or identifying patterns
using cluster analysis to anomaly detection. The choice of a suitable algorithm for a specific
task depends on the problem, and requires a priori knowledge of the data characteristics and
volume.

2.3.2 Classification

Unlike the clustering task, in which learning is unsupervised, classification is a supervised learn-
ing method. The aim is to determine or identify an observation category based on the model.
The model is built based on the training set, and a priori knowledge of the data in this set is re-
quired, meaning that classifiers cannot categorise observations into previously unknown classes.
Nevertheless, depending on the classification model, we can often state the confidence level of
the predicted class.

We cannot divide classification methods into a fixed number of types in the same way as
clustering methods, as classifiers differ based on the approach used to build and apply a model.
We can, however, list the most popular approaches and methods as follows:

• Probabilistic: In this approach, prediction is based on a statistical probability analy-
sis of objects and their attributes, where the probability defines the possibility of being
categorised into each class. The most well-known example of such a classifier is naive
Bayes [65];

• Neighbour: Here, assignment of a new observation is made based on its similarity to the
closest object in the training set, taking its class as the prediction. The k-NN classifier [55]
is a prominent example, as it is probably the most widely used in practice due to its
simplicity;

19

• Decision trees: In this method, prediction is defined by a set of decisions based on ob-
servation attributes that lead to the leaf representing the target class. The structure of the
model is in the form of a tree, with branches describing decisions and leaves correspond-
ing to the final categorisation. A sequence of decisions from the root defines a path to the
prediction. This is probably the most popular method, with various implementations, and
is easily applicable to both numerical and nominal data;

• Support vector machines (SVMs): This is a family of classifiers in which data are di-
vided into two categories in the training phase, falling ’above’ and ’below’ an
n-dimensional plane defined as a function based on the boundary points (support vec-
tors) and kernel function used. The algorithm tries to maximise the gap between two
classes of objects by fitting the kernel function and thus finding support vectors. The
great advantage of this method is the possibility of changing the kernel function to clas-
sify well linearly separable data and perform nonlinear separation. This is an example of
a binary classifier, and applying it to a multiclass problem requires additional actions that
are described later in this section;

• Boosting (ensemble): This method assumes the utilisation of a meta-algorithm based on
multiple weak classifiers that finally create a single strong classifier. Weak classifiers are
defined as those that are not well correlated to the problem but are better than random
guessing. For instance, a single weak classifier can be trained on a subset of the train-
ing data. Multiple methods use this approach, often based on decision trees such as the
random forest or AdaBoost algorithms;

• Neural networks: These are probably the most popular classification method nowadays;
they were inspired by biological neural networks, and provide outstanding prediction re-
sults. The architecture of the network depends on the problem to be solved in terms of the
number of inputs (usually data attributes) and outputs (classes). A typical architecture is
based on a graph structure consisting of a few layers and initial weights assigned to nodes.
The nodes between the input and output nodes of the graph are the layers. In the learning
process, the weights are updated based on the training samples and the learning function,
allowing the final model to predict new observations correctly. Numerous different types
and architectures of neural networks exist in the literature, and they are widely studied,
although they fall outside the scope of this work.

In addition, we distinguish two types of classification: binary and multiclass. In the former,
the classification result is binary; for instance, a spam filtering algorithm may determine whether
a message is wanted or not. Many classifiers are designed for binary classification, such as
the SVM classifier, although the multiclass problem can be handled by splitting the dataset
into multiple binary classification datasets. This can be done using two strategies. The first,
which is known as the one-vs-rest (OvR) strategy, assumes the creation of multiple datasets for

20

comparison of each class with the remainder. In the second, which is called the one-vs-one
(OvO) strategy, the created datasets consist of each pair of classes for comparison. Regardless
of the chosen strategy, we can build multiple binary classifiers, the number of which depends
on the number of classes available in the dataset. For the OvR strategy, we build N classifiers
for N distinct classes, while for the OvO strategy, we need to prepare N·(N−1)

2 binary classifiers.
These binary classifiers produce predictions which differ from one another, and we therefore
need to decide how to choose the final result using a voting strategy. The range of possible
voting strategies is large [72], but the most typical is majority voting, in which the most frequent
prediction is chosen as the final result.

2.4 Data similarity

Any algorithm that processes data for a clustering or classification task needs to compare data
samples to each other, and a similarity measure is a way of enabling this comparison. We can
also distinguish a dissimilarity measure, also known as a distance measure, which defines how
distinct two data objects are. Similarity is usually expressed in numerical values in the range
[0,1], or as a binary quantity for nominal attributes; typically, 0 means no similarity at all, while
1 means indistinguishability, although this is not a rule. In some cases, we may not know the
maximum value of the dissimilarity between some data, for example in numerical space, and
we then use the ’distance’ measure instead. The relationship between similarity and distance is
such that a smaller distance indicates a higher similarity between the data.

A similarity measure is typically used in conjunction with classification tasks, in which the
aim is to predict the class by finding the similarity in the model. The model is trained on data
that describe new potential observations, so we expect similarity. In the clustering domain,
the term ’distance measure’ is often used interchangeably with ’similarity’. This is because
we group similar objects together and divide data into separated clusters so that objects from
various clusters show high dissimilarity.

There are many similarity measures that have been defined, and the most suitable choice de-
pends on the data being processed and the problem to be solved or the question to be answered.
A broad survey of existing measures can be found in [14]. Commonly, algorithms operating on
numerical data use the Euclidean distance to compare data samples; however, this is not a rule.
The cosine measure works better when comparing vector representations of text documents. On
the other hand, specialised algorithms can work with custom similarity metrics; a comparison
of genomic data, described by specialised structures, is an excellent example.

2.4.1 Metrics

A distance measure can be considered a metric when it meets several conditions. Not every
measure can meet these conditions, but if an algorithm knows how to utilise metrics features

21

for processing, this can have a strong impact in terms of better performance. For instance,
the results obtained by the authors of [38] suggest that using the triangle inequality property
to reduce the neighbourhood search space makes the improved DBSCAN clustering algorithm
much more efficient, especially for high-dimensional data. Nevertheless, a given measure can
be acknowledged as a metric if and only if it satisfies the following four conditions:

1. Non-negativity: d(p,q)≥ 0 for any two distinct observations p and q,

2. Symmetry: d(p,q) = d(q, p) for all p and q,

3. Triangle inequality: d(p,q)≤ d(p,r)+d(r,q) for all p, q, r,

4. d(p,q) = 0 only if p = q.

The Euclidean distance, used in the work mentioned above, is a metric that is defined as follows:

Definition 2.4.1. The Euclidean distance for points given by Cartesian coordinates in
n-dimensional Euclidean space is defined as:

d(p,q) =
√

(p1−q1)2 +(p2−q2)2 + . . .+(pn−qn)2 (2.3)

In contrast, the cosine distance is not a metric, as it does not satisfy the fourth condition and the
triangle inequality. A cosine similarity and cosine distance are defined as follows:

Definition 2.4.2. The cosine similarity measures the angle between two vectors projected in a
multi-dimensional space, and is expressed as:

SC(A,B) =
A ·B
∥A∥∥B∥

=

n
∑

i=1
AiBi√

n
∑

i=1
A2

i

√
n
∑

i=1
B2

i

(2.4)

The result value ranges from−1 to 1. The lower limit represents exactly opposite objects, while
the higher limit represents fully similar objects. 0 indicates a lack of correlation between the
objects.

Definition 2.4.3. The cosine distance is commonly used as a complement of cosine similarity
in positive space, and is expressed as:

DC(A,B) = 1−SC(A,B) (2.5)

The possible ranges of the result are values shifted to positive space that starts from 0 and ends
with 2, where the dissimilarity of the objects increases together with higher formula results.

2.4.2 Custom measures

Depending on the application, a single metric may be most suitable; however, processed data
sometimes require custom metrics, or lean on specific search goals. Fig. 2.5 gives an example

22

of the different results obtained using different measures for the k-means clustering algorithm.
When we compare the data using the pure Euclidean distance, we obtain some results, but short
and overweight people are grouped together with average ones. To group people based on their
body structure, we could use a custom measure based on the Euclidean distance but in one
dimension, by comparing calculated BMI indices. Of course, these results could be obtained
with simple calculations, but this example illustrates the differences in the results that can be
obtained and the possibility of applying custom measures.

Figure 2.5: Example of the way in which different similarity or distance metrics may affect the
clustering results.

2.5 Measures of the quality of results

Calculating the quality of the results in order to evaluate an algorithm depends on the data
mining method used, the data and their characteristics. A suitable metric selection will ensure
correct results when new data are processed. Evaluation criteria are typically divided into two
main categories: external and internal.

The internal criterion is applied to unsupervised clustering methods. This kind of criterion
is used to analyse the final clusters, typically by calculating their compactness, homogeneity
and separability. No external information is used in this process besides the data themselves
and the cluster assignments. Various internal validity measures exist in the literature [59, 47,
64], depending on the requirements and the characteristics of the data. Nevertheless, when we
evaluate an algorithm, we typically expect certain results, and can therefore use an external
measure as a first choice. In addition, obtaining more information about the characteristics of
the results and the data can be helpful.

The external category is based on reference data results that are known in advance. For
a clustering task, this is usually a reference clustering for the evaluated dataset. To build a

23

classifier, a labelled training dataset is required, with a separate test set for verification. In
classification, the training set cannot be used as the test set, because we would then be testing
the algorithm on already known samples, which is likely to produce perfect results while the
model may fail on new observations. The test set should therefore be a separately provided
dataset or subset extracted for testing purposes. Other possibilities involve the use of cross-
validation methods for evaluation. After obtaining predictions for the testing set or assignments
to clusters, we need to compare them with references. Several metrics have been proposed, as
described in [59] for clustering algorithms and in [25] for classification algorithms.

2.5.1 Clustering evaluation metrics

The most popular external metrics are the Rand index (RI) and mutual information (MI). RI
is a simple metric that considers all pairs of data by counting their assignment to the same
or different clusters, and then compares the totals of the two clustering results. Clustering
algorithms may assign classes to data samples in an undefined order, but this does not impact
the index value. The final index lies in the range [0,1], where the highest value indicates a
perfect match. Let C1 be the reference clustering and C2 be the obtained results. RI is then
defined as shown in Equation 2.6:

RI =
a+b

a+b+ c+d
≡ number o f matched pairs

number o f pairs
(2.6)

where a is the number of pairs of data assigned to the same cluster in both C1 and C2, b is the
number of pairs in the same cluster in C1 but in a different cluster in C2, c is the number of pairs
in the same cluster in C2 but in a different cluster in C1, and d is the number of pairs assigned
to different clusters in C1 and C2.

In the basic version, a pair of totally disjoint results does not produce the lowest value of 0
for the RI. The remedy for this is the adjusted Rand index (ARI), introduced in [29], which can
be written in terms of the RI as shown in Equation 2.7:

ARI =
∑i j

(ni j
2

)
−
[
∑i

(ai
2

)
∑ j

(b j
2

)]/(n
2

)
1
2

[
∑i

(ai
2

)
+∑ j

(b j
2

)]
−
[
∑i

(ai
2

)
∑ j

(b j
2

)]/(n
2

) ≡ RI−ExpectedRI
Max(RI)−ExpectedRI

(2.7)

MI metric measures mutual dependence between two random variables that may also be
discrete by representing clustering results. Intuitively, it shows the reduction in uncertainty
about one random variable by knowing another. The value is always greater than or equal
to 0, where a higher value indicates a higher correlation between two variables. Variables
are independent when the value is 0, which indicates no matching clusters when clustering
results are compared. The MI score also has an adjusted version that does not overestimate
the results for two clustering results when a large number of clusters are found. The basic

24

version is represented by Equation 2.8 in the normalised form, to fit the range [0,1], while
the adjusted mutual information (AMI) version can be expressed similarly to the ARI except
for the replacement of RI with MI in Equation 2.7. Calculation of this function, however, is
significantly slower to compute than for the ARI.

MI(U,V) =
|U |

∑
i=1

|V |

∑
j=1

|Ui∩Vj|
N

log
N|Ui∩Vj|
|Ui||Vj|

(2.8)

where by |X | we denote the cardinality of the set X , Ui are the reference clusters, Vj are the
resulting clusters for the evaluation, and N is the total number of samples.

The selection of a measure that will give meaningful results depends on the data; for in-
stance, more reliable results are provided using the ARI for large, equally sized clusters, while
the use of AMI is better when small, unbalanced clusters exist in the data [60].

2.5.2 Classification evaluation metrics

Several metrics were summarised in [25]. In practice, the most common of these, due to the
information that can be provided, are the accuracy, F1-score (also called F-measure), and the
precision and recall, which are components of the F1-score. In the literature, weighted versions
of most metrics exist that are related to the numbers of samples in the data; although these can
be helpful, we omit them here for simplicity.

The metric of accuracy measures the ratio of correct predictions to the total number of
instances processed. It is defined as shown in Equation 2.9 for binary classification tasks, while
Equation 2.10 defines it for a multiclass problem.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.9)

where the components refer to the standard classification-related terms: true positive, false
positive, true negative and false negative.

Accuracymulticlass =
∑
|C|
i ACCCi

N
(2.10)

where ACCCi is the accuracy measure for a single class Ci, |C| is the number of classes, and N

is the total number of predictions.

Precision and recall are variations of the accuracy metric that can answer different questions:
precision gives information on how accurately we can predict positive patterns, while recall
provides information about the proportion of positive patterns in the correct predictions. These
are defined in Equations 2.11 and 2.12. Using these expressions, we can define the formula
for F1-score as in Equation 2.13, which represents a harmonic mean between the values of

25

precision and recall.

Precision =
T P

T P+FP
(2.11)

Recall =
T P

T P+FN
(2.12)

F1-score = 2 · Precision ·Recall
Pprecision+Recall

(2.13)

As with clustering, the same choice of appropriate measure selection applies to the classifi-
cation task, which also depends on data. For example, the F1-score gives more comprehensive
information when processing highly unbalanced datasets [30].

2.6 Distributed processing

In the past, standard algorithms have been designed to work sequentially, with access to the
whole dataset at once. However, we cannot simply run an algorithm such as this in a parallel or
distributed mode due to the implementation, which is unsuitable for this purpose. Hence, new
algorithms have begun to be developed, initially for parallel operation and then for a distributed
environment.

In distributed processing, parallelisation may be applied within local computation units in
order to speed up algorithms. Explicit differences between parallel and distributed processing
are often subtle, and should therefore be clarified. In distributed processing, computations are
run simultaneously on multiple independent nodes and datasets, while the parallel approach is
based on access to the entire dataset at once.

The essential aspect of both parallel or distributed processing is the orchestration of the
execution steps and access to the data resources. The data may be located in a single storage
centre and accessed by all the computational nodes; a more complicated situation that needs to
be handled by the algorithm is when data are stored in independent locations, and only certain
computational units have access. Various architectures have been developed for distributed data
processing. The general term for the group of algorithms and tools that "mine" data in a dis-
tributed environment is DDM. Two main concepts underlying fully distributed computation can
be identified in the literature. Originally, the most commonly used approach relied on a central
coordinator [31, 32, 57] for communication. A recent, widely studied concept is decentralisa-
tion utilising peer-to-peer communication between nodes [7, 16, 58]. Since 2017, however, the
most popular and extensively developed approach has begun to be FL, which was introduced
by Google and returned to the use of a central coordinator. Each of these concepts has specific
advantages and disadvantages; in particular, a peer-to-peer (P2P) architecture requires a more
complex infrastructure and more sophisticated methods of communication.

It is also worth mentioning that each type of distributed processing in data mining is a

26

specific technique of the more general DDM approach. Different terminologies are used, and
multiple tools have been developed, but the main goal remains the same: to process data in a
distributed manner.

2.6.1 Federated Learning

FL is a technique for ML in which multiple independent parties are involved in the learning
process. This technique represents a particular case of DDM, and is also known as collaborative
learning. In 2017, research scientists Brendan McMahan and Daniel Ramage introduced this
approach in a blog post1 entitled "Federated Learning: Collaborative Machine Learning without
Centralized Training Data".

In this processing model, the whole dataset is not collected in one central place, but is kept
on local devices or nodes. The primary goal of this technique is to make the model smarter
by using data from multiple independent devices, thus avoiding the transfer of local data to
the central site and reducing latency through the use of small updates. The learning process
starts with the initial model sent by the central server to every worker node. Next, each worker
trains his model using its local data and returns the difference. The central node collects these
differences and performs averaging to create a global prediction model. The process can then
be iterated, depending on the algorithm chosen.

2.6.2 Spark

A large number of algorithms have focused on the current leading distributed processing plat-
form, which is Spark [70] working on a Hadoop [63] cluster. The Spark platform provides an
abstraction of the data called RDD, which represents a read-only multiset of the data and an
interface for processing large amounts of data in a distributed environment, consisting of mul-
tiple workers in a cluster. The platform manages the cluster and sends the code to the workers
for execution, thereby minimising data transfers and the number of execution steps required to
finish processing. Following years of development, the current version of the platform has been
extended, and now offers multiple features, from the execution of ML/big data algorithms to
the application of SQL queries to big data and support for streaming algorithms. However, the
essential feature (and the main drawback) is that it seamlessly handles both the orchestration of
execution and data access. The drawback lies in the fact that the Spark platform controls the
execution and the data source in an unspecified—and, more importantly, uncontrolled—way.
Security awareness is high in modern distributed collaborations between institutions that rely
on the processing of distributed data, and the privacy aspects of this unknown behaviour are
potential grounds for exclusion of this platform from collaborations outside the industry.

1https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

27

2.6.3 Docker

Although Docker [53] is not a tool or framework that is directly applicable for distributed pro-
cessing, it is widely used for both simulation and application scalability purposes. This tool
allows for virtualisation at the operating system level, creating isolated containers that can com-
municate with external entities when configured. The Docker system is commonly used for
production applications and development, as it makes it easy to set up and clean the entire envi-
ronment. It is extensively used for real distributed processing due to its simplicity and the high
level of control that is possible. The most important aspect in terms of security and control is
that by using Docker, we can easily separate containers from other systems and control access
to them and the available resources.

28

Chapter 3

Related work and methods

The process used to evaluate different algorithmic methods depends on the purpose of the algo-
rithm, and involves different execution aspects and evaluation approaches. The usual issues that
are analysed include how well the algorithm performs in terms of its quality, how fast it runs,
and the network load and communication. We can identify two main trends in the evaluation
of these algorithms: the first is related to the data, and is more theoretical and formal, with a
focus on distribution characteristics, while the second relates to benchmarking algorithms for
orchestration and communication alongside performance measurements.

In the literature, there is substantial diversity in the use of terminology, and the term ’frame-
work’ is used interchangeably with ’platform’ and even ’testing methodology’ is confused with
’benchmarking’. In fact, their meanings are not identical. This section divides approaches to
evaluation into categories based on their origin, type and purpose, and places them in context
with regard to the main trends. We first describe the categorisation of the data distribution prob-
lems faced by modern distributed algorithms when working with independent data nodes with
different distributions, usually with limited access.

3.1 Categorisation of non-IID data distributions

In a paper from 2019 on the open problems in FL [33], the authors introduced a taxonomy
of non-IID data regimes, particularly for FL, and identified the main categories for one such
regime. A visualisation of this taxonomy is presented in Fig. 4.1. We recall that the recently de-
veloped and well-known FL is a specific technique of the more general DDM approach, where
the abovementioned open issues in the processing distributed data apply regardless of the tech-
nique used. The authors do not refer to a specific data type, but rather to the characteristics
of data attributes that may vary for different client nodes holding data. They defined five cate-
gories of "non-identical client" distribution that closely reflect the possible data distributions in
the real world, and examples of these are given in Section 2.2.2. However, a single category of
data distribution includes various forms of dataset partitioning. Based on the simplest category
of ’unbalancedness’, an imbalance can be expressed as an inequality such as A(p) < A(q) or

29

A(p)≪ A(q), where A describes the amounts of data on partitions p and q. This simple exam-
ple shows missing subcategories in the taxonomy required to distinguish diverse forms of data
partitioning under the main categories. In this work, we give an overview of partitioning strate-
gies and provide a more detailed analysis of this taxonomy in Section 4.1.1, where an extended
version of this taxonomy is proposed.

Another categorisation scheme for non-IID data, with a strong focus on images and time
series, which are partially beyond the scope of this work, is presented in [73]. The authors do
not use the term ’taxonomy’, and instead refer to a ’categorisation’. These categories can be
presented in a tree-like hierarchy with subcategories, as illustrated in Fig. 3.1.

Non-overlapping
attribute skew

Partial overlapping
attribute skew

Subcategory

Main category

Non-IID data categorisation

Attribute skew

Full overlapping
attribute skew

Label skew

Label distribution
skew

Label preference
skew

Temporal skew Other scenarios

Quantity skewAttribute and label
skew

Figure 3.1: Non-IID data distributions, as categorised by the authors of [73].

We can find multiple analogies for the client distribution regime described in [33]. As the
name suggests, ’attribute skew’ corresponds to covariate shift. ’Label distribution skew’ de-
scribes a single corner case of the prior probability shift, while ’label preference skew’ refers to
the issue of concept shift. The problem described by the ’temporal skew’ category arises in time
series data, and specifically concerns time shifts in data. It is therefore a mixture of the cases of
’non-overlapping attribute skew’ for a single timestamp attribute and the ’partial overlapping’
issue, as introduced by the authors of [73]. Based on the ’Other scenarios’ example, we can as-
sume that it discusses ’unbalancedness’ category. Presented ’Attribute skew’ and ’Label skew’
relate to unstructured data comparison or mixing main categories.

The data categorisation presented above may help in better evaluating algorithms for pro-
cessing video footage, as it is based on image and time-series data. Nevertheless, this cate-
gorisation is a particular case of the non-IID open problems for the image data and does apply
strictly to such datasets only.

3.2 Uneven data distribution

Due to the widespread use of data distribution, the testing of algorithms with differently dis-
tributed datasets has attracted strong interest. In the literature, we find only a few available
non-IID datasets that are already partitioned and ready to use for evaluation, called benchmark-
ing datasets. Several methods of generating synthetic partitions have been presented, while

30

current research is more focused on simulating the partitioning of existing datasets. In some
methods, partitioning simulation interference with data attributes. Modifying the dataset is not
recommended as this is similar to data generation, since either generating or perturbing data
follows a similar predefined pattern of attribute modification.

3.2.1 Naturally partitioned datasets

Worldwide exist individual naturally collected non-IID datasets that have been published and
are available. This situation is usually caused by data regulation and privacy concerns limita-
tions; hence, this kind of dataset is difficult to obtain, as reported in [42] with reference to [28].

The authors of [48] published the first and only available non-IID dataset, consisting of
images collected from differently located cameras additionally tagged with location and some
metadata. Each image is labelled with a finite set of seven objects that can be found in them. In
addition to the raw data, the authors provide two divisions of this dataset into client partitions,
both of which simulate the category of ’unbalancedness’, that is, an imbalance between clients
where the data samples vary across partitions. The first considers the geographic locations of
the nearby cameras, which are the sources of the images, and groups their images together on
each partition. The second division separates each camera source as a single independent client
with data. Both of these divisions naturally form ’prior probability shift’ partitioning. The
dataset is small and is dedicated to object detection in computer vision problems.

In another work [26], the authors analysed real-world examples of so-called ’skewed label
partitions’ in data. They studied the geographical distribution of mammal pictures on Flickr,
and produced the Flickr-Mammal dataset: a non-IID partitioned dataset corresponding to geo-
graphic regions. In contrast to the dataset described above, this was artificially created according
to the presence of each animal in a geographical region, and more effort was required to pre-
process the data. Several interesting findings were discussed, such as the worldwide share of
mammals’ presence on each continent. For instance, the share of kangaroos and koalas in Ocea-
nia was 92%, suggesting that they are outliers or anomalies in data samples from other regions.
A natural distribution of this type may be much more challenging to process and classify using
decentralised algorithms. The authors also propose another data partitioning strategy in their
work by controlling ’skewness’ in specific data label occurrences on separate partitions. This
prepared set was also an image-type dataset, similar to the previous one, and according to the
example mentioned above, the data distribution relates to the ’prior probability shift’ issue.

3.2.2 Generation of partitioned datasets

Generating means doing something from scratch, and similarly to the available datasets, a small
number of works can be found in which synthetic data are created with uneven distributions.
Multiple works have reported the evaluation of algorithms, usually FL algorithms, using real

31

non-IID datasets being generated [44, 46, 41, 27]. At the same time, they are actually simulate
"non-IID-ness", referring directly or indirectly to the paper in [52], which is one of the first
examples of preparing non-IID partitioning. The authors of this work divided two datasets,
MNIST [40] and CIFAR-10 [37], to form partitions with only a few classes of data sample,
called pathologically partitioned non-IID data. From this work and the related references, we
can observe the strong popularity of simulating different data distributions on certain datasets,
such as MNIST [44, 52, 46, 41], CIFAR-10 [52, 46, 41, 27], and EMNIST1 [44, 34].

The authors of [42], [12] and [44] demonstrated methods of generating synthetic non-IID
datasets. In [12], the authors introduced a synthetic data generator that operated with two set-
tings: task-dependent, and clustered around more than one centre. This was intended to cause
current meta-learning methods to fail due to the additional heterogeneity. The method of gen-
erating a dataset proposed in [44] was based on a similar concept, and involved generating
data partitions with more heterogeneity in the partitioned data. The authors also referred to
the method of generating a non-IID set introduced in [62]. This basic generation method was
created to verify distributed communication optimisation even before the FL term was defined
in 2016 [36] in the way it is currently understood.

Since generation means creating something new, we can also classify methods that modify
data attributes as data generators, since they change the characteristics of the original data.
In a recent paper [42], one of the methods applied to achieve covariate shift in the form of
feature distribution skew was the addition of noise to data attributes. The same approach to
generating this kind of distribution was presented in [46]. The authors also introduced a method
of generating their FCUBE dataset of synthetic three-dimensional data, which involved dividing
the dataset into small cubes to form partitions with feature distribution skew.

3.2.3 Simulation of data distributions

Most works have focused on simulating uneven data distributions from the existing datasets
for benchmarking, but have usually created division methods that are only applicable to their
experiments. Each paper provides a more or less detailed description of the method used for
partition generation, but operates on a fixed, predefined set of publicly available data. The
most popular are image and textual datasets, including the following, which are referred to in
multiple works: MNIST [42, 44, 52, 11, 46, 41], EMNIST [42, 12, 44, 34, 11, 68, 46, 41],
Fashion-MNIST2 [42, 11], CIFAR-10 [42, 52, 11, 46, 41, 28, 27], Shakespeare [12, 44, 52, 11],
and Sentiment140 [12, 44, 11, 28]. Many authors have published implementations of their
methods for dividing these datasets [42, 12, 44, 11, 68, 46, 41]; however, they are strongly
connected with these fixed datasets, and the level of diversity in the implementation codes is

1The EMNIST dataset introduced in [15] extends the standard MNIST dataset with letters, making it more
comprehensive.

2The Fashion-MNIST dataset introduced in [69] as authors wanted to replace the old-fashioned, too easy-to-
process, and overused MNIST dataset.

32

high. Several works present only a description of the parameters used, which is difficult to
reproduce [52, 34, 24, 27].

Studies of multiple distributions can be found in [42, 46, 41], where a systematic approach
has been applied to target the open problems in FL. Nevertheless, most works focus on the
covariate shift [12, 44, 52, 34, 24] and prior probability shift [12, 44, 52, 34, 11, 28, 27], and
seldom the unbalancedness [52] of the data. The skew of features and labels is fairly common,
and is an issue strongly related to the image processing tasks to which these works refer. The
vast majority of works are aimed directly at highly distributed FL problems and divide datasets
into large numbers of partitions, often forgetting that different techniques also suffer from non-
IID data distributions.

Recently, several authors [42, 46, 41] have proposed methods of simulating multiple non-
IID data distributions. In [42], three of the five defined open problems in data distribution
were evaluated on both image and tabular (nominal) datasets with FL algorithms using different
neural networks. The authors describe the proposed dataset simulation methods with different
partitioning strategies. In their paper, label distribution skew is divided into the two subgroups
of quantity-based and distribution-based label imbalance. The quantity-based method allows a
fixed number of labels to be set for each partition. The highly extreme pathological case where
each partition contains only samples with a single label is rejected by the authors but available to
achieve as an extension of this approach. In the second approach, a Dirichlet distribution is used
to divide data samples across partitions, which may be parameterised to allow the imbalance
level to be changed in a flexible way. The same distribution function is used for quantity skew
simulation. These two label distribution skew methods do not cover every prior probability
shift scenario, and this is especially true for the first one, which is neither deterministic nor
very customisable for simulating different cases of data distribution. The authors also divide
feature distribution skew into several subgroups. The first assumes the addition of noise to
the data, while the second refers to the FCUBE method of dataset generation, as described in
Section 3.2.2 above. The last subgroup assumes that real-world feature imbalance follows a
natural data distribution, provided by random and equal scattering. However, this assumption is
generally incorrect, and may only be applied to a specific dataset where the data are split based
on these independent features to achieve a non-IID distribution. When we randomise samples,
we achieve a uniform distribution across partitions. Of course, this depends on the distribution
function used with the order of the data samples, which were not mentioned. The authors do
not consider the problems of concept drift and concept shift.

The authors of [41] considered data partitioning simulation for the same three main groups.
They found that in practice, real datasets contained a mixture of non-IID categories, and hence
performed experiments that combined feature distribution skew with label distribution skew
partitioning, and both of these with quantity skew. Partitioning was based on choosing several
classes per node and disturbing the balance between the numbers of data samples across the

33

partitions. The authors neglected the aspect of feature skew by grouping data samples based on
dataset-specific features, for instance, based on the writer for the MNIST dataset. Their expla-
nation included a strong assumption that the MNIST dataset represented a typical example of
feature distribution in view of its characteristics; however, this assumption can only be applied
to concrete datasets.

In contrast, the authors of [46] considered the issue of concept shift but dismissed con-
cept drift in similar way to previous approaches. The ’unbalancedness’ method was briefly
described, in which the sizes of the partitions, called ’shards’, were set manually to determine
the impact on processing; however, no results were presented. Prior probability shift partition-
ing was achieved using a combination of related parameters, such as the number of nodes and
dataset size, but the explanation was unclear. For concept shift, the authors suggested dividing
the main class of images from the CIFAR-10 dataset into multiple contexts describing the back-
ground. This method implies a different understanding of the data sample, in the sense of what
is the recognised object on the image but requires manual or semi-automated work.

In [11], the authors introduced methods of simulating the unbalancedness, covariate shift
and concept shift. The main problem here was that they confused the meaning of imbalance in
terms of amount with imbalance in terms of class, by introducing the "random split" category.
A second problem concerned the confusion of covariate shift and concept shift with prior prob-
ability shift for the first two types of the "split by label" category. Concept drift, defined as Type
2 of their "split by label" category, was a mix of covariate shift and concept shift. A pure con-
cept shift is unavailable in their method, as two workers could not share the same sample with
different classes. However, the division methods used were not described in detail. The two
newly introduced categories were strictly related to the prior probability shift, as this is primar-
ily associated with data division based on labels. A similar focus in this non-IID category can
be found in [27], where this type of distribution was simulated using a differently parameterised
Dirichlet distribution.

Several recent publications have documented different approaches to simulating non-IID
data partitions. Most of these authors have prepared data for the evaluation of their algo-
rithms [52, 34] or have introduced new benchmarking frameworks [12, 44], as discussed in
the next section. Moreover, most of the works in this area consider image datasets and a perfor-
mance evaluation of the different neural networks used in FL.

3.3 Benchmarking datasets and tools

In the literature, the term ’benchmarking’ has multiple meanings. In most cases, it is assumed to
refer to a complete tool that takes an algorithm as an input, simulates the execution environment,
processes it and provides results that can be compared. The most difficult task is to implement
such a tool to be generic and applicable to various algorithms. The opposite approach is to

34

prepare a set of datasets with specific characteristics that exploit corner cases for algorithms,
and this is one of the benchmarking categories mentioned in [43]. It is the most popular method
of comparing algorithms using the same dataset and of providing results in terms of quality,
memory and execution time. Nevertheless, this approach is becoming deprecated in distributed
computing, where multiple data distribution possibilities, transfer load and privacy are impor-
tant issues. A balanced and popular option is to create a framework combining both of these
approaches. This requires a custom interface to be implemented, but it simultaneously provides
the data and their different distributions. Due to the current popularity of FL algorithms written
in the Python language, most of the recently developed tools focusing on this technique have
been implemented in Python.

3.3.1 Dataset-based benchmarking frameworks

Very few publications refer to pure, ready-to-use datasets as benchmarks, and this is under-
standable due to the myriad possibilities in regard to data distribution. These works suggest a
specific division of the data samples across partitions [48, 26] or directly describe the possi-
bilities for customised distributions [12, 24, 46]. The first group concerns preparing datasets
with specific characteristics that can emphasise the weaknesses of the evaluated method. The
second group can be categorised into those similar to frameworks, where the dataset used in the
evaluation and parameterisation of the distribution is an option that can be chosen. In contrast
to other works, the authors of [24] focused on preparing a customisable non-IID dataset for
benchmarking image classification algorithms, rather than creating a new framework.

Since FL has become the most popular method, and the issue of non-IID data distribution
has started to be investigated, frameworks for this technique have followed the main language
of the algorithms, which is Python. Hence, most evaluation frameworks are dedicated to FL al-
gorithms and are written in Python [12, 44, 11, 46], although individual works can be found that
refer to the evaluation of other distributed techniques, especially with a focus on dataset charac-
teristics. Examples include Spark applications for benchmarking frameworks [9] and [66]. The
PEEL framework proposed in [9] seems to be an interesting approach to testing; nevertheless, it
is tightly related to the definition of a complex programming test suite, and does not consider the
issue of data partitioning. The second of these works [66] introduced a benchmarking test suite
with representative algorithms and datasets that allow for performance comparisons in general,
including resource usage and transfer load rather than quality, and was dedicated to evaluating
the Spark engine.

Most benchmarking frameworks in the literature with support for uneven data distribution
offer the possibility of simulating a non-IID data distribution and evaluating algorithms on it,
and collecting certain metrics as a result. The main issue with this approach is that these frame-
works are limited to the small variety of datasets offered with the tool, and require individual,
customised preprocessing. The datasets used in this paper were referred to in Section 3.2.3.

35

The authors of several works [42, 12, 44, 11, 68, 46, 28] provide a finite set of datasets that are
available for their benchmarking tools. All of them are implemented in Python, and evaluate
the performance of FL algorithms on these data with different distributions.

Many other tools are described in [43]; however, there is as yet no overall consensus on how
to evaluate distributed algorithms properly, nor how to define metrics for the non-IID-ness of
data.

3.3.2 Evaluation platforms

Non-FL distributed processing tools and algorithms have also been intensively developed across
the world, but very few universal platforms are available, as described in [50]. In a similar way
to FL benchmarking tools, they were created for the purpose of validating other DDM methods,
and can be found in [45] or in our latest work [50] in this area, which is summarised in Sec-
tion 4.3. We categorise such works as platforms, since they offer the user a more experimental
approach and provide extensibility with custom algorithm implementations. The aim of using
them is to experiment and compare, whereas the benchmarks described earlier focus on fixed
test suites rather than practical usage. This kind of experimental approach is also offered by the
TensorFlow Federated (TFF) platform [10] or PEEL framework; however, the first platform is
restricted to FL-like algorithms and the second framework to Spark applications.

Unlike the frameworks described here and in previous sections, the authors of [45] focus
more on decision trees than FL algorithms, although their approach is not limited to such meth-
ods. This promising system is based on the agent and artefact paradigm, and is highly con-
figurable via an XML code called JaCa-DDM [45]. In this system, agents are responsible for
orchestration and communication, while artefacts are wrappers for Weka [67] classes, as the
JaCa-DDM system works around the Weka environment through the so-called ’agentification’
of Weka for code reusability. The system itself meets many of the requirements for benchmark-
ing: it collects processing times, traffic sizes during the training phase, and quality measures. It
also strongly focuses on different execution (learning) strategies, which include communication
methods and data transfer between agents and nodes. The data partitioning aspect is simpli-
fied to a manual data distribution configuration setup and a simple hold-out or cross-validation
distribution. This choice was made because the authors noticed that the core problem in such
agent-based DDM algorithms is not learning but collaboration. The limitations noted by the
authors are that the simulation of distributed processing in which data is actually distributed
in the experiments, while the agents are kept local on the same node. Data models that are
strongly connected to Weka and MOA [8] and a lack of user-friendly configuration have also
been reported as limitations. This approach focuses on the system orchestration, setup, and tear
down environment, and neglects the simplicity of usage and the analysis of results. The aspect
of data partitioning is bypassed, and is left to the user to perform manually.

36

Chapter 4

Partitioning methods and algorithm
evaluation

The algorithm evaluation method presented in this chapter consists of several steps. The first
step relates to the different data distribution methods and the simulation of these distributions.
The second involves the proposed adaptation of a distributed algorithm as an example of how to
achieve more insensitivity to an uneven data distribution. The third step relates to the platform
used to prepare the evaluation environment and to execute the defined test suites. As a main
contribution of this work, we propose an approach to testing with multiple data distribution
test suites that opens up the possibility of examining the performance of the overall distributed
algorithm. The data are not limited to a uniform distribution, and the results are not restricted
to single metrics.

This chapter is divided into three sections corresponding to the abovementioned steps. The
first is related to non-IID data partitioning methods, while the second presents an adapted hybrid
version of a clustering algorithm that is robust to the data distribution, and the last is dedicated
to the evaluation platform.

4.1 Data-distribution-based evaluation method

In the following subsections, we describe methods of preparing uneven data partitioning from a
provided dataset for each non-IID main category. Our contribution is not limited to the proposed
methods, and we also systematise their organisation.

4.1.1 Taxonomy for non-IID data partitioning

The taxonomy of non-IID data regimes introduced in [33] includes reasonably general cate-
gories, but requires standardisation and organisation in terms of the tree-graph structure. The
basic version can be drawn as shown in Fig. 4.1. The taxonomy is strongly focused on FL issues
when referring to general data partitioning issues.

37

Non-identical client distributions

Covariate shift Prior probability shiftConcept driftConcept shift UnbalancednessMain category

Dataset shiftViolations of independenceSource of dependence

Non-IID data regimes

Figure 4.1: Illustrated taxonomy of non-IID data regimes.

The root of the taxonomy is divided into three ’source of dependence’ paths, according
to [33], which originate from the FL domain. ’Violations of independence’ refer to the problem
of missing access to several partitions during the training phase. In the general partitioning case,
this maps to the situation of missing data (required or not) for the model preparation. ’Dataset
shift’ refers to the issue where training is carried out using data whose distribution characteristic
is entirely different from target data where the built model suppose to be applied for. This also
refers to missing data or the case where the wrong source partitions are selected for training.
Those two issues are more strictly related to the FL technique, whereas our primary interest is
in non-identical client distributions, as this refers strictly to the data distribution itself. Data can
be divided across partitions horizontally or vertically, although the horizontal approach is more
typical and hence is more closely analysed.

After a deeper exploration of the hierarchy, we noticed that this taxonomy was not detailed
enough to determine whether testing an algorithm with a single distribution category is sufficient
to say that the algorithm will work properly regardless of the data distribution. The various
partitioning methods described earlier can be applied to simulate the same non-IID categories
through the use of distinct techniques and modifying selected data properties. It is necessary to
define additional levels to understand the hierarchy better and to avoid possible overlap between
partitioning strategies for certain data distribution characteristics. The proposed taxonomy is
illustrated in Fig. 4.2; a defined hierarchy shows data partitioning strategies associated with the
main categories and their relationships to the properties of the data.

Each dataset consists of samples described by multiple properties. When analysing these
data in terms of partitioning methods, we can extract three major properties. The basic one is
related to the number of data samples, in which the number of data samples placed on the sep-
arate partitions impacts the processing performance or the initial statistical analysis. This plays
a more significant role in horizontal partitioning than in the vertical approach, where it would
be a partial data property in terms of partitioning. Vertical partitioning splits the entire dataset,
and an analysis of the number of data samples would split it along a second dimension, which
does not naturally fit the hierarchy presented here. The attribute relation can be applied to both
horizontal and natural vertical partitioning. Different attributes are placed on different computa-
tional nodes when a dataset is partitioned vertically, whereas in horizontal partitioning, attribute

38

Vertical

Non-identical client distributions

Horizontal

Attribute-related Label/class-related Amount-related

Covariate shift Prior probability shiftConcept driftConcept shift Unbalancedness

- “Dense and outliers”
- “Diff. statistical attr. distribution”
- … - “Separated”

- “All but”
- “Missing some”
- “Most plus some”
- “Most plus all”
- …

- “Split by attribute”
- …

- “Artificial label”
- …

- “Unbalanced labels”
- …

Data property

Main category

Partitioning strategy

Dataset shiftViolations of independence

[...] […]

Source of dependence

Non-IID data partitioning

[possible strategy mix]

Figure 4.2: Extended non-IID data partitioning taxonomy, including new levels representing
’data property’ and ’partitioning strategy’.

distribution plays an essential role and depends on the distribution characteristics, and has dif-
ferent impacts in the various types of algorithm used for processing. The last data property
introduced in our taxonomy relates to the data sample class or label, which is treated as a spe-
cial attribute. Unlike the attribute relation, it does not naturally fit with vertical partitioning, as
the class attribute would not then be distributed over multiple nodes. The distribution of classes
among partitions is crucial during the training phase, but plays a minor role in unsupervised
methods.

The data properties described here form a natural bridge between the basic types of par-
titioning and the non-IID distribution categories introduced in [33]. They directly show the
origin of the issue for those main categories. More detailed descriptions of the main categories
are presented in later sections. None of these open issues relates to each category, and hence
we cannot state that partitioning a dataset using a single data property will allow for a compre-
hensive evaluation of an algorithm. However, we can prepare dataset distribution methods that
simulate all of these open issues. For the purposes of standardisation and better organisation, we
introduce a specific new leaf level of the taxonomy, which represents partitioning strategies. A
comprehensive algorithm evaluation should be executed for every strategy; however, scenarios
of mixed partitioning issues are also present in the real world. For example, unbalancedness can
be present in data partitioning classified for each main category. Sample strategies appearing as
leaves represent separate methods of partitioning data, and these are explained in the following
subsections.

The construction of this taxonomy offers a more detailed view of the possible data distribu-
tions. This knowledge allows us to create a comprehensive test suite covering multiple non-IID
data distributions to evaluate algorithms under different circumstances. In addition, we can

39

quickly see from this graph which main categories have been evaluated using specific data par-
titioning methods and which ones have not yet been evaluated. For example, the categories of
covariate shift, concept shift, and concept drift relate to data attributes; however, they do not
consider the quantity of data that might be required for testing the processing characteristics
of the algorithm. On the other hand, a close relation to the data quantity in prior probability
shift or unbalancedness does not concern data attributes values. We can distinguish a minimal
test suite for algorithm evaluation based on these observations. Using non-IID data, we need to
examine at least two of the five partitioning categories for that evaluation. Hence, to carry out a
correct but minimal algorithm evaluation, we need to use at least one partitioning strategy that
belongs to each data property in the taxonomy graph, since we consider different data distribu-
tion aspects in terms of data sample properties. An example set would be covariate shift and
prior probability shift partitioning, which covers each data property at a higher level. An illus-
tration of this coverage is given in Fig. 4.3. A different approximation of the evaluation might
be a mixture of strategies used as a single test case to cover multiple data properties; however,
it would exclude corner cases, which are vital for performing a comprehensive evaluation.

Vertical

Non-identical client distributions

Horizontal

Attribute-related Label/class-related Amount-related

Covariate shift Prior probability shiftConcept driftConcept shift Unbalancedness

- “Dense and outliers”
- “Diff. statistical attr. distribution”
- … - “Separated”

- “All but”
- “Missing some”
- “Most plus some”
- “Most plus all”
- …

- “Split by attribute”
- …

- “Artificial label”
- …

- “Unbalanced labels”
- …

Data property

Main category

Partitioning strategy

Dataset shiftViolations of independence

[...] […]

Source of dependence

Non-IID data partitioning

[possible strategy mix]

Figure 4.3: Clipped taxonomy graph with a sample minimal test suite for correct data property
coverage (marked in green).

4.1.2 Non-IID data partitioning strategies

In this section, we describe approaches for partitioning a single dataset to obtain each of the
main non-IID category data distributions. Methods of simulating different non-IID distributions
were presented in a recent paper [51], and are described here in more detail. These strategies for
creating different data distributions correspond to the open issues in regard to comprehensive
algorithm evaluation, in order to enable verification of the results obtained with these distri-

40

butions. Each method of splitting a single dataset into multiple partitions requires input in
the form of a dataset with labelled samples, with a specified number of target partitions and
strategy-dependent parameterisation.

Covariate shift (feature distribution skew)

Covariate shift occurs when data are distributed in such a way that the value distribution of a
single attribute or set of attributes is strongly disjunctive between partitions. In other words,
a combined histogram of data collected from each partition and grouped by origin shows a
relative shift in densities between these groups. This is illustrated in Fig. 4.4 and described in
more detail below. Although these groups consist of data samples with the same classes, the
attribute distributions are slightly different.

Figure 4.4: Examples of densities for the ’sepal_length’ attribute of the Iris dataset, in the
original case and after applying the proposed splitting method.

The figure shows the original ’sepal_length’ attribute density for the entire set of Iris data.
We can split the dataset based on this attribute in an attempt to achieve feature distribution skew.
Then, depending on the number of target partitions and the desired skew size, we can obtain
different attribute value densities for each partition. These densities vary, and the combined
chart shows data sample attribute disconnectivity. Depending on the requirements, we could
create more or fewer overlapping histograms to check that an algorithm handles each distribu-
tion in the same, correct way. Nevertheless, the possibility of splitting always depends on the
characteristics of the data, and hence when there is low variation in the attributes, the number
of possible disjointed splits is reduced.

41

Partitioning method It is easy to obtain nearly separate and evenly spaced data partitions
based on a single attribute, by sorting the data according to the value of the attribute and dividing
it into D equal parts. However, these parts have a data shi f t equal to 1

D , which is the relative
distance between the mean densities for these parts, as discussed below. Hence, to perform data
splitting for different data shifts, we need to define an objective function for this problem. In
our approach, we propose a function that consists of two user-defined parameters and unknown
variables, defined as mean data values Mn,n ∈ [1,splits],n ∈ N for each data split. The first
parameter (splits) is the number of partitions, while the second (shi f t) is the distance between
the data distribution means of the splits, which represents the target skew of the data. The
objective function is determined by mathematical induction. We define the requirement for
maintaining a certain ratio of the distances between the distribution centres of the splits as
shown in Equation 4.1 for splits = 2, and in Equation 4.2 for splits = 3:

M2−min
max−min

− M1−min
max−min

= shi f t ≡ M2−M1

max−min
= shi f t (4.1)

{ M2−M1
max−min = shi f t
M3−M2

max−min = shi f t
(4.2)

Thus, the following equation is obtained:

Mi−Mi−1

max−min
= shi f t , i ∈ [2,splits] (4.3)

It follows from Equation 4.3 that the overall shift between first and last is a multiple of the shi f t

parameter:

Msplits−M1

max−min
= (splits−1) · shi f t (4.4)

We can rewrite the above expression as in Equation 4.5:

splits

∑
n=2

Mn−Mn−1

max−min
= (splits−1) · shi f t (4.5)

In this way, we obtain the final restrictions for the objective function as shown in Equation 4.6:
∑

splits
n=2

Mn−Mn−1
max−min = (splits−1) · shi f t

Mn−Mn−1
max−min = shi f t , n ∈ [2,splits]

, splits > 1, shi f t ∈ (0, 1
splits] (4.6)

where min and max are the minimum and maximum attribute values.

Solving this problem with these constraints is not an easy task. Our goal is to minimise the
difference between the defined target function and the selected ratio. To achieve this, we need to

42

search the space of possible solutions, which grows with the amount of data. We therefore ap-
proach this as a typical search task that involves finding a solution that meets certain conditions.
This can be done in many ways, including brute force, random methods, or evolutionary algo-
rithms. In our implementation, we choose the simplest solution, which consists of two phases.
We start by sorting the data based on the selected attribute value, to create an initial even split.
We cannot assume that such a division satisfies a given condition or even that the distribution
is close to complying with the requirements; however, it is a better starting point than a random
order. If the attributes have a strict uniform distribution, after the initial split, we automatically
obtain perfect objective function value matching parameterisation equal to shi f t = 1

splits . Hav-
ing sorted the samples, we then iteratively move a random sample from one split to another,
rolling back the operation if the objective function deteriorates. The stop condition is defined
in the standard way, as a low epsilon value or a maximum number of iterations. A search for
a solution without rolling back the operation when the objective function value became worse
caused continued deterioration, and this approach was therefore abandoned. Several strategies
for moving the data samples were tested, including random splits and moving borderline data
samples between partitions, but the simplest solution turned out to produce the best results.
A random split refers to the initial state of the data samples. A moving borderline refers to
a choice of samples that gives priority to those with edge partition values rather than random
ones. Fig. 4.4 shows an example of the split obtained after applying the proposed method to a
single attribute, and we can see how the distribution of the attribute values varies depending on
the number of splits. Using a higher value for the shi f t parameter, we obtain distributions that
are widely separated with low overlap for each split. Each split represents a data distribution
dedicated to an independent target partition. For a low value of the shi f t parameter, the attribute
distribution across the splits is more mixed, although the mean values are notably disjoint.

Splitting a dataset using a covariate shift for multiple attributes at the same time is possi-
ble, and requires that the function in Equation 4.6 is fulfilled for each attribute independently.
However, the task then becomes more complex, and it may be impossible to achieve an ac-
ceptable function result for some datasets. Nevertheless, multiple experiments performed and
described in Section 5 show that shifting data based on even one attribute affects the quality of
the distributed algorithms.

Dense-and-outliers method The issue of covariate shift refers to different value distributions
for the data attributes. It has a significant impact on training when the entire distribution is
unknown on a single node, where unknown values disturb the model. At the clustering stage,
it is crucial to know the neighbourhood of the samples, especially for density-based and hierar-
chical clustering types. We can imagine that the data are split into partitions with dense groups
of samples and groups of data with the same label but treated as outliers or anomalies based on
some similarity measure appropriate to the processed data.

43

By targeting the vulnerability in many density-based algorithms that cluster similar objects,
we can design a partitioning method that exploits their nature. Using a similarity measure or the
distance between points in multidimensional space, we can easily divide similar groups of data
into dense and outlier partitions by finding the original cluster centre. We can then find the sam-
ple with the maximum offset from the centre, which acts as a base for partitioning. There are
multiple ways of assigning samples to the dense and outlier groups; a simple approach assumes
the percentage value of the maximum distance as a determinant, while a more sophisticated
scheme tries to find the real density occurrence in the data samples. Both of these suggested ap-
proaches are illustrated in Algorithms 1 and 2. After the data have been divided into dense and
outlier objects, we can distribute them among the specified number of partitions by gathering
dense and outlier instances with different labels into a single partition using a uniform distribu-
tion. We can see an example of this process in Fig. 4.5, which shows the corresponding attribute
density histograms. It is noticeable that this partitioning method gives a skewed distribution of
the features, which is why it is located in the ’covariate shift’ branch of the taxonomy.

Algorithm 1 Splitting data based on distance
Input D← data
Input percent← split percentage
Output Dense,Outliers← target

DCi ← data split by labels
for all DCi do

ci← find centre
dmax← find max distance from centre
Densei←∀s, s ∈ DCi, distance(ci,s)< percent ·dmax
Outliersi←∀s, s ∈ DCi, distance(ci,s)≥ percent ·dmax

end for

Prior probability shift (label distribution skew)

Due to geographical or cultural differences, data samples from the same class collected by
independent systems are often stored on independent nodes in different amounts. Based on
this assumption and the examples described in Section 2.2.2, we can identify many possibilities
for separating data distributions into independent data partitions. We can then distinguish the
following partitioning strategies:

• ’Separated [data]’, where it is assumed that data samples with the same class are present
only on one partition. This refers to the situation where data with a specified class stored
at a node are only accessible on that node. The distribution learning aspect disappears
for such a class, as all data samples are available locally; however, this may cause corner
case issues when the data are processed by the algorithm;

44

Algorithm 2 Splitting data based on real densities
Input D← data
Input percent← density percentage
Output Dense,Outliers← target

DCi ← data split by labels
for all DCi do

ci← find centre
Si← sort DCi data by distance to the ci
dmean← mean of distances to ci in Densei
for all Si do

updated_Dmean← dmean change after adding next si to Densei

if distance(si,ci)
dmean

< percent then
Densei← add si
Densei← updated_Dmean
continue

else
Outliersi← rest of Si
break

end if
end for

end for

• ’All [of the data] but [some]’, where specifically labelled data samples are missing from
some partitions. This scenario assumes that data samples for all object classes except one
or more for each partition are uniformly distributed when parameterised correctly. In this
case, each partition does not have a complete overview of the class representatives that
are globally present in the whole dataset;

• ’Most [of the data] plus some’, where the data are partitioned according to their labels,
and small subsets of them are then scattered among several independent partitions. Each
partition is filled with a small portion of data samples from other classes in predefined
numbers;

• ’Most [of the data] plus all’, which is the same as in the previous strategy except that
each subset is also spread over each independent partition. This scenario simulates the
case where each partition contains data for each label but with a different distribution;

• ’With anomalies’, where most data are partitioned evenly but there are anomalies due
to certain labels in single quantities. These may be present only on several partitions or
placed on each partition except the one with the majority of the anomaly class represen-
tatives.

45

50 100 150 200 250 300 350 400 450
x

50

100

150

200

250

300

350

400

450

y

label
1
2

(a)

100 200 300 400
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

De
ns

ity

100 200 300 400

(b)

Figure 4.5: (a) Example of partitioning a two-dimensional single Gaussian cluster using the
’dense-and-outliers’ method; (b) density histograms for the X and Y features showing the split
view.

All of these scenarios are based on scattering data samples across different partitions but with
different and specific distributions in each case. The first three strategies assume main concen-
trations of data samples with certain classes and several classes missing within partitions. The
last two strategies require representatives of all data classes to be kept together on every parti-
tion but in different amounts. Although it is possible to prepare a dedicated method for each
label distribution skew, it all refers to the different amounts of particular data class representa-
tives distributed across partitions depending on the selected case. Based on this and numerous
experiments that were performed to obtain different distributions, we conclude that a single but
parameterised method is sufficient to address each of the abovementioned strategies, rather than
preparing separate, dedicated partitioning methods for each of them. An analysis of the results
of our experiments showed that skew size is strongly related to the diverse percentage presence
of the representatives on the partitions depending on the scenario. This is why we extracted
these percentages as parameters of the partitioning method, as described in a later section.

46

Partitioning method The proposed method is divided into two stages, which are related to
labels and data quantities. First, we separate each class or group of classes depending on the
number of partitions, by assigning the classes in succession to the target partitions. The as-
signment is performed by iterating over the following partitions and distributing a given set
of distinct classes, one at a time, with a cyclic iterator. The iterator is used because we want
to avoid pairing classes on the same partition for different numbers of chosen splits. This ap-
proach produces many possible scenarios, and handles situations where there are significantly
more distinct classes than target partitions. We then identify additional classes for the partitions
and classes for empty partitions1. The additional classes on the partition correspond to the non-
majority representatives that are present alongside the majority. The number of distinct class
representatives is parameterised to achieve multiple different partitioning scenarios, as men-
tioned above. The method parameterisation assumes providing the number of additional classes
to be placed on the partition or the number of missing classes on the partition determined nega-
tive parameter value. When the number of partitions is greater than the number of unique labels
in the dataset, we need to choose how to fill the empty partitions, as there are insufficient unique
labels for every partition. In our method, we have two options: to fill empty partitions evenly
with samples with all labels, or to select a number of labels to be filled with data samples. The
tricky part is avoiding adding the same label to every partition. We therefore use the concept of
the cyclic iterator, as discussed above, by adding classes in order, which aligns the distribution
of labels across the partitions. As a result of the first stage, we obtain tuples with three items:
the main labels of the partition, additional labels, and supplementary labels used to fill empty
partitions. Examples of the abovementioned partitioning methods are given in Fig. 4.6. The
figure shows the final algorithm assignments of different labels, numbered from 0 to L, to each
group of labels within D partitions.

In the second step, we use simple mathematical proportions based on the provided param-
eters and the amounts of data to be transferred from the main subsets. The mathematics is
required because the minority and empty partitions must be populated with samples that are
also assigned as majority ones for particular partitions. At the end of the process, the data
samples are randomised with a uniform distribution for each label according to the defined
dependencies, and then split between the partitions.

Both steps require several parameters related to the data class separation itself between par-
titions and the quantity of data samples to be distributed. The first pair is additionalClasses

and emptyPartitionClasses, which determine how many additional classes should exist in the
partition despite the initial number of labels present in the partition, and how many labels to
add to the empty partitions. The second pair is emptyPercent and additionalPercent, which
corresponds to the second stage and describes the maximum percentage of the data that should
be used to fill empty partitions, and how much data should be used as additional padding for

1An empty partition is one without a dedicated majority of data samples for a specific label, which is possible
when the number of unique labels is lower than the number of target partitions.

47

d1=[0, 3] + [1, 2, 4] + []
d2=[1, 4] + [0, 2, 3] + []
d3=[2] + [4, 1, 3, 0] + []

Most plus all:
 D=3
 L=5
 Add=all

d1=[0, 3] + [1, 2] + []
d2=[1, 4] + [3, 0] + []
d3=[2] + [1, 3, 4] + []

All but:
 D=3
 L=5
 Add=-1

d1=[0, 3] + [1, 2] + []
d2=[1, 4] + [3, 0] + []
d3=[2] + [1, 3] + []

Separated:
 D=3
 L=5
 Add=0

d1=[0, 3] + [1, 2] + []
d2=[1, 4] + [3, 0] + []
d3=[2] + [1, 3] + []

Most plus some:
 D=3
 L=5
 Add=2

d1=[0] + [] + []
d2=[1] + [] + []
d3=[2] + [] + []
d4=[] + [] + [0, 1, 2]
d5=[] + [] + [0, 1, 2]

Separated:
 D=5
 L=3
 Add=0
 EmptyAdd=all

d1=[0] + [] + []
d2=[1] + [] + []
d3=[2] + [] + []
d4=[] + [] + [0, 1]
d5=[] + [] + [2, 0]

Separated:
 D=5
 L=3
 Add=0
 EmptyAdd=2

Legend:
 1st [] - majority labels
 2nd [] - additional labels
 3rd [] - empty partition labels

L - labels >= D - partitions

 EmptyAdd=0

L - labels < D - partitions

d1=[0] + [1] + []
d2=[1] + [2] + []
d3=[2] + [0] + []
d4=[] + [2] + [0, 1]
d5=[] + [1] + [2, 0]

All but:
 D=5
 L=3
 Add=-1
 EmptyAdd=2

Figure 4.6: Examples of different label partitioning strategies depending on the parameters L
(number of unique labels), D (number of partitions), Add (additional number of labels), and
EmptyAdd (additional number of labels for empty partitions).

other partitions. To keep the majority in the initial subsets, the former should not be less than
50%, and the latter should be at most half the value of the former. The same concept is de-
scribed in our recent paper [49] with reference to different strategies for preparing uneven data
distributions.

The parameters have certain possible ranges; however, they can be set using small border
values to obtain the abovementioned case with single representatives distributed over partitions
representing anomalies on the data partition. There are many possibilities for parameterisation,
which depend on the dataset used, the number of labels, and the amount of data. By looking
at the final result of this partitioning process, we can clearly see that this process is closely
related to both the data classes and the amount of data in terms of ’data property’ from the
extended taxonomy. In itself, it does not take attribute values into account; although this would
be possible, it would involve mixing different main categories in a single partitioning strategy
rather than a single aspect of the data distribution.

Concept drift (same label, different features)

The term ’concept drift’ refers to a problem that arises in the training phase of distributed
learning, in which a certain set of data objects from the same class on each independent node
is represented by samples with disjoint attribute values. It can refer to a fully disjoint set of
attribute values between nodes or simply a different value distribution for some attributes on
different nodes.

48

Partitioning method To simulate this type of data distribution, the dataset with the selected
label should be split to give the most separable data sample groups possible based on the at-
tribute values. In other words, we split data to create sub-groups with possibly non-intersecting
attribute values. A simple technique would be to apply a partitioning algorithm to a subset to
find a specific number of groups; however, this may be a non-deterministic method, and may
also require the specification of more parameters, which can change the results depending on
the algorithm used. We took a different, deterministic approach, as summarised in Algorithm 3,
which consists of four primary and several intermediate steps. First, we group data samples
into so-called buckets, based on the intersection of attribute values. Then we find buckets with
unique samples in terms of the single attribute values. Next, we exclude the least promising
attribute for data sample division based on its entropy and repeat the preparation of buckets

with a limited number of attributes. Removing a single attribute with lower entropy gives us
more chances to find even more buckets due to the higher diversity of values; however, if we
exclude any attribute during processing, we admit that data division with fully non-intersecting
attributes is impossible. Nevertheless, because of their low diversity, these attributes may not
play a crucial role in algorithm processing. Finally, we implement the partition creation step
based on the found buckets.

Id: a1, a2, a3
1 : a, b, c
2 : w, d, e
3 : x, y, z
4 : d, e, f
5 : w, b, b
6 : d, f, d
7 : c, c, f
8 : x, y, z

bucket 1:
 ids=[1, 2, 5]
 a1 =[a, w]
 a2 =[b, d]
 a3 =[c, e, b]

bucket 2:
 ids=[3, 8]
 a1 =[x]
 a2 =[y]
 a3 =[z]

bucket 3:
 ids=[4, 6, 7]
 a1 =[d, c]
 a2 =[e, f, c]
 a3 =[f, d]

individuals

Id: a2, a3
1 : b, c
2 : d, e

4 : e, f
5 : b, b
6 : f, d
7 : c, f

bucket 1:
 ids=[1, 5]

 a2 =[b]
 a3 =[c, b]

bucket 2:
 ids=[2]

 a2 =[d]
 a3 =[e]

bucket 3:
 ids=[4, 7]

 a2 =[e, c]
 a3 =[f]

individuals

bucket 4:
 ids=[6]

 a2 =[f]
 a3 =[d]

1st pass:

2nd pass:

3rd pass..

Figure 4.7: Example showing the found buckets with individuals for the first two passes of the
concept drift strategy. Bolded values with a cyan background are the attribute values used to
group samples into the first bucket. The sample marked ’id 5’ implicitly affects the association
of the unrelated to each other samples with ids 1 and 2, as they have a transitive similarity:
1∼ 5∧2∼ 5 =⇒ 1∼ 2.

Although we assume here that drifting is performed for a single selected label, the same
algorithm can be applied to other labels. Examples of the partitioning results for the Iris dataset
and the two-dimensional numerical single ellipse Gaussian dataset are presented in Fig. 4.8.
Using colours and shapes, it is easy to show how the data samples are divided separately from
each other. Each group in the separated dataset represents the same object class, e.g. the

49

Algorithm 3 ’concept drift’ partitioning strategy.
Input Dataset Data, target label L, and number of partition "drifts" D
Output Data partitioned into D partitions

1: Extract a data subset Data with label L;

2: [optional] Discretise the numerical attributes into R ranges for further processing. For
categorical attributes, this step is not applied; however, it is required for numerical values,
as real numerical values may all be different from each other, and the next step of the
algorithm may fail due to the separation of too many similar samples;

3: Group data into buckets consisting of samples where at least one attribute intersects with
another sample’s corresponding attribute, to separate the individuals and groups of dis-
joint sets of attribute values. The individuals are samples or buckets of samples with
unique values of all the attributes. A disjoint set refers to a group of samples where the
values for each attribute in every sample are disjoint from the values of each attribute of
every sample from other sets. Fig. 4.7 gives an example of this process, and shows the
result and the second pass after processing Step 5.2;

4: [optional] For a dataset that contains only nominal attributes, find individuals. These are
candidates for scattering anywhere as they have completely different feature values from
the other samples, and can therefore be treated as data anomalies. Discretised numerical
data can also be treated as individuals, but their target partitions are determined by the
closest distance between them and the samples on the partitions;

5: Check whether it is possible to perform the selected ’drift’ from the groups found by
checking the conditions: |buckets \ individuals| ≥ D and |bucket| > |Data|

D · r;∀bucket;
where r is a ratio with a default value of 0.2, to avoid highly unbalanced partitioning:

5.1: If the conditions are met, or all the attributes have been checked, partitioning begins
as described in Step 6;

5.2: Otherwise, remove individuals from the Data subset, exclude the single Data at-
tribute with the lowest entropy value, and repeat the steps, starting with Step 3;

6: Partitioning is done by dividing the found buckets, sorted by the value of the last examined
attribute, into D partitions, where the number of samples is divided between them as
evenly as possible in terms of quantity;

7: If any individuals are found, place them into partitions to fill or equalise the sample
quantities between the partitions;

7.1: [optional] For numerical data, the target partitions for individuals are those closest
to the centre in terms of the Euclidean distance (note that without the discretisation
performed in Step 2, there is usually a large number of individuals).

50

same genre of flower or cluster of points; however, these are divided as much as possible after
examination of the attribute distributions. As a result, we obtain well-separated subclasses.

(a) (b)

Figure 4.8: Scatter matrix plots for single label data partitioned using the concept drift strategy:
(a) the Iris dataset, based on the ’Iris-setosa’ attribute; (b) a two-dimensional single cluster
dataset.

This approach may fail if the dataset cannot be split in this way, in which case the processing
method is reduced to splitting the data sorted by the most diverse value of a single attribute. In
this scenario, running a clustering algorithm with a fixed number of target groups on the data
with the same class would be beneficial, and would simulate concept drift. However, this would
also require parameterisation, and may not be deterministic. For images or textual datasets, the
proposed approach should also consider either a prior aggregation of attributes or a reduction
in the number of dimensions. Without this preprocessing step, the algorithm would try to carry
out an analysis at too low a level of detail, such as a single pixel value, which is irrelevant in the
overall scope.

Concept shift (same features, different label)

This category of non-IID distribution refers to the situation where data are understood differ-
ently or are misclassified in the training phase. When classifying non-textual data, it is difficult
to avoid errors in processing, and it is almost impossible to evaluate the correct solution, as
training is based on previously known labels. When the features of data objects are similar but
labelled differently, the only way to get a correct result is to use fuzzy classification, where
the classified sample can have multiple classes assigned to it. However, the clustering task is
not affected by this problem, as it is an unsupervised learning method that does not involve an
analysis of the training data classes.

Partitioning method In view of the considerations described above, the proposed method of
data partitioning consists of changing the label to a new, unique one for a certain number of data
samples. Our implementation of this partitioning strategy allows us to change the label of the

51

training samples for a subset of data D with a selected class c. This training subset of size s · 1
N

is then separated and the labels are changed, where s is the number of parts of the data subset
on which we perform an independent label change, and N is the number of partitions. Hence,
we obtain the formula in Equation 4.7 for the number of samples with artificial classes:

|arti f icialSamples|= s
N
· |Dc| (4.7)

Fig. 4.9 gives an example of this type of partitioning. The dataset in this case consists of data
samples with two different labels, which are to be divided into three partitions, and two more
classes are to be created using concept shift. As a result, we obtain four classes distributed on
three partitions, where two classes are artificially created from the chosen one.

200 * C 200 * D

n1 = 300 n2 = 300 n3 = 300

dataset size = 900

number of parts (s) = 2

worker nodes (N partitions) = 3

shift label = ‘B’

300 * ‘A’ 600 * ‘B’

100 * A 100 * A

100 * A

200 * B

Figure 4.9: Partitioning strategy applied to data samples labelled ’B’.

There are other possibilities for creating a concept shift in data, such as generating new data
samples based on the attribute distribution or adopting the concept drift method with a label
change. However, the first method assumes attribute modification, which affects the provided
dataset, while the second slightly simplifies the target problem but is also a good candidate for a
mixed strategy. The overall purpose of using this method for validation is to examine the extent
to which this divergent understanding of object class affects the final results. This can be useful
when the evaluated algorithm produces a fuzzy result or returns artefacts describing samples
rather than a simple classification label.

Unbalancedness (quantity skew)

Another open issue in the field of data partitioning is an unbalanced quantity of samples be-
tween the partitions processed by the algorithm, either in the training phase or without training.
Splitting a given dataset into partitions with different numbers of samples can be done in mul-
tiple ways. The most trivial is using random data partitioning along with the numerical weights
describing the target percentage of samples in each partition. However, it would be difficult
to maintain the ratio between the sizes of these partitions with more data samples and other

52

partitions for various numbers of target partitions. A simplified diagram illustrating the param-
eterisation used in this approach to obtain a ratio of 1

4 is shown in Fig. 4.10.

900 samples

n1 = 400 n2 = 400 n3 =
100

dataset size = 900

worker nodes (N partitions) = 3

quantity of large partitions = 2

target ratio = ¼ = 100 / 400

~44.5% ~44.5% ~11%

Figure 4.10: Trivial approach to finding the partition size division.

The problem of differences in data quantity starts when the number of samples between
partitions differs significantly, as higher numbers of samples usually increase the processing
time, while small amounts of data may disrupt the global model built by the algorithm. This
is why the issue of unbalancedness arises when at least one computational node contains sig-
nificantly less or more data than the others, meaning that not all of the partition sizes need to
differ. Moreover, the difference between low and high data quantities depends on the size of the
problem. This difference should therefore be represented in relative terms, for more flexibility
when simulating such partitioning, rather than using providing fixed numbers.

Partitioning method Our aim was to allow the user to choose this ratio, along with the num-
ber of nodes that should contain more data samples, instead of defining the required amounts
of data for each partition. We wanted to control the ratio between the high and low amounts of
data on partitions to make it easy to set up in a controlled way. In order to make this possible,
a simple system of two equations needs to be solved, in which we have two unknown variables
and four known parameters. Equation 4.8 describes the expressions that need to be solved in
order to find the unknown values L and S, where L is the large amount of data and S is the small
amount of data; the known parameters are C and W , where C is the dataset size and W is the
number of target partitions; and the user-defined parameters are the node threshold T , which is
the number of large partitions, and the ratio U , which is the target imbalance.

T ·L+(W −T) ·S =C

S
L =U

=⇒

L = C

U ·(W−T)+T

S = C−T ·L
W−T

(4.8)

As shown in the previous example in Fig. 4.10, we can obtain these numbers by using
parameter values of 0.25 for the unbalancedness ratio and a threshold of two nodes. In our
implementation of this method, it is also possible to select a proportional imbalance to keep

53

the same ratio for each class as a result of data partitioning. However, this behaviour is usually
undesirable, as it tends towards an IID data distribution. As a result of this partitioning strategy,
the data samples are scattered among the partitions based on the calculated partition sizes, L

and S. Samples are chosen from the original dataset using a uniformly random function.

It should also be noted that when the imbalance factor is high, we do not consider unbal-
ancedness alone, but in conjunction with the category of prior probability shift. In this case,
it is related to the ’label/class-related’ data property defined in our taxonomy, because small
partitions might have missing representatives of some classes. This is another indication that
we are considering a taxonomy rather than a hierarchy.

4.2 Adapted and robust clustering algorithm

We present a novel hybrid concept that utilises two different types of clustering algorithms for
single distribution processing: k-means is used as a base partitioning algorithm, and a density-
based OPTICS algorithm is used to build global clustering models. The input parameters for
OPTICS are determined automatically, based on our local clustering models, and no user input
is required. The use of a density-based approach provides several advantages: we eliminate
the influence of the bad start problem, so that even a random initialisation at the local stage
does not decrease the quality of the results. In addition, it can also improve the global phase by
calculating the real number of clusters for the entire distributed dataset.

In this section, we present an adapted version of a hybrid algorithm that handles non-IID
data distribution correctly, and briefly describe the reference method. An exhaustive examina-
tion of the proposed hybrid algorithm and a performance comparison against the non-distributed
execution of the core algorithms is available in the full paper in [49]. However, we present an
additional algorithm evaluation based on the proposed partitioning strategies in this work.

4.2.1 Distributed k-means

In this section, we introduce the concept underlying the distributed k-means (DK-means) al-
gorithm with a central coordinator, as proposed by [31]. This straightforward implementation
of the DK-means algorithm does not consider the fact that data may be unequally dispersed,
meaning that the densities of clusters on different nodes vary. This may cause the algorithm to
fail to correctly identify clusters, as the non-trivial issue of finding initial centroids arises at the
global processing stage.

The proposed approach consists of four stages of processing. In the first stage, all local
datasets are clustered using the k-means algorithm (Process 1 in Fig. 4.11). The resulting cen-
troids are treated as local clustering models, as this offers a reasonable compromise between the
level of complexity and the precision of the calculation. Next, all local centroids are transferred
to the central node (Process 2 in Fig. 4.11) and combined into a single set. This set is then clus-

54

tered using the k-means algorithm to find global centroids (Process 3 in Fig. 4.11). Following
this, the resulting centroids are resent to the local nodes (Process 4 in Fig. 4.11) and are treated
as the globally correct, final centroids, based on all local datasets. In the final phase, local ob-
jects are assigned to the closest global centres (Process 5 in Fig. 4.11) based on their Euclidean
distances. The time complexity of this approach is similar to local processing; however, in this
case, the processing is divided into small distributed chunks, as described later. The overall
concept of the algorithm is illustrated in Fig. 4.11.

4.
4. Resend global model

global centroids

4.

Central Node

Node 1

Dataset 1

1. 5.

Node 2

Dataset 2

1. Start local k-means
labels not relevant

5. Update local clustering
reassign objects

2.
2. Transfer local models

local centroids

2.

3. Start global k-means
collect final, global labels

Node N

Dataset N

1. 5.

Processing

Network transfer

Figure 4.11: Illustration of the concept underlying the DK-Means algorithm.

This algorithm seems to provide suitable results for many datasets. However, the authors
required that the user should specify the number of clusters to find on each node separately; this
cannot be applied under real conditions, as it makes the algorithm unnecessarily complicated.
Moreover, the DK-means approach does not appear to handle uneven data dispersion, an aspect
which was neglected by the authors. The global phase can therefore be greatly improved by
applying a density-based method. A standard k-means algorithm requires the user to provide a
fixed number of clusters to be found. Assuming that we have a small number of local nodes,
we then have a small number of models in the central node and the termination condition will
be met within a few iterations. This result may not necessarily be correct, since initialisation at
the central node in the k-means algorithm causes a problem that cannot be fixed by sampling
a small number of objects. On the other hand, when the number of nodes is large and not all

55

nodes contain a representative object of each group, searching for the same fixed number of
groups is not a suitable approach. As a remedy, a density-based examination of the data may be
helpful, as this could eliminate the need to define an exact number of groups.

4.2.2 OPTICS-Distributed k-means

The approach in our hybrid algorithm is consistent with the general concept underlying dis-
tributed clustering algorithms such as DK-means, although it retrieves statistical information
from local models and makes use of it in the global phase with the help of the OPTICS [4]
algorithm. This allows proper handling of the varying local density and automatic adjustment
of the number of clusters. The general concept is illustrated in Fig. 4.12. For the purposes of
this paper, we refer to this as OPTICS DK-means (Opt-DKM). The following sections provide
a detailed description of the processing steps involved in our algorithm.

4.
4. Resend global model

global centroids

4.

Central Node

Node 1

Dataset 1

1. 5.
1.1.

Node 2

Dataset 2

1. Start local k-means
labels not relevant

5. Update local clustering
reassign objects

1.1. Calculate statistics of clusters
distance mean, max, std. dev.

2. 2. Transfer local models
local centroids +

K * tuple(distance mean, max, std. dev.)

2.

3. Calculate OPTICS parameters
based on K * N tuples

Node N

Dataset N

1. 5.
1.1.

Processing

Network transfer

3.1. Start OPTICS

3.2. Adjust parameters
if necessary

3.3. Find centres of found clusters
collect final, global labels

Opt-DKM steps

Figure 4.12: Illustration of the process used in the Opt-DKM algorithm; steps characteristic of
Opt-DKM are marked with bold red lines.

56

Local clustering statistics model

In the reference method, a model for local clustering consists of nothing besides k centroids.
However, in our approach, we enrich this with additional data. The local model is a tuple
(c,v1, . . . ,vn), where c are the attributes of the centroid and v1, vn represent statistics describing
each cluster, as described in Process 1.1 in Fig. 4.12, including:

• The average distance between objects and their centroids;

• The maximum distance to the centroid;

• The standard deviation of the distance between objects and the centroid.

Assigning specific cluster IDs is not necessary, since the final labels will appear in the next
(global) phase. Calculation of this model is straightforward, and carries much useful informa-
tion. The formulas used are presented in Equations 4.9 and 4.10:

σ⃗ =

√
N

∑
i=1

(X⃗i− M⃗i)
2

N
=

√
S⃗S−2M⃗× S⃗+N× M⃗2

N
(4.9)

S⃗ =
N

∑
i=1

X⃗i, S⃗S =
N

∑
i=1

X⃗i
2, M⃗ =

S⃗
N

(4.10)

where σ is the standard deviation; N is the number of objects in a cluster; M is the average
distance to the centroid; Xi is the distance between the object and centroid; S⃗ is the sum of the
distances; and S⃗S is the sum of the squared distances.

Preparation of the global model

The essential innovation of our distributed clustering scheme based on Opt-DKM is building
a global model for distributed clustering. The local models collected from the central nodes
are treated as an input dataset for density-based clustering. The OPTICS algorithm is applied
(Process 3.1 in Fig. 4.12) to this data to give clusters with a dense concentration of local models.
As a result, the centres of the new clusters are calculated as the mean of the cluster members’
attributes, forming new global centroids. However, in order to run the OPTICS algorithm, the
user needs to provide the initial OPTICS parameters, such as ε and ε ′, as described in [4]. A
major drawback is that these values do not correspond to the raw data at local nodes but to their
model-based representations, meaning that the values of these parameters should be higher.

Our method determines the OPTICS parameters for input based on the collection of local
statistical models (Process 3 in Fig. 4.12). The main motivation for this approach is to elimi-
nate the need for the user to provide the parameters and to try to determine these based on the
available data. This is important because the correct parameters for the density-based algorithm

57

require at least an approximate knowledge of the characteristics of the data. The input param-
eters needed by the OPTICS algorithm are calculated based on simple formulas, as shown in
Equation 4.11:

minPts = 1, ε = d(ci,oi)max, ε
′ = ε−σi (4.11)

where minPts is the minimum number of points in the neighborhood; d(ci,oi)max is the mean
of the maximum distances provided in the local models; σi is the mean of the standard devia-
tions provided in the local models; and i is the next local model. The value of ε is calculated
based on the maximum distances to allow for expansion of the density-based algorithm to ad-
jacent centres and to gather them into groups. This computed value enables the connection of
adjacent clusters, while remote ones are unaffected. The value of ε can also be considered as
an initial k-means radius for the centroid. If two models truly represent separated groups, the
maximum value will be less than the distance between them, and as a result, they will not be
clustered together. On the other hand, if the models represent data belonging to independent
nodes, then both of them will be reachable in this neighbourhood. The OPTICS algorithm also
requires the parameter minPts, which describes the minimum number of objects needed in a
group to create a new cluster. However, since we are operating on models rather than single
data objects, we can set this parameter to a fixed value of one, since each object clustered in
the global phase represents a potentially larger group of local objects. There is also no noise
in global OPTICS processing. The parameter ε ′ was adjusted in the course of the experiments
for different datasets, with the aim of separating noise from the dense groups. This prevents the
OPTICS algorithm from merging it with regular groups in the global phase.

Potential border drawbacks

During the experiments, two potential drawbacks were identified that were related to the data,
and corrections were developed to deal with them. A density-based approach allows us to
find a real (in the sense of density) number of clusters, but when a node contains a single
representative of a group and all groups have the same density, then it is impossible to merge
the local clustering models in the global phase. This represents the ’separated’ partitioning
strategy from the ’prior probability shift’ category, which is a strict corner case. Although this
situation is rather unrealistic, our solution can accept additional parameterisation in an attempt
to fix this potential issue. When a suitable parameter (exactKGroups) is set, we merge pairs
of the closest centroids after the global clustering phase, until the expected number of sought
groups is obtained. A second issue relates primarily to real datasets and the use of an unsuitable
similarity measure. When a Euclidean measure is used for data across the domain, the calculated
OPTICS parameters are often too high, and only a single large group is found. The solution for
this is an iterative manipulation of the value of ε ′ until more groups are found, since clustering
should never produce only one group. Since we do not need to rerun the clustering, if we set
the noOneGroup or minKGroups parameters, a new clustering assignment is carried out and

58

the previous value of ε ′ is decreased as shown in Equation 4.12 (Process 3.2 in Fig. 4.12). The
first parameter is equivalent to minKGroups = 1, which targets the minimum number of groups
to be found in the next rounds of the OPTICS clustering assignment.

ε
′ = ε

′ · 1
2
·
(

1+
mean
max

)
(4.12)

Parameterisation

Both of these distributed methods require parameterisation at the start of processing. In the
classical DK-means approach, the user needs to provide a global k parameter for the last global
processing stage and the same parameter with a potentially different value for each local node
clustering, which is not practical. The use of a density-based approach in the global stage
avoids this requirement, and allows the user to set only the global number of groups, which will
possibly be adjusted by a density feature of our approach. Nevertheless, in both approaches,
setting a value of k that is too low may affect the process of finding centroids outside of data
clusters and lead to the merging of groups of different objects. On the other hand, setting
a value that is too high lengthens the processing time and may disrupt the calculation of the
OPTICS parameters based on cluster statistics due to the small sizes of the clusters. A higher
k parameter for local nodes might also provide more data for the global k-means stage in the
reference method, which can be beneficial. In both the DK-means and Opt-DKM methods, the
results depend on the number of nodes, the data distribution, initialisation of the algorithms, etc.
Hence, an overestimate of the value of k is always better than an underestimate, as clustering
algorithms by their nature combine data rather than divide. In general, the DK-means method
finds the number of groups specified by the user, while the Opt-DKM tries to adjust the results
to the nature of real data and is therefore more flexible in the case of inaccuracies input by the
user.

4.3 Comprehensive evaluation platform

There is an ongoing discussion concerning how to verify the correctness of an algorithm in
a standard way. As mentioned in previous sections, there is a need to test such algorithms
against other methods under similar conditions. The first option is to develop a rigid method
with preset regulations for testing and constraints that must be maintained by the creators of
the algorithm during evaluation. However, it is not possible to validate such an evaluation.
In addition, the provision of an algorithm verification or benchmarking platform raises several
challenges concerning both flexibility and usage simplicity for end-users. Nevertheless, it is the
only possible method of standardisation in which the results would be comparable.

A major drawback of many studies is a lack of information about the similarity measures
used in clustering and with certain classification algorithms, which makes it almost impossible

59

to reproduce results on a specified dataset. Another fundamental limitation is that they do not
address the problem of data distribution during evaluation of the algorithm. In this section,
we describe our proposed system for the evaluation of DDM algorithms, called the DDM-PS-
Eval platform. The description consists of the general architectural structure and the main
components of the entire platform, which are discussed in more detail in a recent paper [50].

4.3.1 Architecture

A system for evaluating different algorithms under multiple environment configurations, datasets
and execution parameters should be both simple to use and provide a wide variety of function-
alities. The main functionalities are as follows:

• Loading of algorithms and similarity measures;

• Loading of datasets and partitioning strategies;

• Environment configuration and parameterised executions;

• Collection of results and multiple execution statistics.

To make the platform useful, certain additional non-functional requirements are also essential,
as follows:

• A user-friendly interface and flexible configuration;

• Simplicity of use, environment setup and comparison of results.

The environment should simulate a real distributed system in which data are accessible only
locally for each computational node. To achieve this state, we can approach the problem in
two ways. Firstly, we can simulate this processing distribution using sequential execution, with
possible parallelisation. The second approach is to connect to independent machines or to create
independent containers with appropriate resources. Both options have certain advantages. In the
first case, we have all of the resources in one place, and there is no introduction of networking
problems; however, we would still need to simulate the environment, which would make it hard
to encapsulate the executions in terms of the available resources. This approach also raises
scalability issues. The second solution gives us more configuration possibilities in terms of
available resources to connect to the system. We have a greater opportunity to limit access
and collect networking statistics. Nevertheless, such encapsulation suffers from orchestration
problems and requires synchronisation of the provided resources that are evaluated, such as
an algorithm codebase or distance function implementation. Although it appears that a local
solution might be a better choice, it has less potential for future extensibility. We decided to use
the second option, due to the configuration possibilities, the creation of a clean solution, and

60

‘1’-node instance
Command line / Script

import
setup
execute
validate
statistics

Coordinator App

Setup environment (N-nodes, limits),
Load/use dataset,
Scatter data among nodes (strategy),
Send algorithm to nodes,
Start/stop algorithm execution,
Health check of instance nodes etc.,
Get execution info - access proxy,
Schedule M-times (statistical significance),
Collect results & statistics.

Same network when Spark

Storage

Algorithms Similarity
measures

Datasets /
URLs

Results
Execution statistics:
- transfer,
- time:
-- processing at each stage,
-- data loading.Data scattering

strategies

In memory / persistable

Instance
configuration

Quality metrics

Central / master node (Docker / VM with limits)

Node agent

Process - driver
program
Spark master

statistics,
results,
status,
logs.

Worker node (Docker / VM with limits)

Node agent

Process - algorithm
Spark worker statistics,

results,
status,
logs.

...
3-node instance

C
64-node instance

data

Figure 4.13: High-level design of the overall system architecture.

the chance to create a tool that is coherent with current development principles. To illustrate the
overall architectural concept of the system, the high-level design is depicted in Fig. 4.13.

Comparing systems from the same class of benchmarking allows us to see the advantages
of the new platform, as it is hard to read from the technical components that non-functional
requirements are met. The frameworks or systems mentioned here differ significantly from
each other in terms of architecture and functions, and a complete comparison is not possible
due to these differences; however, some features and facts about these functionally similar
systems are summarised in Table 4.1. The crucial components required in order to improve the
verification process of an algorithm are described in the following sections. A brief description
of the possible platform environment configuration is attached in Section 7.1.2.

As reported in [45], the core issue with regard to DDM algorithms is collaboration, and
this applies both to the execution of the algorithm and communication within the distributed
systems. In our solution, the key component allowing for communication is an application in-
stalled on each computational node. This application handles incoming traffic, provides partial
results and manages both the execution of the algorithms and the node itself, according to the
agent paradigm. More technical details related to communication in the platform can be found
in the attachments in Section 7.1.1.

61

Table 4.1: Comparison of convergent elements for the reported benchmarking systems with the
proposed system.

PEEL
(framework) JaCa-DDM DDM-PS-Eval

Main purpose of
the system

Reproducible
experiments

Evaluation of
learning strategies

Algorithm evaluation
and comparison
of results

Applicable
algorithms

Any (custom);
Hadoop/Spark-based
impl.

Classification;
WEKA impl.

Classification,
clustering; implemented
using wrappers

Environment setup,
configuration source

File-based,
complex code

XML Iterative or JSON

Configuration and
setup of the
experiment

File-based,
complex code

XML Iterative or JSON

Dataset distribution n/a
Uniform
or manual

Yes, embedded

Customisable data
distribution

strategies
No No Yes

Customisable
learning strategies No Yes No, pipeline

Collected metrics
and data Time, logs

Accuracy, time,
transfer

Multiple quality
metrics, time,
transfer, logs

Results format Custom app
logs

Collected metrics
in unstructured
text

Collected metrics
structured in JSON
format

Entry point to the
system application Command line

Local GUI
application or
script

Web, via API

User-friendly No No
Simple API
exposed

Complexity
of use Advanced Hard Easy

62

4.3.2 Execution pipeline

In order to monitor the processing of the algorithm in terms of multiple factors, the monitoring
program needs to control the execution of the algorithm; otherwise, data statistics collected
during experiments could be disturbed, incomplete or unreliable. Hence, running a computer
program with an algorithm implementation on a specific platform involves following a given
pipeline.

The execution plan (pipeline) of the common DDM algorithm working in the model with
the central coordinator is summarised by the state diagram presented in Fig. 4.14. The state
machine starts its life cycle in the local execution node, with a local algorithm performing
processing. The standard path is then to process local models in the global state. However, to
simulate a one-node (non-distributed) local algorithm, it can finish processing in the next state
as well. In this type of scenario, the local model is the only one, and is treated as the global
model when collecting results. Nevertheless, following the standard path, at this point of the
global processing state, simple DDM methods have already generated a final global model, and
can complete processing. In contrast, when iterative methods are implemented in the DDM
approach, they can step into the next local state and update previous local models with the
current global one, and hence improve them. Further available steps are the same as before, so
the algorithm can complete processing or go to the next global processing iteration. When the
evaluated algorithm is divided into stages that are executed on separate computational nodes,
the agents of the evaluation platform can maintain distributed execution of the program. When
the algorithm does not follow any interface known by the platform, the execution cannot be
orchestrated and evaluated adequately in a controlled way.

0. Start
/

1. / 3. Local
processing

2. Global
processing

2. / 3. / 4.
Stop

1.1. / 3.1. finish2.0.1. next local

2.1.1. complete

1.1. next global

Figure 4.14: State diagram of the DDM pipeline in the model with a central coordinator.

A typical DDM pipeline that involves this state machine is illustrated in Fig. 4.15. It is
divided into three vertical parts, with independent local node processing represented on the

63

left and right sides and global coordinator processing in the middle. The state machine shows
that some processing stages are optional when the method used is not an iterative algorithm
or does not require pre- or post-processing. Examples of the purposes of combining local and
global preprocessing include the collection of global aggregates for additional min-max data
normalisation, and determining initial algorithm parameters for the next processing stages. At
the end of the processing, different actions can be applied depending on the type of algorithm.
For a clustering task, local data evaluation is started on the training dataset, while a classification
task requires an independent test dataset for better evaluation. Moreover, as global models are
already prepared in the last stage, any new samples can be provided for prediction already apart
from the algorithm evaluation process.

4.3.3 Key components

The whole platform is based on the concept of predefined and user-defined elements. These
elements follow the requirements of the framework, which is used within the runtime of an
application. We can divide the elements of the system into two main groups. The first group
relates to components that are called loaders, as they load the elements required to evaluate
algorithms. These required elements include the evaluated algorithms, datasets, partitioning
strategies, and the quality and similarity metrics. All of these are depicted in Fig. 4.16, with the
relationships between them. The second group refers directly to the execution of an experiment
on the platform. In order to run an experiment, the algorithm requires parameterisation, data
to be processed, and a place to write the results. Since all of these must be provided, the
responsible components are called providers.

Preparation: Loaders

The system has been designed to be as generic as possible, and to be easily pluggable by the
user, with its own implementation of the essential elements that are usually data-dependent.
Non-predefined algorithms are the most important element in order to avoid the need for re-
building the whole system for every new algorithm, as mentioned earlier. The same algorithms
may be used for different types of data, meaning that custom data similarity metrics can be
applied on the platform. This function is most often utilised for data comparisons within algo-
rithm processing, but is also essential for the preparation of data partitions in some partitioning
strategies.

According to Fig. 4.16, for each type of platform element (algorithms, datasets, similarity
measures, and partitioning strategies) we have a specific type of loader. As already mentioned,
algorithms must follow a defined pipeline interface as it is required by the algorithm loader to
execute them. Although typical similarity measures such as the Euclidean or cosine measure
are often sufficient to compare data during processing, in order to handle the problem of algo-
rithms operating on domain-specific data, custom metrics can be loaded for similarity calcula-

64

Legend:

Local ‘preprocessing’:
(eg. for global params or normalisation)

 - raw local data Global ‘preprocessing’:
 - local aggregates

Global processing:
 - local models

Local processing:
 - local data
 - prep. aggregates

Global update:
 - local models

Local data

Node 1

Local update:
 - local data
 - local model
 - global model

Local evaluation (alg. group dependent):
 - local data / test data
 - global model

Results Application of new samples:
 - global model
 - sample to predict

local aggregates

global aggregates

local model

global model

updated global model

final global model

results

quality metrics sample prediction

Typical processing stage

Stage result

Optional iteration stages

Local processing...

Local processing...

Local data

Local processing...

Local evaluation...

Results

...

...

...

...

...

2-node pipeline

Node 2Coordinator

Optional transition

Typical transition

Stage transition

Figure 4.15: A typical, sample DDM pipeline’s processing stages with 2 independent nodes
and a central coordinator. Green elements with bolded arrows present a standard simple DDM
method flow. Dashed blocks are the usual optional processing stages.

65

Algorithms Similarity
measures

Datasets ResultsData scattering
strategies

Quality metrics

Figure 4.16: Elements of the framework and their relationships. The section with a dashed
border is included for the purpose of showing the relationships between the artefacts of the
platform.

tion between data samples represented by platform abstraction, as described in the following
subsection. The platform cannot limit datasets to the available internal set, as it is limited in
the example work [12], and should therefore allow different datasets to be imported in known
formats. When loading data with a view to scattering them, it is essential to uniquely identify
each data sample among independent locations. This is why, in our platform in the preprocess-
ing step it is optionally possible to generate identifiers when no such attribute exists in the data.
The key element is the ability to implement and load a custom partitioning strategy, which also
operates on data abstraction.

Execution: Providers

Each method needs to follow certain processing steps and data models in order to supervise the
process and collect results that can be used for automatic analysis. We have proposed a simple
generic processing model that may be applied to any algorithm by using a wrapper for the
execution stages. We can assume this because each DDM algorithm relies on certain blocks of
code or processing stages that can be wrapped with the providers of data and parameters without
changing the processing flow. More specifically, the sample algorithm may be implemented in
isolation from our benchmark platform. However, to run a custom algorithm on the platform,
it is only necessary to implement a data structure mapper and several wrapping functions that
execute the real implementation of the DDM processing stages. In this section, we describe
elements related both to data and processing execution. These elements correspond to specific
stages of processing in the platform, such as the data structure, preparation, and the evaluation
of the model.

In order to enable the system to operate on datasets that do not follow a specific data format,
a standard abstraction has been prepared for the data. This is required for the execution and
evaluation of results from generic or user-defined partitioning strategies. A data model abstrac-

66

tion provides object identifier and label attributes and numeric or nominal (by default, a text
value) attributes and their types. These data must be provided in the standard way, just as the
defined execution parameters for every test case execution together with the chosen similarity
measure. These two providers supply inputs for the algorithm. The results collector handles
the outputs generated by the algorithms and retrieves predictions for the unique identified sam-
ples provided at the results evaluation stage of processing. During execution of the test case in
the platform evaluation process, the node agent collects multiple types of statistics, which are
important to enable a comparison of algorithms in terms of data transfer load and processing
time depending on the phase. IO operations involving the reading of data from disk storage
may have different access times, so the system should be able to exclude such times from the
comparison. An evaluation time is supposed to be distinguishable because some final models
may be too complicated and impact the decision time, which may be unacceptable or constitute
another point of comparison between algorithms.

The location of each execution-provider component in the evaluation platform processing is
illustrated in Fig. 4.17.

4.3.4 Limitations of the platform

Due to the wide range of different techniques for processing general DDM algorithms, it is
impossible to provide a single benchmark platform that can carry out evaluation for every tech-
nique, programming language or already existing method as part of a single tool. The current
research targets different approaches or methods based on a coordinated server, such as the
recently popular FL technique or other iterative processing. However, customisable learning
strategies such as collaborative or P2P systems should not be forgotten. The use of various pro-
gramming languages for solving current DDM problems with different data types should also
be addressed.

67

Node N - processing

Environment

Execution environment / app

Algorithm

Process local

Evaluate model

Data provider

Param provider

Process global

Param provider

Local models

Algorithm

Param provider

Sample provider

Results collector Coordinator app

App

Statistics

Node M - processing

Environment

Algorithm

Local training
data

Local test
data

Figure 4.17: Detailed execution environment of the algorithm on a single node. Interfaces of
model and execution-provider components are placed in the middle, shown as green areas with
a dashed border.

Chapter 5

Experiments

We now introduce the algorithm evaluation process that was performed using different datasets
and data partitioning strategies. In our experimental evaluation, the test suites are basically
divided into two groups based on the type of algorithm used. We therefore address datasets
for classification and clustering algorithms separately. Most of the clustering algorithms evalu-
ated here are non-deterministic, as they typically use a partitioning approach requiring multiple
executions for proper evaluation. Hence, each test case was executed multiple times, and we
collected processing times and quality information to assess the statistical significance of the
results.

The quality measure used for clustering is the ARI, whereas for classification we use the
Accuracy for balanced datasets and the F1-score for several other datasets with unbalanced
numbers of classes. Besides the impact on the processing time and the differences in transfer
load, we are most interested in the deterioration in quality for a typical uniform distribution. To
examine algorithms in these terms with differently distributed data and to compare the impact
on the results, we need to have reference classes and clusters. We therefore select an external
quality measure to analyse the clustering results. Although some of the evaluated datasets
consist of small, unbalanced clusters, where the AMI measure would be a better choice, we
decided to use ARI for two reasons: firstly, we are more interested in the differences in the
results when comparing how the algorithm works with different data distributions, rather than
achieving higher values for the results; and secondly, due to the large number of test cases
considered in the experiments, the significantly slower computation of AMI quality measures
would unnecessarily increase the time required to collect meaningful results for our current
evaluation. We aim to compare the results for the same measure, obtained after execution of
the algorithm for different types of data partitioning, rather than to enhance the quality of the
algorithm. However, as the computational complexity of quality measures for classification is
linear, we collect multiple measures for each execution. Full results are presented in the charts
attached in the Attachments section 7.

In order to verify the validity of the proposed partitioning strategies, we carried out several
experiments. To illustrate the impact on the different aspects of the results, we ran selected

69

distributed algorithms on datasets that were independently partitioned using multiple strategies.
All experiments were carried out on the DDM-PS-Eval platform, meaning that all of the pro-
posed methods were ready to use, and were implemented in the way suggested by the authors
following given interfaces. This allowed us to collect multiple types of information, such as the
processing time, transfer load, and overall quality.

For the experiments, we chose several datasets (four for classification and four for clus-
tering), and these are described in detail in a later section. We deliberately did not use many
partitions, in contrast to the strict FL approach, and the sizes of the datasets were not enormously
large, since the primary goal was to explore the impact of non-IID partitioning rather than to
add artificial complexity to the problem. Moreover, we did not want to artificially increase the
complexity of the processing time by adding more samples or generating more partitions with
identical distributions, due to the small number of distinct labels in most datasets. We chose a
couple of algorithms in their distributed versions, as explained in the following subsection. The
selected strategies were parameterised in multiple ways depending on the dataset. The method
of selecting the parameters for partitioning each dataset in each strategy is also described in
the next section. For more interesting test cases, we present visualisation charts of dataset
characteristics after applying a partitioning strategy with the corresponding results, for ease of
interpretation and discussion.

5.1 Evaluation method

The overall algorithm evaluation process usually consists of multiple test suites, since differ-
ent elements are involved in a single test case. In our evaluation method, we have multiple
elements, such as the number of partitions/nodes used, the environment, datasets, specific par-
titioning strategies, algorithms, number of executions and parameterisation for both the par-
titioning strategies and the algorithm execution. We can consider each test case as a single
permutation of these elements. The sequential selection process of the test elements can be
carried out in the organised form shown in Fig. 5.1. This illustration shows the components for
a single test case, their mutual relationships, and the way in which the entire evaluation process
is constructed.

The tree representation in Fig. 5.1 shows the preparation process of the test suite from the
root, consisting of sequential choices of the following elements for each test case. We need to
select each nested element for each test case. The tree hierarchy also naturally defines a test
suite by gathering different permutations in the three main top components. As we evaluate
multiple algorithms, it is natural to divide the data first and then apply many algorithms to
them, as implied by the hierarchy of the dataset and algorithm elements. The same applies to
the relationship between the environment and dataset, where the test environment is prepared
with independent nodes before we scatter data over them.

70

{u-iid, cs-dsad, pps-mps, …}

Dataset

Algorithm

Environment - number of nodes/partitions

Partitioning strategy

Strategy parameters

Execution parameters

Number of executions

Dataset

Algorithm

Environment - number of nodes/partitions

Partitioning strategy

Strategy parameters

Execution parameters

Number of executions

Metrics Metrics

{1, 3, 6, …}

{MNIST, Shuttle, Synthetic, …}

{ratio=0.7, attribute=7, label=A, …}

{d_dn-svm, d_dk-means, …}

{groups=3, threshold=0.05, …}

{1, 30, …}

{Accuracy, ARI, …}

Figure 5.1: Sequence used to choose test case components for the complete evaluation method
process (with examples in curly brackets). The relationships between the components and the
dependency tree represent this process. Dashed arrows indicate strong relationships, while
dotted arrows show minor/common ones.

We distinguish between three main elements in the definition of a test case: the environment,
dataset and algorithm. We first choose basic elements such as the number of nodes/partitions,
the dataset to be scattered on them, and the algorithm used to process specific data in a par-
ticular order. The next selection of nested elements strictly depends on the previous choices,
as the partitioning strategy must be able to handle and process the datasets, while the metric
depends on the processing results of the algorithm. Both the strategy and the execution of the
algorithm must be parameterised, but the latter also depends on the data; for example, for some
algorithms such as k-means, we need to specify the target groups to be found. The relationships
in the figure above illustrate this clearly. Some relations are apparent; for instance, the parame-
terising strategy depends on the number of nodes in some cases. However, this is a core element
of dataset partitioning, and by definition must work at different scales. The same relation ex-
ists for algorithms and concerns the primary distinction between distributed and non-distributed
implementations, which work only in a single node environment. The number of executions
relates to the determinism of the algorithm: multiple executions are redundant for deterministic
implementations, as they always produce the same results. The choice of dataset implies cer-
tain strategy parameters, such as the class/label used for concept drift or the attribute used for
covariate shift strategies. The use of different datasets enforces the application of a dedicated
group of algorithms such as clustering or classification depending on the problem and their spe-
cific parameterisation. By going down the list of the elements on the right in Fig. 5.1, we see
that each partitioning strategy and algorithm has parameters that need to be set. The number
of executions should be considered when the chosen algorithm execution parameters cause the
execution of any random-based operations during the processing.

Having proposed multiple partitioning strategies, we wanted to provide a comprehensive

71

evaluation of several algorithms and datasets. We aimed to consider many complex scenarios
in a systematic way, in order to identify most of the issues related to non-IID data partitioning.
Nevertheless, each element in a given permutation does not necessarily drastically change the
outcome of the test case, and this is visible in the results. The differences may be nuanced, such
as different parameterisations for non-prior probability shift strategies, which may be irrelevant
from the perspective of algorithm processing, as discussed later.

5.1.1 Data distributions

Multiple dataset distributions were evaluated during the experiments, which consisted of the
chosen partitioning strategy for each non-IID main category, a different number of target parti-
tions and a partitioning strategy parameterisation that depended on the dataset used. The data
partitioning methods are summarised in Table 5.1 in a generalised form, which can be treated
as a set of basic test suites for different distributions. We evaluated the proposed methods to-
gether with a reference IID distribution. For several strategies, the parameters depend on the
chosen attribute or label, or are related to the number of available distinct classes in the data.
The parameters used in the table are defined below:

• L is the number of distinct groups/classes in the dataset;

• {a} is the attribute chosen for covariate shift partitioning;

• {l} is the label chosen for concept drift and concept shift partitioning,

• The parameters for the prior probability shift category, which are used to achieve the
multiple data distribution as described in detail in Section 4.1.2, are as follows:

– Add is the number of additional classes of data samples to add into partitions, where
a negative number means the number of classes of all labels that should not be added
(i.e. subtracted) from all classes;

– EmptyAdd is the number of additional classes of data samples to add to the empty
partitions, where 0 means the addition of representatives of every class;

– Ma jorityPercent is the minimum percentage of class representatives that are to be
placed on partitions during partitioning, while the rest are distributed as additional
classes and to fill empty partitions;

– AdditionalPercent is the expected percentage of class representatives to distribute
as additional classes, which cannot be higher than 1−Ma jorityPercent, and will be
divided into more partitions if necessary to maintain the size of majority groups.

Although the choice of attribute for covariate shift partitioning can be made randomly, this
type of experiment would not be well-founded. We therefore analysed the entropy of each

72

dataset and chose the one with the highest value. Some attributes are characterised by strong
variety in their values, such as real numerical data. In these cases, we chose the attribute with
the highest entropy after discretising the attribute values into a range of 40 equal steps for each,
corresponding to the parameter range for the concept drift strategy for consistency. The chosen
attribute was passed to the partitioning strategy, while maintaining the other parameters constant
for each dataset.

The concept drift and concept shift strategies require the choice of a label for processing. In
general, we could choose any label; however, the choice was made based on a class frequency
analysis of the data. We assumed that it would affect the partitioning results more as more data
samples will be processed, yet partitioning does not rely on quantity only but also characteris-
tics. For a concept shift strategy, this will disrupt the classification results more significantly,
while for a concept drift approach, this may provide a wider spread range of data attributes for
separation, creating better data partitioning in corner cases.

5.1.2 Algorithms

Most of the clustering algorithms considered in our evaluation fully or partially rely on a parti-
tioning approach, which is unquestionably not the best choice for use with all datasets. Two of
them used a hierarchical approach as an ensemble method, and another one was density-based.
Thus quality results may be slightly different from the quality obtained in the literature using a
single algorithm on the same datasets. We chose the SVM algorithm in its distributed version
for evaluation of the classification, as it typically produces excellent results while also being
simple to use. At the same time, the processing time depends on the data samples, which will
be highlighted in our discussion of the results. Our second choice was a probabilistic classifier,
which was developed with the aim of being neutral towards the distribution while operating on
independent statistics of data samples.

In addition to the reference results for a uniform IID distribution, we wanted to provide
results for non-distributed processing on the dataset used in the evaluation. The aim here was
to show convergence between the quality results for the same types of algorithms in both their
distributed and non-distributed versions. We therefore wrote and evaluated a simple implemen-
tation of the naive Bayes classifier. We also used SVM and k-means implementations from
the WEKA [67] tool, which was also utilised for the local processing of our distributed imple-
mentations. For the second non-distributed clustering algorithm, we employed BIRCH from
the ELKI [2] library, which is an excellent implementation for general data analysis. Obtained
results compared in Section 5.2 indicate that the distributed implementations of the algorithms
were correct.

We used four distinct clustering algorithms and two simple distributed classifiers for the
different data distribution evaluations. The two classifiers were a distributed implementation of
naive Bayes, which builds global a priori probability statistics based on probabilities collected

73

Table 5.1: Summary of partitioning strategies for experiments with generalised parameters.

Code Main category Strategy Parameterisation Number of
partitions

iid-u IID Uniform n/a

{3, 6, 12}

cs-dao
Covariate shift

Dense and
outliers 0.7

cs-dsad
Diff. statistical
attr. distribution

Shift = 0.3
Splits = 3
Attribute= {a}

pps-s

Prior probability
shift

Separated

Add = 0
EmptyAdd = 1
MajorityPercent = 0.4
AdditionalPercent= 0

pps-ab All but

Add = −1
EmptyAdd = L−1
MajorityPercent = 0.5
AdditionalPercent= 0.1

pps-ms Missing some

Add = −min(L−1, 3)
EmptyAdd =
L−min(L−1, 3)

MajorityPercent = 0.6
AdditionalPercent= 0.1

pps-mps Most plus some

Add = min(L−2, 2)
|| min(L−1, 2)

EmptyAdd =
max(1, L−2)

MajorityPercent = 0.8
AdditionalPercent= 0.05

pps-mpa Most plus all

Add = L
EmptyAdd = 0
MajorityPercent = 0.6
AdditionalPercent= 0.05

cd-sba Concept drift Split by attribute
Drifts = 3
Ranges = 40
Label= {l}

cs-cl Concept shift Artificial label
Shifts = 2
Label= {l}

u-ul Unbalancedness
Unbalanced
labels

Ratio = 0.1
Threshold = 2
Proportional= 0

74

from local nodes, and the naive distributed SVM approach described in [56], tentatively named
DN-SVM. In the latter approach, the final SVM model was trained on locally found support vec-
tors sent from local nodes, which were treated as global training data. The clustering algorithms
were DK-means [31], Opt-DKM [49], a lightweight clustering technique [5] tentatively named
LCT, and a modified version of the BIRCH algorithm [71], in which a partitioning approach
was used for the final clustering. This modification was made by combining the agglomerative
process in BIRCH with a partitioning method. BIRCH clusters the data at the local nodes and
sends the cluster centroids to the global node, where the same operation is performed by treat-
ing the centroids as data samples to be clustered. Finally, global clustering is done by assigning
samples to the closest global centroid.

A summary of the implementations described above is presented in Table 5.2. Each al-
gorithm, whether executing on single or multiple nodes, was wrapped into the DDM-PS-Eval
processing interfaces model. This allowed us to collect comparable results in a structured form,
which could then be easily visualised via a semi-automatic process using spreadsheets with ded-
icated formulas and scripts to present the values in the form of charts. We intend to incorporate
this visualisation process for the results into the platform in the future.

With regard to the parameterisation when executing the algorithms, we used the same pa-
rameters for configuration. In general, such an approach would be wrong, as correct parameter
adjustments can produce better quality results and allow for the avoidance of pathological sit-
uations, such as merging too many clusters due to a high epsilon threshold. Nevertheless, we
decided to use a common setup for each algorithm due to the wide variety of test cases men-
tioned at the beginning of Section 5.1, and in order to compare different partitioning schemes.
A precise data distribution scheme is typically unknown in the real world, so parameters cannot
be adjusted perfectly. The parameter values are listed in Table 5.2 next to each algorithm for
completeness.

5.1.3 Datasets

In our experiments, we assumed that each dataset had already been preprocessed, cleaned and
prepared for evaluation. All of these steps are important to achieve good results; however, in
the real world, we also have to face unexpected situations, and thus it is better to be prepared
for both cases. Our focus was also on uneven data distributions, rather than data preparation.
The datasets chosen for evaluation contained primarily numerical data, with several categorical
attributes. These were non-textual popular MNIST sets, several well-known datasets from the
UCI Machine Learning Repository, and synthetic generated data.

We used the PCA algorithm to preprocess and reduce the dimensionality of the MNIST and
FMNIST data from 28x28 to 28 attributes, to avoid applying partitioning strategies to raw pixel
values. Due to this preprocessing step, our quality results diverge from those in the literature,
but are coherent with reference values obtained from execution on a single node and in the
distributed version with a uniform data distribution.

75

Table 5.2: Summary of the algorithms used in the experiments.

Code Algorithm Type Purpose
Distri-
buted
impl.

Execution
parameterisation

s_naive-
bayes Naive Bayes Probabilistic Classification no none

s_svm SVM SVM Classification no kernel: ’rbf’

s_k-means K-means Partitioning Clustering no
groups = L
iterations = 20

s_birch BIRCH Hierarchical Clustering no

branching_factor = 50
threshold = 0.01
groups(maxleaves)
= L

d_naive-
bayes

Distributed
naive Bayes Probabilistic Classification yes none

d_dn-svm
Distributed
naive SVM SVM Classification yes kernel: ’rbf’

d_dk-means DK-means Partitioning Clustering yes

groups = L
iterations = 20
init_kmeans_method
= k-means++

d_opt-dkm Opt-DKM
Partition-
density based
ensemble

Clustering yes

epsilon = 0.002
minKGroups = true
groups = L
iterations = 20
init_kmeans_method
= k-means++

d_lct LCT
Partitioning-
hierarchical
ensemble

Clustering yes

b = 2
groups = L
iterations = 20
init_kmeans_method
= k-means++

d_dp-birch
Distributed
agglomerative
BIRCH

Hierarchical-
partitioning
ensemble

Clustering yes

branching_factor = 50
threshold = 0.01
g_threshold = 0.01
groups (maxleaves)
= L

g_groups = L
iterations = 20

76

With regard to the synthetic data, we performed multidimensional numeric dataset sampling
with a normal distribution to obtain fairly well-separated Gaussians, in a similar way to that de-
scribed, for example, by the authors of [32]. The first was generated as two-dimensional points,
arranged in Gaussian clusters with overlapping outliers, with two groups colliding in order to
avoid perfect clustering results for the tested algorithms, as they use partitioning methods inter-
nally (in this case, k-means). The second dataset was generated in four-dimensional numerical
space to increase the transfer load and computational complexity, which translates into a longer
processing time. Using this generation strategy, we obtained labelled data to use for reference
clustering.

One of the datasets considered here was introduced together with the CURE algorithm
in [22] as "Dataset 1" but without noise. We chose this dataset as it was developed for a hier-
archical clustering algorithm and contained mostly Gaussian shapes of clusters for partitioning.
It thus posed two challenges for the clustering mechanism incorporated in our ensemble of dis-
tributed algorithms, which was expected to produce interesting results. However, the original
CURE dataset is small, and contains only 2000 samples. We therefore expanded it by adding
50000 samples for each cluster, where the data were generated using a normal distribution
based on the mean of each cluster and a variance analysis. The original data and the results of
the expansion operation are illustrated in Fig. 5.2.

Figure 5.2: Visualisation of (a) CURE Dataset 1; (b) the expanded CURE Dataset 1.

A similar situation arose for the Diamond9 dataset, which was introduced in [61]. The
amount of samples was small, and the shapes of the clusters allow them to be clustered by
partitioning, density-based or hierarchical algorithms. We therefore performed the same type
of data expansion, slightly changing the shape due to the normal distribution. The original data
and the results of the expansion operation are illustrated in Fig. 5.3, in the same way as for the
previous data.

We also included datasets from the UCI repository containing categorical attributes in the
evaluation of the classifiers. With regard to the data distribution, only the covariate shift ap-

77

Figure 5.3: Visualisation of (a) the Diamond9 dataset; (b) the expanded Diamond9 dataset.

proach of the proposed partitioning strategies takes into account the attributes in processing.
As described earlier, the ’cs-dsad’ strategy could work by counting the attribute values, while
the ’cs-dao’ strategy requires numerical attributes or distance measures for the data. The same
issue applies to the SVM algorithm, which uses the Euclidean distance to find separating hyper-
planes. The DDM-PS-Eval platform used in our evaluation is able to load and provide custom
similarity metrics, and to handle nominal attributes, if the algorithm uses the provided distance
function. However, in order to standardise the experiment, we decided to use the same numer-
ical metric for each algorithm evaluated, which was the Euclidean distance. In view of this,
each categorical attribute in the data underwent a vectorisation operation at the preprocessing
stage; however, this vectorisation was not sophisticated, and did not involve an analysis of data
semantics but allowed nominal data to be used with numerical similarity metrics to convert the
type of attribute. We transformed nominal values for each attribute separately, mapping distinct
values into the subsequent natural numbers. This mechanism was already implemented in the
evaluation platform. Following this, we were able to apply the ’cs-dao’ strategy to each dataset
and to use a common distance metric. In this work, we only highlight the issue of missing
similarity metrics in different works, as mentioned in Section 4.3, and focus on other aspects of
the evaluation. Furthermore, our platform provides the possibility of dealing with this issue in
a generic way for newly developed algorithms, as set out in the description of the platform.

All of the datasets and their original features are summarised in Table 5.3. We divided the
datasets into those used for classification and those for clustering.

As a result of each test case execution, we obtained a global model, which was then applied
to the data. For clustering, we used the entire data on each partition to achieve global clustering,
while for classification, we needed a verification set to examine the global classification model
that had been built. For those datasets that did not provide a dedicated testing set, we divided the
entire dataset using a ratio of 60 : 40 to create training and testing data samples. We did not apply
a cross-validation method, as this would have conflicted with the partitioning strategy results;

78

in a scenario with cross-validation, it would be necessary to execute separate partitioning for
each submodel, which would generate more permutations for evaluation, thus preventing the
possibility of analysing the combined results for a specific data distribution.

Table 5.3: Summary of primary raw datasets.

Dataset Problem
type Data type Instances

(train + test) Attrs. Classes
/Groups

MNIST1 Classification
Numerical
(image pixels)

60000 +
10000 784 10

FMNIST2 Classification
Numerical
(image pixels)

60000 +
10000 784 10

Shuttle3 Classification
Numerical
(integer)

43500 +
14500 9 7

Adult4 Classification
Categorical +
numerical
(integer)

32561 +
16281 14 2

CURE-expanded5 Clustering
Numerical
(real) 302000 2 6

Diamond-expanded6 Clustering
Numerical
(real) 453000 2 9

Synthetic 7g Clustering
Numerical
(real) 100000 2 7

Synthetic 12g Clustering
Numerical
(real) 1200000 4 12

5.2 Non-distributed execution

In this section, we present the results of non-distributed processing obtained for each of the
datasets. The results are illustrated in the form of charts in Figs. 5.4 and 5.5, together with the
maximum values obtained from the execution of the distributed algorithms on three nodes, to
demonstrate the similarities. From an examination of pairs of algorithm types, we can see that
the classification results are comparable. From the clustering results, we can see data-dependent
and mixed results from the ensemble methods, which will be discussed further. The exception
in the results is the LCT implementation, which gave lower values, as it is generally too greedy
at the aggregation stage and merges too many clusters, generating them in a faulty way.

1https://www.kaggle.com/datasets/oddrationale/mnist-in-csv
2https://www.kaggle.com/datasets/zalando-research/fashionmnist
3https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
4https://archive.ics.uci.edu/ml/datasets/adult
5https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/artificial/cure-t1-

2000n-2D.arff
6https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/artificial/diamond9.arff

79

Figure 5.4: Results for single-node classification and comparison with the maximum quality
results for distributed algorithms executed on three nodes.

Figure 5.5: Results for single-node clustering and comparison with the maximum quality results
for distributed algorithms executed on three nodes.

5.3 Evaluation results

5.3.1 Quality results

In order to enable a better impact analysis, we divide the impacts of the different distributions on
the results into several categories. The difference in the average quality results for the partition-
ing strategies is compared to a uniform distribution with the ’iid-u’ strategy for each algorithm.
A negative impact can be assigned to one of three negative categories depending on the per-
centage difference, as low (< 5%), medium (< 10%), or high (≥ 10%) impact. There are two
other categories: one where the difference range is [−2%,2%], which represents no noticeable
impact on the results, and a positive impact category (< −2%), where we obtain better results
than using a uniform data distribution. Tables 5.5, 5.6, and 5.7 show the results, and we also use
a heat map to highlight these categories. Green indicates a positive impact, while no colour is
used for the negligible range. We use yellow, pink, and red for low, medium and high negative
impact, respectively.

Classification algorithms

From the results for the naive Bayes classifier in Fig. 7.2, we see that there is almost no impact,
regardless of the partitioning used. Some algorithms are naturally neutral to the distribution, as

80

they operate on independent statistics that can be aggregated without information loss; this is
the case for naive Bayes, which processing was only affected by concept shift partitioning. This
classifier is non-fuzzy and incorrectly assigned artificial classes to test data samples degrading
the final quality. This neutrality is a desirable aim for the design of all algorithms, but this
behaviour is not standard, as shown by the other results. The differences in the resulting impact
using the ’cs-cl’ strategy with different datasets arise from the data sizes and the formula used
to prepare the artificial classes in the data. As we used the same formula, we could observe the
differences in the results from the same datasets when divided into various numbers of parti-
tions. To analyse the origins of these differences, we can count the number of artificial classes
in the data created using the MNIST dataset as an example; where the impact is fading with
more partitions. In our experiments, we assigned the label ’1’ to the 6742 samples that were
the most frequent of all 60000 in the training set. Based on the formula in Equation 4.7, we can
count the number of artificial classes and compare their impact on the ’iid-u’ partitioning accu-
racy from the summarised results in Table 5.4. More "shifts" generally decrease the probability
of the presence of the original class, causing lower accuracy. On the other hand, an increasing
number of partitions limits the possible number of artificial samples present in the experiment.
At the same time, it keeps the equal number of the origin class on every partition in number
1
N · |Dc|.

Table 5.4: Comparison of accuracy results for the naive Bayes classifier on the MNIST dataset,
divided into 12 partitions using the ’cs-cl’ strategy for class ’1’, and for different shi f t values.

shi f t param Artificial samples Accuracy Impact
0 - ’iid-u’ 0 50.47% n/a
2 1123 50.47% 0%
6 3371 50.19% 0.28%
9 5056 48.67% 1.8%
11 6180 43.17% 7.3%

The SVM classifier results are strongly affected by various distributions as it operates on
the final support vectors found in the global scope. Global support vectors do not always reflect
the entire dataset’s characteristics, as the global model is built based on partial information
from local models. Failed predictions after training on data partitioned with the ’cs-cl’ strategy
have the same origin as for naive Bayes. Moreover, the family of SVM algorithms are binary
classifiers, and hence multiclass classification requires the production of extra weak classifiers
that participate in voting. However, in our experiments, these were a minority of all the weak
classifiers built, due to a low value of the shi f t parameter. This is why the origin of the incorrect
predictions lies in the higher number of samples with artificial classes to separate from the real
ones. The impact is reduced for more partitions, for the same reason as described above and
illustrated in Table 5.4.

81

The highest number of wrong SVM predictions is seen for the prior probability shift par-
titioning strategies. This arises from the overfitted local processing results, based on which
the global model is built. The correct support vectors are also missing when there are missing
samples on the local site. A lack of information is propagated to the global model, which is
then built using incomplete data. This type of situation occurs for partitioning strategies with
missing classes, such as ’pps-s’, ’pps-ab’, ’pps-ms’, and ’pps-mps’, while the impact is lower
for the ’pps-mpa’ strategy. In the last strategy, there are no missing labels; instead, there are
insufficient data samples from minority classes to prepare comprehensive local models for some
test cases.

Data partitioning strategies based on attribute distribution affect the SVM classifier sig-
nificantly less than those operating on data distribution per class. However, separating data
using similar data samples, as in the ’cd-sba’ or ’cs-dao’ strategies, has implications in terms
of preparing worse local models. The differences in distribution obtained for ’cd-sba’ on the
Shuttle dataset are illustrated in Fig. 5.6. In this test case, our concept drift partitioning strategy
considered the sequence [8,4,7,3,1,5,2,6,0] of attributes based on the entropy analysis, and
performed drifting by attribute ’0’. The data sample shift across partitions led to shifted values
of the separating hyperplanes for the independent local models built to predict the same class
on every partition, which made the global model predictions worse.

0.00

0.05

0.10

0.15

De
ns

ity

iid-u cd-sba

0.00

0.05

0.10

0.15

De
ns

ity

−25 0 25 50 75 100 125 150 175
0.00

0.05

0.10

0.15

De
ns
ity

−25 0 25 50 75 100 125 150 175

Figure 5.6: Comparison of the density of data samples for attribute ’0’ with class ’1’ from the
Shuttle dataset, for the ’iid-u’ and ’cd-sba’ data distributions with three partitions.

For several test cases for the ’pps-s’ strategy in which the number of classes was less than
the number of partition nodes, SVM could not provide any results, as no support vectors were
found and hence data separation was impossible. The same situation arose for the Adult dataset
using the ’pps-mps’ strategy, where data distribution with a single missing class for binary

82

classification reduces it to the ’pps-s’ distribution. Similar strategy convergence was found for
’pps-ab’, which in this case is equivalent to ’pps-ms’ with a difference in the empty partition
fill parameters. Hence, for parameterisation that assumes class separation among independent
nodes, the standard SVM predictor will always fail to process, with 0 accuracy and NaN F-
score, as it cannot perform any prediction. We mark these cells in Table 5.5 as ’n/a’. The
differences in the label distribution for ’pps-s’ and ’pps-ms’ are presented in Fig. 5.7. From
the results, we see that when the number of labels exceeds the number of partitions, a uniform
distribution of every label representative on empty partitions gives better classification of data.
This demonstrates the need for improving some minor partitioning aspects of the partitioning
strategy algorithm, such as distributing low amounts of data or labels into higher numbers of
partitions. This is relevant to avoid such facilitation for algorithms and to prepare better test
cases.

0

1

cla
ss

9888

0
pps-s

11864

0
pps-ms

0

1

cla
ss

0

3135

0

3761

0

1

cla
ss

7416

0

4944

471

0

1

cla
ss

0

2353

1484

1569

0

1

cla
ss

7416

0

4944

471

0 2000 4000 6000 8000 10000 12000

0

1

cla
ss

0

2353

0 2000 4000 6000 8000 10000 12000

1484

1569

Figure 5.7: Comparison of the data sample label distribution for the Adult dataset, using the
’pps-s’ and ’pps-ms’ strategies with six partitions.

The overall conclusion from an analysis of this pair of algorithms is that a covariate shift
strategy at a larger scale will always affect non-fuzzy classifiers. Moreover, the prior probability
shift approach strongly impacts the prediction when the global model is built from incomplete
local models, meaning that more sophisticated methods are required when merging models.
Nevertheless, it is crucial to evaluate each distributed algorithm using multiple partitioning
strategies to reveal its weaknesses or neutral behaviour, as illustrated by the discussion above.
We can even conclude that for the classification algorithms, regarding the quality of the results,
an adequate minimal test coverage suite would require an evaluation of the concept shift and
prior probability shift approaches only instead of the one illustrated previously in Fig. 4.3.

83

Table 5.5: Differences in the classification quality results for partitioning strategies, compared to the uniform distribution with the ’iid-u’ strategy,
with a heat map showing five categories of partitioning impact.

strategy 3 nodes 6 nodes 12 nodes
algorithm dataset MNIST FMNIST Shuttle Adult MNIST FMNIST Shuttle Adult MNIST FMNIST Shuttle Adult

d_dn-svm cs-dao 1.02% 1.44% 5.49% .41% -.15% 1.43% 2.43% .41% .31% .64% -4.42% .24%
cs-dsad .52% .27% 1.42% -.02% .12% .04% 2.11% -.02% .24% .32% 2.03% -.05%
pps-s 4.97% 24.29% .89% n/a 11.42% 32.49% 51.43% n/a n/a n/a n/a n/a
pps-ab 1.03% 2.73% .43% 3.28% -.02% .27% .94% 2.30% .21% .06% .31% 2.70%
pps-ms 1.70% 1.60% 2.02% 1.43% .55% .18% 5.54% 1.43% .29% .28% .95% -.51%
pps-mps 2.74% 16.04% 11.46% n/a 4.88% 14.32% 8.59% n/a -.05% -.24% -2.49% n/a
pps-mpa .52% 1.79% .33% 2.36% -.11% .73% 1.32% 2.36% -.47% .54% .40% -.07%
cd-sba .27% .13% 8.72% 7.48% .62% -.14% 9.32% 7.48% .57% 1.34% 7.62% 6.27%
cs-cl 7.66% 1.77% 20.98% 57.31% .17% -.63% -2.96% 57.31% .29% -.12% .43% 16.09%
u-ul .50% .00% .21% -.11% .25% -.30% .29% -.11% -.09% -.05% .03% -.53%

d_naive-bayes cs-dao .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00%
cs-dsad .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00%
pps-s .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00%
pps-ab .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00%
pps-ms .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00%
pps-mps .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00%
pps-mpa .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00%
cd-sba .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00%
cs-cl .45% 3.04% 12.58% 10.80% .02% .13% 13.86% 10.80% .00% .17% 14.18% .31%
u-ul .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00% .00%

84

Clustering algorithms

We first note that the evaluation of non-deterministic algorithms requires multiple executions.
Otherwise, an analysis or comparison of the maximum obtained results would lead to false
conclusions, and we could never be sure of the final result; hence, most discussions are based
on an average score from multiple executions. However, we do refer to the best possible results
in specific situations in order to articulate some of the different weaknesses of the algorithms.

From the results in Tables 5.6 and 5.7, we see differences between the algorithms irrespec-
tive of the data used. For non-deterministic algorithms, initialisation usually plays a crucial role
and affects the final results, and this is evident for the DK-means algorithm. The partitioning
strategy influences the initialisation process, and typically leads to wrong global results. How-
ever, the same results shown in the summarised charts in Fig. 7.3 indicate that the maximum
possible values are achievable. This suggests that in the design of an algorithm, more atten-
tion should be paid to better local model preparation to avoid global errors. On the other hand,
the Opt-DKM density-based approach to global processing correctly handles local models for
most strategies without intervention in the local model preparation. A specific data distribu-
tion helps to build a local model structure for a hierarchical type of algorithm, and therefore
gives better results than for a uniform data distribution. However, the use of an agglomerative
hierarchical approach in the second global stage of processing, unlike in the previous hybrid
approach, reduces the quality for higher numbers of partitions as the merging operation in the
LCT algorithm fails.

Pure partitioning and density-based ensembles The clustering results show how the mean
and maximum possible values of the clustering quality may vary depending on the data parti-
tioning. It is clear that even the local use of k-means++ initialisation [6] did not help in terms
of avoiding the impact of the different data partitioning methods on the global results. It is also
interesting that in most cases, a uniform data distribution made it difficult to obtain the best
results, which was not expected at the outset. Natural concentrations of similar data based on
distance measures are helpful for density-based algorithms, as these naturally search for dense
clusters, although this may be problematic for pure partitioning methods, as they search for a
fixed number of partitions and may initially divide similar data into separate clusters that may
never be corrected in further iterations or on the global stage.

We now analyse the maximum possible values obtained by the DK-means algorithm on
the dataset, as illustrated by the charts in Fig. 7.3. In this case, only single partitioning in the
’pps-ms’ strategy gives worse results for three partitions on the Synthetic 12g dataset. The data
sample label distribution for this test case is shown in Fig. 5.8. Again, the initialisation issue
was the root cause of this poor quality outcome from the algorithm. Data samples of multiple
class representatives were missing, and the number of present samples was more significant than
for the other evaluated datasets, which led to incorrect initial clustering. Moreover, partitioning

85

at the global stage could not fix the small number of incorrect local centroids. At the same
time, the density-based approach worked correctly as designed and dealt well with the same
distribution, but failed with the ’pps-mpa’ strategy distribution, as also illustrated in Fig. 5.8.
Based on this, we can assume that the possible significant deterioration in results is due to
the wrong initialisation, which is a crucial aspect. This is particularly true in the distributed
environment, where even verified initialisation methods such as k-means++ sampling fail as
they are not designed for non-IID data distributions.

0

20000

40000

60000

nu
m
be

r o
f s

am
pl
es

5999 5955

54223

5987 5978

54104

6014 0

48152

0 0

54073

pps-ms

3000 2978

54222

2994 2989

54104

3007 3005

54170

3001 2999

54072

pps-mpa

0

20000

40000

60000

nu
m
be

r o
f s

am
pl
es

53985

5955 0

47894

0 0

48111

6009 6019

60003

5998 6009

53984

2978 3013

53880

2989 3006

54125

3005 3010

54001

2999 3005

0 1 2 3 4 5 6 7 8 9 10 11

class

0

20000

40000

60000

nu
m
be

r o
f s

am
pl
es

0

47640

6025 5987

53793

6012 6014

54078

6019 0

53979

0

0 1 2 3 4 5 6 7 8 9 10 11

class

3000

53594

3013 2994

53793

3006 3007

54077

3010 3001

53979

3005

Figure 5.8: Comparison of the data sample label distributions for the Synthetic 12g dataset,
using the ’pps-ms’ and ’pps-mpa’ strategies with six partitions.

Different outcomes for the maximum possible results are seen for the Opt-DKM algorithm,
where the density feature did not work for several test cases. The worse results arise from the
excess number of clusters found, due to the use of the minKGroups parameter in our evaluation.
Nevertheless, the overall average results are promising, as the various strategies influence them
in only half as many test cases compared to the DK-means algorithm. This suggests that the
density-based assumptions achieved the objectives, which primarily involved fixing the issue of
incorrect local initialisation affecting global processing.

The results of the ’pps-s’ strategy are particularly noteworthy, as both algorithms failed
on the CURE-expanded dataset regardless of the number of partitions. The full separation
of clusters among partitions to simulate the scenario of already clustered data within the data
partition boundaries is problematic for DK-means. The algorithm tries to find a specified, fixed
number of groups inside the partition where fewer groups are available. The global partitioning
then fails to find global centroids based on the incorrect local ones. For Opt-DKM, the issue is
not associated with the higher number of local groups found but with an inability to merge local
models for one significantly wider group and additionally with a lower density of samples, as
illustrated in Fig. 5.9 with the centroids found by both algorithms.

For DK-means, solving this issue depends on initialisation, as good clustering is possible,
confirmed by the maximum quality results obtained in experiments. In Opt-DKM, more inves-

86

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
y

DK-means

model
local
global

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

Opt-DKM

model
local
global

Figure 5.9: Examples of imperfect DK-means and Opt-DKM algorithm models found for the
expanded CURE dataset, divided into three partitions using the ’pps-s’ strategy.

tigation is needed in terms of approximating the ε ′ parameter in global OPTICS, since the same
issue relating to the division of cluster ’5’ shown in Fig. 5.2 into more groups occurs for the
’cd-sba’ strategy. Hence, strong separation of the data samples group across partitions done by
the partitioning strategy impacts this concrete density approach more for data with divided clus-
ters consisting of low boundary ranges of attribute values. Since the estimation of ε ′ is based
mainly on the cluster statistics found, low values make it impossible to merge those clusters.

0

5

10

15

De
ns

ity

iid-u cs-dsad

0

5

10

15

De
ns

ity

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0

5

10

15

De
ns

ity

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Figure 5.10: Comparison of the attribute ’0’ density from the expanded CURE dataset, for ’iid-
u’ and ’cs-dsad’ data distributions with three partitions.

From the impact results for the DK-means algorithm in Table 5.6, we see a relatively high
average impact for the ’cs-dsad’ strategy. The attribute density distribution for this partition-
ing on the expanded CURE dataset is shown in Fig. 5.10. The points distribution in the two-

87

dimensional space in Fig. 5.2 shows a linear layout of clusters, which provides class separation
when applying the covariate shift strategy. Shifting data samples by attribute for datasets of
low-dimensional space may lead to mixing categories of partitioning strategies, especially when
classes are highly correlated with attributes. In this case, we partially mix the covariate shift
and the prior probability shift strategies, as illustrated in the label distribution chart in Fig. 5.11.
This test scenario suggests that mixed distributions, which are relatively common in the real
world, influence more results than single corner cases.

0 10000 20000 30000
number of samples

0

1

2

3

4

5

cla
ss

26559

0

0

16276

1

17488

Pn1

0 10000 20000 30000
number of samples

4066

126

110

13643

30238

12141

Pn2

0 10000 20000 30000
number of samples

23

29914

29836

0

119

430

Pn3

Figure 5.11: Data sample label distributions for the expanded CURE dataset, using the ’cs-dsad’
strategy with three partitions.

To summarise our discussion of the approaches used here for distributed clustering, we re-
call that the k-means algorithm is known for producing different non-deterministic results, and
adapting this to give a distributed version, propagates these differences into the subsequent pro-
cessing stages. Although it can provide great results for fairly separated groups of data in a
defined space, the mean results fluctuate enormously, making this algorithm unreliable in its
basic form. The remedy, which can fix more than half of the uncertainties, is to use a density
approach such as Opt-DKM. These results illustrate the first step in adapting an algorithm to
work with unknown data partitioning. The next step is to improve the second half of uncer-
tainties or drawbacks revealed during the current evaluation performed with more partitioning
strategies, which is basically an extended version of the experiments reported in [49].

88

Table 5.6: Differences in the partitioning and density clustering quality results for partitioning strategies compared to a uniform distribution with
the ’iid-u’ strategy, where the heat map represents the five categories of partitioning impact.

strategy 3 nodes 6 nodes 12 nodes
algorithm dataset CURE-ex

panded
Diamond-
expanded

Synthetic
7g

Synthetic
12g

CURE-ex
panded

Diamond-
expanded

Synthetic
7g

Synthetic
12g

CURE-ex
panded

Diamond-
expanded

Synthetic
7g

Synthetic
12g

d_dk-means cs-dao 4.52% 2.93% -1.49% -.39% 4.81% 4.07% 5.94% 1.89% 4.35% 4.29% -1.40% .33%
cs-dsad 6.90% 6.07% 4.19% .27% 7.07% 8.28% 8.83% 1.71% 7.58% 6.42% -3.35% 3.39%
pps-s 5.10% 7.51% 6.66% .47% 7.41% 8.77% 9.51% 2.75% 6.39% 7.87% 4.29% 8.37%
pps-ab 4.15% 7.66% 3.77% -1.12% .24% 5.08% 6.78% 3.20% 4.27% 3.02% -5.88% 5.21%
pps-ms 2.39% 6.93% 4.10% 3.44% 6.26% .84% 1.46% 2.21% 5.01% 2.03% -6.74% 2.47%
pps-mps 3.20% 6.80% 2.00% .76% 5.70% 5.35% 9.06% 4.01% 6.49% 4.98% -.38% 6.21%
pps-mpa 4.82% 5.51% 7.89% 1.64% 6.24% 6.88% 5.85% 4.15% 1.55% 3.38% -5.09% 3.05%
cd-sba 2.89% 1.79% -.26% -1.30% 4.33% 3.43% .86% 1.02% -1.65% 3.35% -3.09% 2.92%
cs-cl -.08% 2.11% -1.48% -3.73% 6.05% .08% 2.11% .90% 1.62% -1.29% -5.37% .91%
u-ul 2.59% 1.58% .10% -1.17% 4.54% .07% .70% .09% 2.02% .95% -7.16% .04%

d_opt-dkm cs-dao 4.79% .01% 1.74% -1.42% 3.60% -.91% 5.39% -.19% 8.27% -2.30% 3.86% .71%
cs-dsad .49% -.41% 4.29% -8.45% -.41% -1.14% -3.01% -12.92% .08% -3.49% 1.82% -15.08%
pps-s 5.70% -.44% -3.64% -8.45% 6.83% -1.25% -6.21% -12.92% 6.98% -4.15% -5.36% -15.08%
pps-ab .54% 1.30% .65% -3.79% 2.34% -.14% 4.00% 7.20% 8.85% -2.24% 8.34% 8.64%
pps-ms 2.55% -.33% -3.63% -8.45% .24% -.77% -6.22% -3.06% -1.15% -1.55% 2.59% -.37%
pps-mps 8.00% .89% -2.83% -8.03% 1.37% -1.18% -4.51% -12.92% -1.78% -4.02% -4.63% -15.08%
pps-mpa .52% 1.64% 1.33% 7.31% .27% .82% 4.20% 3.22% 2.01% -2.25% 7.48% 1.74%
cd-sba 5.14% .23% 2.97% .87% 6.39% -.27% 1.58% -4.86% 10.28% -1.57% 4.82% -6.63%
cs-cl 1.13% -.13% 4.35% .64% -.55% -.03% 1.25% .00% .43% .51% .86% -.43%
u-ul .19% .48% 1.96% .79% -.29% -.66% .52% -2.14% .74% 2.97% .93% -.83%

89

Hierarchical ensemble From an analysis of the differences between the results from data
distributed uniformly and with different partitioning strategies, we also find that a distributed
implementation of an algorithm may not be entirely correct. When the difference is a relatively
high negative value for most test cases, data distribution itself helps more to improve quality
than the algorithm can achieve in a typical IID distribution. We would therefore define such
an algorithm as unsuitable for unknown distributions. This situation arises for the distributed
agglomerative BIRCH, where the difference in results compared to the ’iid-u’ strategy is even
higher than 14% in most cases, as shown in Table 5.7. This suggests that a hybrid combination
of hierarchical and partitioning algorithms is a poor choice. On the other hand, it also reinforces
the finding that the choice of algorithm for particular dataset characteristics is vital, as for the
expanded Diamond dataset, this algorithm obtains perfect clustering results regardless of the
strategy used. The only failure we observe occurs for more partitions in the ’cd-sba’ strategy,
where the hierarchical approach fails. The reason for this is that the attribute values start to
become more noticeable on partitions and blend more with others and finally aggregate together.
This is because other data samples are uniformly spread across all partitions. In contrast, drifted
cluster samples remain distributed on a fixed number of partitions regardless of the worker
number used in the experiment. An even higher impact could be achieved by simultaneously
applying the partitioning strategy to more than one single label. A comparison of partitioning
results for a uniform attribute density and the abovementioned distribution strategy is shown in
Fig. 5.12.

0.0

0.2

0.4

0.6

iid
-u

Pn1 Pn2 Pn3 Pn4 Pn5 Pn6

−5 0 5
0.0

0.2

0.4

0.6

cd
-s
ba

Pn1

−5 0 5

Pn2

−5 0 5

Pn3

−5 0 5

Pn4

−5 0 5

Pn5

−5 0 5

Pn6

Figure 5.12: Comparison of the attribute ’0’ density from the extended Diamond dataset limited
to data samples with class ’4’, for the ’iid-u’ and ’cd-sba’ data distributions with six partitions.

For the distributed agglomerative BIRCH algorithm, applying the ’cs-cl’ strategy to the
expanded CURE dataset provides worse results for clustering, which should be generally irrel-
evant for unsupervised method processing. This is because the initial data distribution matters
when partitioning is performed. However, this partitioning is used in the global phase, and
seems quite deterministic due to the small number of samples (local models). Hence, the worse
results obtained here might be further grounds for suspecting the correctness of the algorithm
in this distributed version.

90

Similarly to the DK-means pure partitioning algorithm discussed in the previous section,
the ’cs-dsad’ strategy also substantially impacts the LCT algorithm with hierarchical enhance-
ment at the global stage. This strategy also reveals that when more partitions are involved in
clustering, the method of agglomeration of the found centroids fails to merge the local centroids
into the correct number of final ones. Moreover, in the test case with 12 partitions of the Syn-
thetic 7g dataset, all 84 of the local cluster centres found were merged into a single one, giving
a meaningless result. Nevertheless, the overall poor results of the LCT algorithm are usually
caused by finding an incorrect number of global clusters in the global stage of processing. This
number of global clusters is typically too high even for ’iid-u’ partitioning. In addition, this
implementation seems to be susceptible to the prior probability shift category, especially when
any class representative is missing. The local partitioning approach then produces more inac-
curate centroids, which misleads the hierarchical merging at the global stage. As a result, it
merges wrong local cluster models, affecting the final quality results. In contrast, in the Opt-
DKM algorithm, the imperfect centroids found at the local stage are correctly processed with a
density-based approach.

91

Table 5.7: Differences in the hierarchical and partitioning clustering quality results for partitioning strategies compared to the uniform distribution
with the ’iid-u’ strategy, where the heat map shows the five categories of partitioning impact.

strategy 3 nodes 6 nodes 12 nodes
algorithm dataset CURE-ex

panded
Diamond-
expanded

Synthetic
7g

Synthetic
12g

CURE-ex
panded

Diamond-
expanded

Synthetic
7g

Synthetic
12g

CURE-ex
panded

Diamond-
expanded

Synthetic
7g

Synthetic
12g

d_lct cs-dao -5.16% -.85% -12.83% .17% 1.42% .00% -20.26% -2.63% 1.67% 2.10% .00% -4.10%
cs-dsad .85% 1.58% 3.42% 3.42% 10.46% 12.56% 10.57% 8.91% 11.79% 18.04% 14.87% 10.97%
pps-s 5.97% 2.38% 2.32% 6.91% .22% 8.72% 8.30% 11.12% 11.22% 18.31% 14.56% 15.64%
pps-ab -2.47% -4.43% 2.36% -.33% 7.07% 3.53% 2.56% 1.48% 5.43% 6.73% 12.48% 3.08%
pps-ms 3.09% .72% 5.64% 4.65% 12.03% 8.60% 8.84% 4.49% 10.55% 11.36% 14.66% 5.31%
pps-mps 1.25% .32% 6.06% 4.51% 11.34% 12.52% 9.62% 11.06% 13.04% 17.62% 11.61% 14.54%
pps-mpa -4.16% -8.66% 1.26% -2.17% 2.17% 1.38% -1.44% -1.80% 2.65% 4.01% 14.80% .63%
cd-sba .67% -1.69% -1.20% 1.42% 2.92% .68% -.78% -1.20% 3.16% 2.48% -.87% .90%
cs-cl -3.89% .15% -.14% .37% -.73% -.59% -.02% -2.22% -1.43% -.01% -3.68% -.06%
u-ul -.03% -1.06% 2.03% .99% -1.86% .41% -1.06% -.35% -.24% -.64% 1.09% -.16%

d_dp-birch cs-dao .05% .00% -14.68% -6.73% 14.89% -.01% -14.33% -10.98% 21.32% .00% -13.77% -.78%
cs-dsad 1.02% .00% -14.88% -1.64% 9.30% -.01% -.08% -12.09% 10.72% .00% 11.99% -1.01%
pps-s -13.90% .00% -14.84% -8.96% -3.63% -.02% -14.88% -27.90% -17.65% .00% -14.85% -17.45%
pps-ab -30.94% .00% -14.87% -8.97% -20.77% -.02% -.11% -11.03% -1.61% .00% -14.82% -17.22%
pps-ms -30.50% .00% -14.83% -8.99% -3.70% -.02% -14.95% -19.45% -18.24% .00% -14.61% -1.66%
pps-mps 4.59% .00% -14.84% -1.65% -20.34% .03% -15.00% -27.90% -1.13% .00% -14.87% .50%
pps-mpa 1.12% .00% -14.76% -17.43% 10.15% -.01% -14.81% -12.08% -2.03% .01% .00% -17.41%
cd-sba -13.47% .00% .27% -.16% -3.16% 15.81% -.09% -10.47% -1.50% 15.62% -14.67% -.47%
cs-cl 4.96% .00% .01% -.52% 10.18% -.01% -.04% -10.93% -1.65% .01% -14.52% .02%
u-ul -8.69% .00% .00% 10.46% -3.54% -.01% -.12% -10.86% -1.79% .00% -14.26% -.13%

92

5.3.2 Processing time

In this section, we focus on the processing time statistics collected during the experiments. To
avoid misleading results, we performed multiple executions even for deterministic algorithms
to collect the average durations.

In a standard processing experiment, we can divide the processing time into several com-
ponents, such as data loading, training, and evaluation. Evaluation takes time; for example,
it might involve voting to create a prediction, possibly preceded by searching for the closest
sample in the ensemble k-NN classifier sample, or assigning data samples to the global centres
in partitioning clustering. In a distributed processing environment, we can identify additional
time-related dimensions, such as the transfer and waiting times which occur in orchestration.
These are present simultaneously on multiple computational nodes depending on the architec-
ture, which for our evaluation includes multiple forms of local and global processing. The
DDM-PS-Eval platform collects various statistics. For our evaluation of distributed algorithms
with a central coordinator, we chose to compare the training process time as the sum of the
maximum local and global processing times at each stage of the distributed algorithm pipeline.
We excluded the transfer time, as our experiments were conducted on the local network.

The complete statistics for the datasets, algorithms and partitioning nodes are summarised
in chart form in Figs. 7.4 and 7.5. When the processing time is relatively low in summary and
lasts a few seconds, the slowdown and difference in the 12-node execution may result from the
swapping of RAM memory and forced I/O operations rather than the global processing impact.
To create an additional summary in the same way as for the quality results, we calculated an
impact for each test case by comparing the training time to the same process duration with
a uniform data distribution, using the formula Tstrategy

Tiid−u−1 . The collected and aggregated results
for each average strategy value are presented in Table 5.8, using the same heat map as in the
previous section. We treated the classification algorithms separately, as their time complexity is
considerably different.

The impact on the processing for the clustering algorithms evaluated here is marginal for
most non-IID strategies. Each evaluated clustering algorithm involves k-means partitioning, in
which the time complexity is O(n ·k · i) (i.e. generally linear), where n is the number of samples,
k is the number of groups, and i is the number of iterations. For Opt-DKM, the time complexity
of the OPTICS algorithm is O(N2), but N≪ n and depends on the number of partitions involved,
where N is the number of local models at the global stage. The complexity of BIRCH can reach
O(N). We can therefore approximate all of these as linear for each dataset, and the speedup
when using more computational nodes is noticeable only for Synthetic 12d, the largest dataset
in terms of samples and numbers of dimensions. Statistics collected for other datasets regarding
the processing time for each test case last less than five seconds, which does not allow us to
draw meaningful conclusions. However, significant fluctuations are visible across test cases
with different strategies, several of which consisted of substantially more samples to process.

93

Table 5.8: Differences in the processing time statistics for partitioning strategies compared to a
uniform distribution with the ’iid-u’ strategy, where the heat map represents the five categories
of partitioning impact.

strategy \ method Clustering
Classification:

DN-SVM

Classification:
Distributed
Naive Bayes

cs-dao
cs-dsad

pps-s
pps-ab
pps-ms

pps-mps
pps-mpa

cd-sba
cs-cl
u-ul

16.12% 51.42% 12.83%
3.60% -8.80% -2.06%
7.44% -0.61% 33.56%
4.04% 105.31% 27.70%
4.72% 69.50% 38.19%
6.65% 42.94% 37.44%
4.55% 143.74% 32.53%
1.75% 138.41% 13.64%
0.69% 4.38% -3.43%
27.65% 318.70% 31.97%

The only significant differences in processing time are observed for the Synthetic 12g dataset
using the ’cs-dao’ and ’u-ul’ strategies. The statistics obtained for each algorithm indicate that
the solid high density of a similar data instances collated with a greater number of samples
requires an algorithm to perform more iterations before it converges.

Unlike the processing of partitioning clustering, the data distribution significantly impacts
classification tasks, especially when the time complexity is higher than linear. The standard
SVM implementation time complexity is O(N3), which is vulnerable to the data size, whereas
naive Bayes requires only a single pass to process the data. Hence, the time complexity for the
second algorithm is O(N · d), where N is the number of data samples and d is the number of
dimensions. In the execution of naive Bayes, the longer processing time is due to the linear
increase in the data counted at some nodes compared to others, which affects the joining opera-
tion in the central node as it needs to wait for all the local results. However, the training time is
so low that we cannot even observe a gain from the dispersal of calculations to multiple nodes.

A quick look at the results for another classifier indicates that an imbalance in the data sam-
ples does not negatively affect the quality but drastically affects the processing time. The SVM
classifier is executed twice for the DN-SVN implementation, which increases the processing
time when multiple support vectors are found at the local and global stages. A shorter process-
ing time is found when the number of data samples is small and they are easily separable. The
best illustration of a potentially unnoticed impact is the test case using the ’u-ul’ strategy for
the DN-SVN algorithm. Fig. 5.13 shows how unchanged quality results can go hand in hand
with a drastic slowdown in processing. An extension to the processing time is also caused by

94

the higher number of support vectors transferred, which increases the transfer load.

M
N

IS
T

FM
N

IS
T

S
hu

ttl
e

A
du

lt

M
N

IS
T

FM
N

IS
T

S
hu

ttl
e

A
du

lt

M
N

IS
T

FM
N

IS
T

S
hu

ttl
e

A
du

lt

-200.00%

0.00%

200.00%

400.00%

600.00%

3 nodes 6 nodes 12 nodes

quality impact processing time impact

Figure 5.13: Correlation between impact on the quality and processing time for the DN-SVM
algorithm, using the ’u-ul’ strategy.

To summarise our analysis of the processing time, it is essential to note the hidden correla-
tion between the number of data samples processed, the quality and the time required to process
them. This is not a novel discovery, but is significant in specific data partitioning scenarios and
has typically been overlooked in discussions of this issue, especially for underestimation of ’un-
balancedness’ partitioning in data during algorithm evaluation. We also observe various time
impacts using other strategies, as the presence of class representatives influences the training
process.

5.3.3 Transfer load

In the previous section, we discussed processing times and compared them to the quality results.
Here, we briefly address the amounts of data transferred over the network depending on the data
distribution. We collected the number of bytes transferred between local nodes and the central
coordinator in the training process, including the costs due to the presence of data structures in
serialised models if they occurred.

Data transfer naturally increases with the number of cooperating units; however, the load
size can vary depending on the information collected locally, at least for local-to-global com-
munication. In distributed algorithms with a central coordinator, data transfer typically starts
from local nodes, which transfer their knowledge to the central node. This information may or
may not be condensed, and is then resent to each cooperating unit. Hence, in this architecture,
the transfer size for fixed-sized models increases with the number of collaborating units.

In our evaluation, the clustering algorithms based on the partitioning approach appeared to
keep the constant size of the prepared models. The size of transferred bytes increased along
with more nodes participating in training. The only fluctuations occurred when the density or
hierarchy processing scheme caused the merging of clusters or transferring more small-sized
cluster models. In the second situation, the transfer load increased slightly and generally gave
only marginal differences within the processing of each algorithm. On the other hand, our

95

evaluation showed that the communication overhead for the LCT algorithm is truly limited, as
claimed by the authors, at least compared to the other two partitioning-based methods. Detailed
results are shown in Fig. 7.7. However, this advantage was not translated into good-quality
results.

As the classifiers used in this evaluation prepare models using a supervised approach, they
may vary more from each other depending on the data distribution, especially when there are
missing class representatives at several nodes. The most significant difference appears for the
prior probability shift strategies in both classifiers, as shown by the results in Fig. 7.6. The size
of the naive Bayes model depends only on the number of distinct labels, and hence is slightly
larger for the ’cs-cl’ strategy, in which artificial classes are present in the global scope. In the
distributed version of the SVM algorithm examined here, the local models consist of locally
found support vectors, and the overall transfer is therefore stable, regardless of the number of
nodes involved. This is why a lower communication overhead is observed when more data
samples are separated on distinct local nodes based on the class. The difference may be high in
terms of absolute values, as illustrated in Fig. 5.14, where megabytes of data are transferred in
the processing of the FMNIST dataset, for example. However, this lower transfer is typically
seen with quality loss, as demonstrated in our quality impact analysis.

M
B

0

25

50

75

100

125

iid
-u

cs
-da
o

cs
-ds
ad

pp
s-s

pp
s-a
b

pp
s-m

s

pp
s-m

ps

pp
s-m

pa
cd
-sb
a

cs
-cl u-u

l

Figure 5.14: Data transfer results for the DN-SVM algorithm for various partitioning strategies
during training on the FMNIST dataset, divided into three nodes.

In the same way as for non-distributed processing, more information can allow for the prepa-
ration of a better global model, or can lead to overfitting. In a distributed processing scheme,
more information typically increases the transfer load. Nevertheless, how the model impacts
quality results primarily depends on the specific processing of implemented method and the
way of using carried information. From our experiments, we observed a linear increase in
transfer size for the partitioning clustering methods, whereas the data transfer size for classifi-
cation is more sensitive, as there is more variation between models depending on the training
set. However, the relative difference in the transfer size for different data distributions seems to
be substantial, and does not necessarily reduce the quality of the results.

The use of condensed models, which reduces data transfer, is more desirable as fewer data

96

are shared outside the local site. An analysis of the transfer load may therefore reveal security
issues, for example with the SVM implementation in which raw data are transferred between
computational nodes. Moreover, although they are not included in this work, additional statis-
tics on transfer durations obtained from our evaluation of the DDM-PS-Eval platform show that
the model size corresponds to the extended communication time, even when training is fast. A
side effect such as this arising from the size of the model may be crucial for collaborative algo-
rithms, as it significantly increases delays and must be controlled in the design of a distributed
algorithm.

5.4 Summary of negative impact

In this section, we present a summary of multiple experiments. To confirm the relationship
between partitioning strategy and algorithm processing, we collected quality and time impact
data and compared them to the results from a uniform distribution (IID) by averaging the com-
bined results obtained from test cases for each main non-IID category. However, these values
may be underestimated, as some correct results indicate a low impact due to incorrect strat-
egy parameterisation rather than algorithm resistance, which understates the average values in
the presented summary for the categories. This is why the use of a wide range of distribution
strategies is required for the proper evaluation of algorithms.

Depending on the behaviour of the algorithm, the results may be better or worse, or may not
change at all. For example, in the case of distributed versions of density-based algorithms, data
separation is typically an obstacle in subsequent phases of global aggregation. For this reason, it
is essential to validate algorithms using multiple data partitioning strategies rather than a single
uniform one. In addition, we need to remember that the impact of non-IID data partitioning on
the quality of the algorithms also depends on the characteristics of the data themselves, without
partitioning. The detailed results in the attachment show that the distributions of the results
for the same algorithm differ between the datasets; for instance, this is clearly visible for the
distributed agglomerative BIRCH algorithm.

Although it is not easy to visualise multiple results, it is clear that specific data distributions
strongly affect the processing of different algorithms. It is therefore possible to determine which
data partitioning strategy will negatively affect the algorithm processing in terms of final quality
results and execution statistics depending on the type of algorithm. Unfortunately, a fully confi-
dent and correct classification is impossible for hybrid algorithms, but we can infer the scale of
the impact based on the influence of the algorithm on a crucial aspect of the processing. How-
ever, we can undoubtedly identify which groups of algorithms to avoid when processing data
with a particular distribution if this is known or suspected. The complete classification requires
yet many more different algorithms evaluation for each group. After analysing the theoretical
basis of operation for the implementations evaluated here, we can draw initial conclusions on

97

the scale of the impact for particular types of algorithm used at different stages of processing.
A summary of the maximum average impact on quality and processing time in each category
is presented in Table 5.9. These average results do not require further discussion, as they are
straightforward and were analysed individually in an earlier section.

Table 5.9: Comparison of the impact of quality and processing time on algorithms executed with
different data distributions to the results for a uniform data distribution (the heat map follows
the scheme in the tables above: L, M, and H indicate low (< 5%), medium (< 10%), high
(≥ 10%) impact, respectively; 0 indicates no noticeable impact ([−2%,2%]); and P describes a
positive impact where the results are better than those obtained for a uniform data distribution).

Quality impact Processing time impact
Local algorithm type

SVM Probabi
listic

Partitio
ning

Partitio
ning

Partitio
ning

Hierarc
hical

SVM Probabi
listic

Partitio
ning

Partitio
ning

Partitio
ning

Hierarc
hical

Global algorithm type Partitio
ning Density Hierarc

hical
Partitio

ning
Partitio

ning Density Hierarc
hical

Partitio
ning

Main non-IID category
Covariate shift 0 0 L 0 M 0 H H H H H

Prior probability shift H 0 M L M P H M M M M
Concept drift L 0 0 0 0 0 H L 0 L 0
Concept shift H M L

Unbalancedness 0 0 0 0 0 P H H H H H

H
H
H

n/a n/a n/a n/a P n/a n/a n/a n/a
H

The summarised scale of the gathered negative quality impact illustrated in Table 5.9 maps
to the suggested minimal test suite coverage depicted in Fig. 4.3 that suppose to be performed
during algorithm evaluation. It is especially accurate for clustering methods confirming validity
of this minimal evaluation set. Table 5.9 presents aggregated results, but when we look closer
at the particular result values obtained by applying nested strategies, we can potentially extract
the next level of subcategories in our taxonomy. For instance, unlike the clustering algorithms,
the tested classifier suffers significantly more from the ’cs-dao’ distribution strategy than from
’cs-dsad’ while both belong to the ’covariate shift’ category.

With regard to transfer size, it is impossible to define the impact of data distribution for any
group of algorithms, as the models are too diverse. The model is the core of the algorithm and
therefore dedicated to the method. However, the impact on transfer using simple techniques is
usually marginal, although it can play a more prominent role more complex methods, and we
therefore need to monitor their sizes in a benchmarking comparison.

98

Chapter 6

Conclusion

The main goal of this work was to analyse, standardise and enhance the evaluation process
for distributed clustering and classification algorithms with uneven data distribution. We intro-
duced new data partitioning strategies to simulate different non-IID data distributions to achieve
this goal. For the sake of completeness of the standardised evaluation process, we developed a
novel evaluation platform, which was designed to perform a comparison of multidimensional
experiments with different non-IID data distributions. We demonstrated a negative impact on
the execution of distributed algorithms working with a local independent dataset in terms of
various aspects of processing, such as the final quality, slowdown in performance and network
transfer increase. Moreover, we proposed a hybrid distributed clustering algorithm that over-
comes most quality failures originating from poor local initialisation for more than half of the
test cases compared to the primary reference approach. In the experimental section, we evalu-
ated two types of classifier to show the strong impact or neutrality of the data distribution in-
fluence on the algorithm processing. We examined several methods based on the common core
partitioning approach to clustering evaluation. A brief analysis of the results obtained from our
evaluation of partitioning strategies using different types of distributed algorithms allowed us to
identify a potential scale for the impact of the data distribution on the results.

Of the main goals of this work, we can see that the secondary objectives have been accom-
plished. We extended and standardised a non-IID taxonomy. We also extracted and confirmed
the validity of a minimal test suite coverage for the correct algorithm evaluation. To examine the
data partitioning strategies, we prepared a set of generic parameterised test suites that are ready
to use on different datasets, which can reveal potential drawbacks in newly designed algorithms.

We presented a hybrid concept that combines two different types of clustering algorithms for
single distribution processing: k-means is used as a base partitioning algorithm, and a density-
based OPTICS algorithm is used to build global clustering models. The input parameters for
OPTICS are determined automatically, based on our local clustering models, and no user in-
put is required. Our method also fixes the issue of poor local initialisation for k-means, thus
eliminating the influence of the bad start problem, so that even random initialisation at the local
stage does not reduce the quality of the results. Parameterisation allows us to improve the global

99

phase by calculating the real number of clusters for the entire distributed dataset. The proposed
density approach improved the local k-means initialisation accuracy in the global clustering
phase, which led to improvements in the overall average quality compared with local clustering
and hybrid methods utilising a hierarchical approach.

As part of this work, we have introduced a novel platform for evaluating DDM algorithms
that considered the impact of the data distribution. The platform, implemented from scratch
with PoC elements, is easy to use and extend by user-defined, pluggable implementations of
machine learning algorithms using the provided framework. We have also addressed the often
neglected impact of data partitioning on the results by integrating strategy mechanisms directly
into our platform. The proposed evaluation tool can be readily used in practice to compare
new DDM algorithms in terms of speed, network load, and the quality of the results using any
dataset.

The proposed partitioning methods have been evaluated for distributed clustering and clas-
sification algorithms using several datasets and various algorithms. Each data partitioning strat-
egy has been implemented and integrated with the DDM-PS-Eval platform. In conclusion, this
study has shown that data partitioning has a significant impact on the results provided by dis-
tributed algorithms. This work paves the way for better validation of algorithms, in order to
allow for the design of algorithms that are agnostic in terms of data distribution.

6.1 Limitations

We aimed to determine a generalised impact by conducting a wide range of test cases using
multiple partitions, datasets and algorithms; however, one of the results of our experimental
evaluation analysis was that there are multiple variables that affect strategy evaluation. For
different ensemble methods, the precise impact is difficult to determine, as algorithms may use
multiple hyperparameters to deal with different situations. Hence, a deeper insight and analysis
of more realistic datasets and dedicated algorithm types for practical purposes is still required,
in order to reveal more specific implications.

In most cases, the impact on the data transfer seems straightforward for the simple models
built by the evaluated algorithms, with a central communication architecture. More experiments
with other distribution architectures, such as P2P networks with more sophisticated algorithms,
are required to discover more consequences in terms of the transfer load.

The proposed hybrid clustering algorithm overcomes the obstacles arising from initialisa-
tion with certain data distributions. However, the introduction of more detailed partitioning
strategies and the collection of evaluation statistics using the implemented platform revealed
some shortcomings in the processing quality and duration that need to be addressed.

One possible drawback of the proposed evaluation platform is the technology selected, since
in recent years, we have observed significant increases in the popularity of Python and the

100

numbers of works and algorithm implementations written in this language. Although the JVM-
based language is still popular, modern PoC programs typically rely on Python, which makes
it harder to evaluate the latest works. Further work would be required in terms of porting or
wrapping the implementations to compare execution on the platform, which would introduce
some additional costs for statistics. However, if the platform could handle the algorithms written
in Python, we could attach more recent implementations in evaluation, even the FL ones.

6.2 Future research

Besides the shortcomings described in the previous section, the research presented here opens
several possible avenues for further study. We can divide these into three categories: the design
of distributed and robust algorithms, platform development in the areas of automatisation and
UI, and further investigation of the presence of non-IID data in more practical applications.

Regarding the DDM-PS-Eval platform, there is a never-ending list of tasks for further devel-
opment, including optimisation and new features for other types of data and algorithms. Cur-
rent process of preparation experiments requires some additional semi-automatic setup, such as
manual choosing an attribute or label to process as a strategy parameter. However, this choice
can be successfully implemented within the partitioning strategies to work automatically.

We have evaluated only a small selection of the existing types of classification and clus-
tering methods and implementations. An incremental, systematic study of the different data
mining methods is still required to obtain a better view of the side effects of data partitioning.
Nevertheless, this is not an easy task due to the diversity in the approaches, algorithm architec-
tures, and data types used. Further research on different data partitioning schemes, such as for
textual datasets, is necessary to extend the taxonomy introduced here and the possibilities for
evaluation.

With regard to partitioning methods, future work will involve extending the proposed meth-
ods to produce more realistic distributions of non-IID data by mixing multiple partitioning
strategies based on attributes, labels, and quantity. Several open issues need to be analysed and
addressed, such as the aforementioned mixture of strategies and the ability to deal with a large
number of partitions for data with few labels. Further investigation of strategy parameterisation
is also required. As discussed in our analysis, incorrect parameterisation of a single partitioning
strategy may produce data partitioning that mix different non-IID categories. Nevertheless, the
methods proposed here represent only a few possibilities for the data distributions, and many
more are possible.

101

Bibliography

[1] Aisha Abdallah, Mohd Aizaini Maarof, and Anazida Zainal. Fraud detection system: A
survey. Journal of Network and Computer Applications, 68:90–113, 2016.

[2] Elke Achtert, Hans-Peter Kriegel, and Arthur Zimek. Elki: a software system for eval-
uation of subspace clustering algorithms. In International Conference on Scientific and

Statistical Database Management, pages 580–585. Springer, 2008.

[3] Mouhib Alnoukari. From business intelligence to big data: The power of analytics. In
Research Anthology on Big Data Analytics, Architectures, and Applications, pages 823–
841. IGI Global, 2022.

[4] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: Order-
ing points to identify the clustering structure. ACM Sigmod record, 28(2):49–60, 1999.

[5] Lamine M Aouad, Nhien-An Le-Khac, and Tahar M Kechadi. Lightweight clustering tech-
nique for distributed data mining applications. In Industrial conference on data mining,
pages 120–134. Springer, 2007.

[6] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.
Technical report, Stanford, 2006.

[7] Árpád Berta, István Hegedűs, and Róbert Ormándi. Lightning fast asynchronous dis-
tributed k-means clustering. 2014.

[8] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer, Timm
Jansen, and Thomas Seidl. Moa: Massive online analysis, a framework for stream clas-
sification and clustering. In Proceedings of the first workshop on applications of pattern

analysis, pages 44–50. PMLR, 2010.

[9] Christoph Boden, Alexander Alexandrov, Andreas Kunft, Tilmann Rabl, and Volker
Markl. Peel: A framework for benchmarking distributed systems and algorithms. In Tech-

nology Conference on Performance Evaluation and Benchmarking, pages 9–24. Springer,
2017.

103

[10] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMa-
han, et al. Towards federated learning at scale: System design. Proceedings of Machine

Learning and Systems, 1:374–388, 2019.

[11] Houda Bouraqqadi, Ayoub Berrag, Mohamed Mhaouach, Afaf Bouhoute, Khalid Far-
dousse, and Ismail Berrada. Pyfed: extending pysyft with n-iid federated learning bench-
mark. In The 34th Canadian Conference on Artificial Intelligence, 2021.

[12] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Bren-
dan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated
settings. arXiv preprint arXiv:1812.01097, 2018.

[13] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile networks and

applications, 19(2):171–209, 2014.

[14] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C Tappert. A survey of binary similarity
and distance measures. Journal of systemics, cybernetics and informatics, 8(1):43–48,
2010.

[15] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extend-
ing mnist to handwritten letters. In 2017 international joint conference on neural networks

(IJCNN), pages 2921–2926. IEEE, 2017.

[16] Souptik Datta, Chris Giannella, and Hillol Kargupta. K-means clustering over a large,
dynamic network. In Proceedings of the 2006 SIAM international conference on data

mining, pages 153–164. SIAM, 2006.

[17] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[18] Ciprian Dobre and Fatos Xhafa. Intelligent services for big data science. Future generation

computer systems, 37:267–281, 2014.

[19] Adil Fahad, Najlaa Alshatri, Zahir Tari, Abdullah Alamri, Ibrahim Khalil, Albert Y
Zomaya, Sebti Foufou, and Abdelaziz Bouras. A survey of clustering algorithms for
big data: Taxonomy and empirical analysis. IEEE transactions on emerging topics in

computing, 2(3):267–279, 2014.

[20] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant
supervision. CS224N project report, Stanford, 1(12):2009, 2009.

104

[21] Sorin M Grigorescu. Generative one-shot learning (gol): A semi-parametric approach
to one-shot learning in autonomous vision. In 2018 IEEE International Conference on

Robotics and Automation (ICRA), pages 7127–7134. IEEE, 2018.

[22] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient clustering algorithm
for large databases. ACM Sigmod record, 27(2):73–84, 1998.

[23] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algo-
rithm. Journal of the royal statistical society. series c (applied statistics), 28(1):100–108,
1979.

[24] Yue He, Zheyan Shen, and Peng Cui. Towards non-iid image classification: A dataset and
baselines. Pattern Recognition, 110:107383, 2021.

[25] Mohammad Hossin and Md Nasir Sulaiman. A review on evaluation metrics for data
classification evaluations. International journal of data mining & knowledge management

process, 5(2):1, 2015.

[26] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data
quagmire of decentralized machine learning. In International Conference on Machine

Learning, pages 4387–4398. PMLR, 2020.

[27] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of
non-identical data distribution for federated visual classification. arXiv preprint

arXiv:1909.06335, 2019.

[28] Sixu Hu, Yuan Li, Xu Liu, Qinbin Li, Zhaomin Wu, and Bingsheng He. The oarf bench-
mark suite: Characterization and implications for federated learning systems. ACM Trans-

actions on Intelligent Systems and Technology (TIST), 13(4):1–32, 2022.

[29] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification,
2(1):193–218, 1985.

[30] László A Jeni, Jeffrey F Cohn, and Fernando De La Torre. Facing imbalanced data–
recommendations for the use of performance metrics. In 2013 Humaine association con-

ference on affective computing and intelligent interaction, pages 245–251. IEEE, 2013.

[31] Genlin Ji and Xiaohan Ling. Ensemble learning based distributed clustering. In Pacific-

Asia Conference on Knowledge Discovery and Data Mining, pages 312–321. Springer,
2007.

[32] Ruoming Jin, Anjan Goswami, and Gagan Agrawal. Fast and exact out-of-core and dis-
tributed k-means clustering. Knowledge and Information Systems, 10(1):17–40, 2006.

105

[33] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated learning. Foundations and Trends®

in Machine Learning, 14(1–2):1–210, 2021.

[34] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for on-
device federated learning. 2019.

[35] Burhanullah Khattak, Aurangzeb Khan, Khairullah Khan, Wahab Khan, Muhammad
Kamran, and Muhammad Fahad. Empirical analysis of recent advances, characteristics
and challenges of big data. EAI Endorsed Transactions on Scalable Information Systems,
6(23), 2019.

[36] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492, 2016.

[37] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[38] Marzena Kryszkiewicz and Piotr Lasek. Ti-dbscan: Clustering with dbscan by means of
the triangle inequality. In International Conference on Rough Sets and Current Trends in

Computing, pages 60–69. Springer, 2010.

[39] Wiktor Kuśmirek, Agnieszka Szmurło, Marek Wiewiórka, Robert Nowak, and Tomasz
Gambin. Comparison of knn and k-means optimization methods of reference set selection
for improved cnv callers performance. BMC bioinformatics, 20(1):1–10, 2019.

[40] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[41] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai Li.
Lotteryfl: Personalized and communication-efficient federated learning with lottery ticket
hypothesis on non-iid datasets. arXiv preprint arXiv:2008.03371, 2020.

[42] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid
data silos: An experimental study. In 2022 IEEE 38th International Conference on Data

Engineering (ICDE), pages 965–978. IEEE, 2022.

[43] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bing-
sheng He. A survey on federated learning systems: vision, hype and reality for data
privacy and protection. IEEE Transactions on Knowledge and Data Engineering, 2021.

106

[44] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Vir-
ginia Smith. Federated optimization in heterogeneous networks. Proceedings of Machine

Learning and Systems, 2:429–450, 2020.

[45] Xavier Limón, Alejandro Guerra-Hernández, Nicandro Cruz-Ramírez, and Francisco
Grimaldo. Modeling and implementing distributed data mining strategies in jaca-ddm.
Knowledge and Information Systems, 60(1):99–143, 2019.

[46] Lifeng Liu, Fengda Zhang, Jun Xiao, and Chao Wu. Evaluation framework for large-scale
federated learning. arXiv preprint arXiv:2003.01575, 2020.

[47] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. Understanding of
internal clustering validation measures. In 2010 IEEE international conference on data

mining, pages 911–916. IEEE, 2010.

[48] Jiahuan Luo, Xueyang Wu, Yun Luo, Anbu Huang, Yunfeng Huang, Yang Liu, and Qiang
Yang. Real-world image datasets for federated learning. arXiv preprint arXiv:1910.11089,
2019.

[49] Mikołaj Markiewicz and Jakub Koperwas. Hybrid partitioning-density algorithm for k-
means clustering of distributed data utilizing optics. International Journal of Data Ware-

housing and Mining (IJDWM), 15(4):1–20, 2019.

[50] Mikołaj Markiewicz and Jakub Koperwas. Evaluation platform for ddm algorithms with
the usage of non-uniform data distribution strategies. International Journal of Information

Technologies and Systems Approach (IJITSA), 15(1):1–23, 2022.

[51] Mikołaj Markiewicz. and Jakub Koperwas. Data partitioning strategies for simulating non-
iid data distributions in the ddm-ps-eval evaluation platform. In Proceedings of the 17th

International Conference on Software Technologies - ICSOFT,, pages 307–318. INSTICC,
SciTePress, 2022.

[52] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data. In
Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[53] Dirk Merkel et al. Docker: lightweight linux containers for consistent development and
deployment. Linux j, 239(2):2, 2014.

[54] Behroz Mirza, Tahir Q Syed, Behraj Khan, and Yameen Malik. Potential deep learning
solutions to persistent and emerging big data challenges—a practitioners’ cookbook. ACM

Computing Surveys (CSUR), 54(1):1–39, 2021.

107

[55] Antonio Mucherino, Petraq J Papajorgji, Panos M Pardalos, Antonio Mucherino, Petraq J
Papajorgji, and Panos M Pardalos. K-nearest neighbor classification. Data mining in

agriculture, pages 83–106, 2009.

[56] Angel Navia-Vázquez, D Gutierrez-Gonzalez, Emilio Parrado-Hernández, and
JJ Navarro-Abellan. Distributed support vector machines. IEEE Transactions on Neu-

ral Networks, 17(4):1091, 2006.

[57] Silvia Nittel, Kelvin T Leung, and Amy Braverman. Scaling clustering algorithms for
massive data sets using data streams. In ICDE, volume 4, page 830, 2004.

[58] Gabriele Oliva, Roberto Setola, and Christoforos N Hadjicostis. Distributed k-means al-
gorithm. arXiv preprint arXiv:1312.4176, 2013.

[59] Lior Rokach and Oded Maimon. Clustering methods. In Data mining and knowledge

discovery handbook, pages 321–352. Springer, 2005.

[60] Simone Romano, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor. Adjusting for
chance clustering comparison measures. The Journal of Machine Learning Research,
17(1):4635–4666, 2016.

[61] Stan Salvador and Philip Chan. Determining the number of clusters/segments in hierar-
chical clustering/segmentation algorithms. In 16th IEEE international conference on tools

with artificial intelligence, pages 576–584. IEEE, 2004.

[62] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed op-
timization using an approximate newton-type method. In International conference on

machine learning, pages 1000–1008. PMLR, 2014.

[63] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop
distributed file system. In 2010 IEEE 26th symposium on mass storage systems and tech-

nologies (MSST), pages 1–10. Ieee, 2010.

[64] Toon Van Craenendonck and Hendrik Blockeel. Using internal validity measures to com-
pare clustering algorithms. Benelearn 2015 Poster presentations (online), pages 1–8,
2015.

[65] Geoffrey I Webb, Eamonn Keogh, and Risto Miikkulainen. Naïve bayes. Encyclopedia of

machine learning, 15:713–714, 2010.

[66] Jian Wei, Kai Chen, Yi Zhou, Qu Zhou, and Jianhua He. Benchmarking of distributed
computing engines spark and graphlab for big data analytics. In 2016 IEEE Second Inter-

national Conference on Big Data Computing Service and Applications (BigDataService),
pages 10–13. IEEE, 2016.

108

[67] Ian H Witten and Eibe Frank. Data mining: practical machine learning tools and tech-
niques with java implementations. Acm Sigmod Record, 31(1):76–77, 2002.

[68] Shanshan Wu, Tian Li, Zachary Charles, Yu Xiao, Ziyu Liu, Zheng Xu, and Virginia
Smith. Motley: Benchmarking heterogeneity and personalization in federated learning.
arXiv preprint arXiv:2206.09262, 2022.

[69] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[70] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A {Fault-Tolerant} abstraction for {In-Memory} cluster computing. In 9th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 12), pages 15–28, 2012.

[71] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: A new data clustering algo-
rithm and its applications. Data mining and knowledge discovery, 1(2):141–182, 1997.

[72] Yudian Zheng, Reynold Cheng, Silviu Maniu, and Luyi Mo. On optimality of jury selec-
tion in crowdsourcing. In EDBT, pages 193–204, 2015.

[73] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on non-iid data:
A survey. Neurocomputing, 465:371–390, 2021.

109

Chapter 7

Attachments

7.1 DDM-PS-Eval technical details

7.1.1 Communication

The central point of the system is the coordinator application. It forms the entry point to the
algorithm execution and environment setup for the system; moreover, is implemented as a web
application and exposes an API for interaction. In general, the coordinator application can be
seen as a test suite container and a communication proxy with workers. Its role is to set up a
test environment, control the health checks of the instances, and schedule multiple executions
to verify the statistical significance of results produced by non-deterministic algorithms. All the
data provided by the user and the collected results are stored in the integrated storage compo-
nent. Execution results are archived on shutdown, while algorithms are conditionally cleared.
The application responsible for communication with the coordinator application and communi-
cation between other nodes in the environment is the node agent. This physically controls the
execution of the driver program for experiments with a given configuration of the algorithm,
data, and other execution parameters. Each agent reports its execution status and provides exe-
cution logs and results with statistics.

The agent application is currently implemented in Java version 8, for compatibility with
Spark 2.4.5, which is used in the proof of concept (PoC). At the current stage of implementa-
tion, the driver program is written as a Spark application packaged in a .jar file, and runs on
a cluster built on Spark workers installed on the worker nodes. The issues related to commu-
nication when using Spark are discussed in a later section. The driver is responsible for the
execution of the algorithm, gathering processing time and transfer statistics, and orchestration
of the execution pipeline. The development script is a local script written in Python that ex-
ecutes sequences of API calls wrapped in functions that set up, reload resources, execute, or
provide execution information, such as logs, statuses, results, etc.

111

Current communication drawbacks

Our current solution is based on collaborating Docker containers, consisting of the node agent
application and a Spark node. A Spark worker is started on each worker node, while the Spark
master is on the central node. This hidden Spark environment in the Docker container has been
used for PoC purposes in order to demonstrate the system’s capabilities, but it can easily be re-
moved. We have used many of the ’out of the box’ features provided by Spark, such as worker
communication and code transfer; however, this also imposes several limitations. The Spark
environment builds strongly connected clusters and performs multiple operations that are hard
or even impossible to control, meaning that work must be done within the same network. Fur-
thermore, the driver program can only pass hints to the Spark execution scheduler about which
nodes to use by providing preferable data locations, but cannot force this use in any way. Nev-
ertheless, it is possible to set up sufficiently strict configuration parameters and hints to make it
work as expected, and we have done this mostly by setting low communication timeouts, ports,
and preferred locations. To ensure confidence in our current solution, verification is always
done to check that every node with its local data in the instance has participated in execution;
otherwise, the execution fails. As we are satisfied that the system worked as expected, we
plan to remove the hidden Spark components in favour of explicit execution by the dedicated
protocol of the node agents on the worker nodes.

7.1.2 Environment setup

Distributed systems need to work in an authentic distributed manner, although local testing can
be beneficial. Our platform was therefore equipped with this possibility, and the coordinator
application can operate in two profiles: manual or local setup. In the first case, the user provides
an existing infrastructure setup consisting of nodes with agents installed. This setup contains
some environmental information but mostly addresses, as shown in Listing 7.1. The second
profile allows us to create and destroy local Docker images with workers and to apply specific
limitations to containers, as depicted in Fig. 7.1. Regardless of the configuration, multiple setups
known as ’instances’ can exist simultaneously. Each instance consists of a specific number of
workers described by a network address, and the open ports used, the number of cores, the
available memory, and the disk size. One additional worker always acts as a DDM central
coordinator.

Figure 7.1: Docker container limits when running an experiment, obtained with the Docker
stats command.

112

Listing 7.1: Sample manual setup for platform consisting of agents located in the environment
and open ports used in communication.

1 { "nodes": [{
2 "address": "192.168.1.23",
3 "agentPort": "10050",
4 "cpu": 4,
5 "memoryInGb": 2,
6 "name": "new -master",
7 "port": "10000",
8 "type": "master",
9 "uiPort": "10030"

10 }, {
11 "address": "192.168.2.58",
12 "agentPort": "10051",
13 "cpu": 4,
14 "memoryInGb": 2,
15 "name": "new -worker -1",
16 "port": "10001",
17 "type": "worker",
18 "uiPort": "10031"
19 }, {
20 "address": "192.168.2.13",
21 "agentPort": "10052",
22 "cpu": 4,
23 "memoryInGb": 2,
24 "name": "new -worker -2",
25 "port": "10002",
26 "type": "worker",
27 "uiPort": "10032"
28 }]

113

7.2 Detailed quality results

�3Q �3Q ��3Q
���

���

���

���

���

���

���

���

���

���

���

���

���

���

�3Q �3Q ��3Q
���

���

���

���

���

���

���

���

���

���
3DUWLWLRQLQJ�VWUDWHJ\

LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

01�67�GDWDVHW

$
FF
X
UD
F\

$
FF
X
UD
F\

GBGQ�VYP GBQDLYH�ED\HV

�3Q �3Q ��3Q

���

���

���

���

���

���

���

���

�3Q �3Q ��3Q

���

���

���

���

���

���

��� 3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

)01�67�GDWDVHW

$
FF
X
UD
F\

$
FF
X
UD
F\

GBGQ�VYP GBQDLYH�ED\HV

�3Q �3Q ��3Q

���

���

���

���

���

���

���
���
���
���
���
���
���

�3Q �3Q ��3Q
���

���

���

���

���

���

���

��� 3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

6KXWWOH�GDWDVHW

)
�V
FR
UH

)
�V
FR
UH

GBGQ�VYP GBQDLYH�ED\HV

�3Q �3Q ��3Q

���

���

���

���

���

���

���

���
���
���
���
���
���

�3Q �3Q ��3Q
���

���

���

���

���

���

���

���

���

���

���

��� 3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

$GXOW�GDWDVHW

$
FF
X
UD
F\

$
FF
X
UD
F\

GBGQ�VYP GBQDLYH�ED\HV

Figure 7.2: Detailed quality results for classification evaluation.

114

�3Q �3Q ��3Q
��

���

���

���

���

����

�3Q �3Q ��3Q
��

���

���

���

���

����

�3Q �3Q ��3Q
��

���

���

���

���

���

���

���

���

�3Q �3Q ��3Q
��

���

���

���

���

���� 3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

&85(�H[SDQGHG�GDWDVHW

$
5
�

$
5
�

$
5
�

$
5
�

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

�3Q �3Q ��3Q
��

���

���

���

���

����

�3Q �3Q ��3Q
��

���

���

���

���

����

�3Q �3Q ��3Q
��

���

���

���

���

���

���

���

�3Q �3Q ��3Q
��

���

���

���

���

���� 3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

'LDPRQG�H[SDQGHG�GDWDVHW

$
5
�

$
5
�

$
5
�

$
5
�

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

�3Q �3Q ��3Q
��

���

���

���

���

����

�3Q �3Q ��3Q
��

���

���

���

���

����

�3Q �3Q ��3Q
��

���

���

���

���

���

���

���

���

�3Q �3Q ��3Q
��

���

���

���

���

���� 3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

6\QWKHWLF��J�GDWDVHW

$
5
�

$
5
�

$
5
�

$
5
�

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

�3Q �3Q ��3Q
��

���

���

���

���

����

�3Q �3Q ��3Q
��

���

���

���

���

����

�3Q �3Q ��3Q
��

���

���

���

���

���

���

���

�3Q �3Q ��3Q
��

���

���

���

���

���� 3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

6\QWKHWLF���J�GDWDVHW

$
5
�

$
5
�

$
5
�

$
5
�

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

Figure 7.3: Detailed quality results for clustering evaluation.

115

7.3 Detailed processing time statistics

�3Q �3Q ��3Q
�

��N

��N

��N

��N

��N

��N

��N

��N

�3Q �3Q ��3Q
�

���

���

���

���

�N

�N

�N

�N
3DUWLWLRQLQJ�VWUDWHJ\

LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

01�67�GDWDVHW

P
V

P
V

GBGQ�VYP GBQDLYH�ED\HV

�3Q �3Q ��3Q
�

��N

��N

��N

��N

���N

���N

�3Q �3Q ��3Q
�

���

���

���

���

�N

�N

�N

�N
3DUWLWLRQLQJ�VWUDWHJ\

LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

)01�67�GDWDVHW

P
V

P
V

GBGQ�VYP GBQDLYH�ED\HV

�3Q �3Q ��3Q
�

��N

��N

��N

��N

��N

��N

�3Q �3Q ��3Q
�

���

���

���

���

���

���

3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

6KXWWOH�GDWDVHW

P
V

P
V

GBGQ�VYP GBQDLYH�ED\HV

�3Q �3Q ��3Q
�

��N

��N

��N

��N

���N

���N

�3Q �3Q ��3Q
�

���

���

���

���

���
3DUWLWLRQLQJ�VWUDWHJ\

LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

$GXOW�GDWDVHW

P
V

P
V

GBGQ�VYP GBQDLYH�ED\HV

Figure 7.4: Detailed processing time statistics for classification evaluation.

116

�3Q �3Q ��3Q
�

���

�N

�N

�N

�N

�N

�N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

�3Q �3Q ��3Q
�

���

�N

�N

�N

�N

�N

�N

�N

�3Q �3Q ��3Q
�

���

�N

�N

�N

�N

�N 3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

&85(�H[SDQGHG�GDWDVHW

P
V

P
V

P
V

P
V

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

�3Q �3Q ��3Q
�

���

�N

�N

�N

�N

�N

�N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

�N

�3Q �3Q ��3Q
�

���

�N

�N

�N

�N

�N

�N

�N

�3Q �3Q ��3Q
�

���

�N

�N

�N

�N

3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

'LDPRQG�H[SDQGHG�GDWDVHW

P
V

P
V

P
V

P
V

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

�3Q �3Q ��3Q
�

���

�N

�N

�N

�3Q �3Q ��3Q
�

���

�N

�N

�N

�N

�3Q �3Q ��3Q
�

���

�N

�N

�N

�N

�3Q �3Q ��3Q
�

���

�N

�N

�N
3DUWLWLRQLQJ�VWUDWHJ\

LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

6\QWKHWLF��J�GDWDVHW

P
V

P
V

P
V

P
V

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

�3Q �3Q ��3Q
�

�N

�N

�N

�N

��N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

��N

��N

��N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

��N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

�N

3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

6\QWKHWLF���J�GDWDVHW

P
V

P
V

P
V

P
V

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

Figure 7.5: Detailed processing time statistics for clustering evaluation.

117

7.4 Detailed transfer load statistics

�3Q �3Q ��3Q
�

��0

��0

��0

��0

���0

���0

�3Q �3Q ��3Q
�

���N

���N

���N

���N
3DUWLWLRQLQJ�VWUDWHJ\

LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

01�67�GDWDVHW

E
\
WH
V

E
\
WH
V

GBGQ�VYP GBQDLYH�ED\HV

�3Q �3Q ��3Q
�

��0

��0

��0

��0

���0

���0

���0

�3Q �3Q ��3Q
�

���N

���N

���N

���N
3DUWLWLRQLQJ�VWUDWHJ\

LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

)01�67�GDWDVHW

E
\
WH
V

E
\
WH
V

GBGQ�VYP GBQDLYH�ED\HV

�3Q �3Q ��3Q
�

�0

��0

��0

��0

��0

��0

��0

��0

�3Q �3Q ��3Q
�

��N

���N

���N

���N 3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

6KXWWOH�GDWDVHW

E
\
WH
V

E
\
WH
V

GBGQ�VYP GBQDLYH�ED\HV

�3Q �3Q ��3Q
�N

�N

��N

��N

��N

���N

���N

���N

�0

�0

�0

��0

��0

�3Q �3Q ��3Q

��N

��N

��N

��N

��N

��N

��N
��N
���N
���N
���N

3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

$GXOW�GDWDVHW

E
\
WH
V

E
\
WH
V

GBGQ�VYP GBQDLYH�ED\HV

Figure 7.6: Detailed transfer load statistics for classification evaluation.

118

�3Q �3Q ��3Q
�

�N

�N

�N

�N

�N

�N

�N

�N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

��N

��N

��N

��N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

��N

��N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

&85(�H[SDQGHG�GDWDVHW

E
\
WH
V

E
\
WH
V

E
\
WH
V

E
\
WH
V

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

�3Q �3Q ��3Q
�

�N

�N

�N

�N

�3Q �3Q ��3Q
�

�N

��N

��N

��N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

��N

��N

��N

��N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

�N

�N
3DUWLWLRQLQJ�VWUDWHJ\

LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

'LDPRQG�H[SDQGHG�GDWDVHW

E
\
WH
V

E
\
WH
V

E
\
WH
V

E
\
WH
V

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

�3Q �3Q ��3Q
�

�N

�N

�N

�N

�3Q �3Q ��3Q
�

�N

��N

��N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

��N

��N

��N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

�N 3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

6\QWKHWLF��J�GDWDVHW

E
\
WH
V

E
\
WH
V

E
\
WH
V

E
\
WH
V

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

�3Q �3Q ��3Q
�

�N

�N

�N

�N

��N

��N

�3Q �3Q ��3Q
�

�N

��N

��N

��N

��N

��N

�3Q �3Q ��3Q
�

�N

��N

��N

��N

�3Q �3Q ��3Q
�

�N

�N

�N

�N

3DUWLWLRQLQJ�VWUDWHJ\
LLG�X

FV�GDR

FV�GVDG

SSV�V

SSV�DE

SSV�PV

SSV�PSV

SSV�PSD

FG�VED

FV�FO

X�XO

6\QWKHWLF���J�GDWDVHW

E
\
WH
V

E
\
WH
V

E
\
WH
V

E
\
WH
V

GBGN�PHDQV GBRSW�GNP GBOFW GBGS�ELUFK

Figure 7.7: Detailed transfer load statistics for clustering evaluation.

119

