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Training instabilities in neural network-based sequential data
modeling

Abstract.
This thesis presents a series of publications regarding instabilities during neural

networks’ optimization process (also called training) in sequential data modeling. In
our study, we investigate two approaches to solving such problems: specialized neural
architectures and second-order optimizers.

In the first part of our work, we focus on custom architectures reducing problems with
training instabilities. First, we show that a combination of fixed state processing and
custom convolutional neural network architecture is sufficient to successfully process a
series of medical images. Based on this approach, we introduce the first fully-automatic
allergic skin reaction recognition system. We show that our method yields accurate
results comparable between patients, as opposed to current, manual state-of-the-art.
Next, we propose a minimal gated recurrent neural architecture with an arbitrary,
nonlinear state transformation. We theoretically show that this architecture alleviates
gradient propagation issues while using fewer parameters than its competitors. Further,
we present experimental results which indicate that our method often outperforms
state-of-the-art solutions, especially on problems with high state drift. Interestingly, we
note that the recurrent neural network’s performance degrades with the depth of the state
transformation. This observation holds on several tasks for two different architectures.

In the second part, we look closer at second-order optimization algorithms as an
alternative to currently often-used gradient ones. To this end, we propose a modification
of an evolution strategy algorithm, tailoring it for neural network training. We show
that such an approach allows for optimizing both convolutional and recurrent neural
networks. Notably, the proposed method can effectively train Jordan recurrent neural
networks on tasks with significant gradient propagation problems, in contrast to the
state-of-the-art first-order method. Finally, we conclude that combining second-order
optimization with gradient information results in the best-performing models.

Overall, our research contributes to the mitigation strategies against training instabil-
ities of neural architectures on sequential data. We introduce two new architectural and
one optimization solution to the instability problems. One of the architectural solutions
serves as a basis for the novel, real-life medical data analysis system.

Keywords: Sequential Data, Recurrent Neural Networks, Neural Network Training,
Optimization
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Niestabilności w procesie uczenia sieci neuronowych
przy modelowaniu danych sekwencyjnych

Streszczenie.
W niniejszej pracy przedstawiamy serię publikacji poświęconej zagadnieniom niesta-

bilności w procesie uczenia (optymalizacji) sieci neuronowych przy modelowaniu danych
sekwencyjnych. W ramach przedstawionych prac badamy dwa podejścia do rozwiązania
problemów związanych z niestabilnościami: dedykowane architektury sieci neuronowych
oraz optymalizatory drugiego rzędu.

W pierwszej części pracy skupiamy się na architekturach sieci neuronowych za-
projektowanych na potrzeby niwelacji niestabilności w procesie uczenia. Pokazujemy,
że połączenie z góry narzuconego, nieelastycznego sposobu przetwarzania stanu oraz
dedykowanej konwolucyjnej sieci neuronowej wystarczy aby poprawnie przetwarzać serię
obrazów medycznych. Na podstawie tego podejścia wprowadzamy pierwszy w pełni
automatyczny system do rozpoznawania reakcji alergicznych skóry. Zaproponowana
przez nas metoda otrzymuje dobre wyniki, które mogą być porównywalne pomiędzy pac-
jentami, w przeciwieństwie do obecnego, manualnego podejścia. Następnie prezentujemy
minimalną rekurencyjną sieć neuronową z mechanizmem bramkującym oraz arbitral-
nym, nieliniowym przekształceniem stanu. Pokazujemy teoretycznie, że zaproponowana
architektura rozwiązuje problemy z propagacją gradientu, przy użyciu mniejszej liczby
parametrów niż konkurencyjne architektury. Ponadto demonstrujemy wyniki ekspery-
mentalne, które wskazują, że nasz model często uzyskuje lepsze wyniki w porównaniu
do obecnie używanych modeli, w szczególności na problemach z dużym dryfem stanu.
W wyniku eksperymentów dla dwóch różnych architektur na kilku różnych zadaniach
dochodzimy do ciekawego wniosku - jakość wyników rekurencyjnej sieci neuronowej
spada wraz z głębokością transformacji stanu.

W drugiej części pracy skupiamy się na optymalizatorach drugiego rzędu jako al-
ternatywie dla obecnie często używanych algorytmach bazujących na gradiencie. W
ramach tych prac prezentujemy modyfikację algorytmu strategii ewolucyjnej, którą
przystosowujemy do treningu sieci neuronowych. Pokazujemy, że nasz algorytm pozwala
na optymalizację konwolucyjnych i rekurencyjnych sieci neuronowych. W szczególności
zaproponowana metoda potrafi nauczyć rekurencyjną sieć neuronową Jordana na zadani-
ach z poważnymi problememami propagacji gradientu, które nie są rozwiązywane przez
metody pierwszego rzędu. Pokazujemy również, że łącząc optymalizację drugiego rzędu
z informacją o gradiencie otrzymujemy najlepiej działające modele.

Podsumowując, nasza praca przyczynia się do rozszerzenia strategii mitygacji niesta-
bilności treningu sieci neuronowych przy modelowaniu danych sekwencyjnych. Wprowadzamy
dwa architekturalne i jedno optymalizacyjne rozwiązanie problemów ze stabilnością pro-
cesu optymalizacji sieci neuronowych. Jedno z architekturalnych rozwiązań stanowi
podstawę nowatorskiego systemu analizy danych medycznych.

Słowa kluczowe: Dane Sekwencyjne, Rekurencyjne Sieci Neuronowe, Trening Sieci
Neuronowych, Optymalizacja
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1. Introduction

A collection of at least two ordered data points with repetitions allowed creates a
sequence and so we call such data sequential. Typically, a sequential dataset comprises
multiple sequences, each treated as a single sample. The length of a specific sequence can
vary between samples within a single dataset. The sequence length usually determines
the amount of information that such a sequence carries.

Sequential data is found abundantly in the world around us. Time series are sequences
of arbitrary values in time, such as temperature, stock value, the electrical activity of the
heart or brain, or the position of celestial bodies in the sky. Predicting future data points
in such sequences has been an essential task for humanity dating back at least to Ancient
Greece, as indicated by the first analog computer, the Antikythera mechanism, which has
been used to predict astronomical positions (Freeth et al., 2006). Nowadays, time series
are analyzed in multiple important research fields – weather forecasting (Fathi et al.,
2022). Apart from sequential data that are not ordered according to time, numerous
types of sequences are used throughout science. Genetic sequences of RNA or DNA are
the basis of the current genomics and virology research (Lesk, 2017; Chiara et al., 2021).
Another example of important sequential data is natural language, where characters,
syllables, words, and sentences can be treated as different sequences. Breakthroughs in
natural language processing allow us to automatically process large volumes of spoken
and written data (Chowdhary, 2020). Some researchers claim that these advances in
language data processing allow for artificial intelligence models which show signs of
General Intelligence (Bubeck et al., 2023).

Due to the varying size of samples, the amount of information contained within
a single sample, and mutual information shared between single data points within a
single sequence modeling sequential data can be challenging. There are several ways to
process sequential data. Predicting the next data point based on the sequence is one of
them, with examples such as weather forecasting or natural language modeling. Another
approach is to calculate an arbitrary value based on the sequence, such as classification,
e.g., ECG signal classification or genetic illness detection based on the genome sequence.
A sequence can also be transformed to form a different sequence, such as text translation
from one natural language to another.

Classical approaches to sequential data modeling vary depending on the task. Typi-
cally, for time series forecasting models based on autoregression and moving average
are used, such as autoregressive moving average (ARMA) (Whittle, 1951), autoregres-
sive integrated moving average (ARIMA) (Box and Jenkins, 1970) or autoregressive
fractionally integrated moving average (ARFIMA) (Granger and Joyeux, 1980; Hosking,
1981). (Baum and Petrie, 1966) introduced the Hidden Markov model (HMM), which
allows for modeling the system, which is a Markov process. HMMs have been successfully
applied to numerous sequential data processing tasks (Mor et al., 2021). Dagum et al.
(1992, 1995) proposed a generalization of methods such as ARMA, Kalman filters, and



HMM called Dynamic Bayesian Networks (DBN). DBN can model an arbitrary nonlinear
time-based sequence.

Processing sequential data plays an important role in the machine learning land-
scape (Dietterich, 2002). Notable classic approaches are conditional random fields (Laf-
ferty et al., 2001), structured support vector machines (Tsochantaridis et al., 2005) or
recurrent neural networks (RNNs) (Elman, 1990; Robinson and Fallside, 1987; Wer-
bos, 1988; Jordan, 1986). With the increasing computational power, the application
of artificial neural networks to sequential data has been gaining notoriety in multiple
domains, such as natural language processing (Manning, 2022; Wei et al., 2022; OpenAI,
2023; Touvron et al., 2023), time series forecasting (Hewamalage et al., 2021), music
information retrieval (Choi et al., 2016; Sturm et al., 2016; Oore et al., 2020) or genetic
data analysis (Levy et al., 2020; Koumakis, 2020; Routhier and Mozziconacci, 2022).

Despite these success stories, modeling sequential data using neural networks poses
several challenges. Training instability is a known phenomenon when using gradient-based
optimizers in recurrent neural architectures (Bengio et al., 1994). Traditionally, this
problem has been solved by changing the architectures of the recurrent modules (Hochre-
iter and Schmidhuber, 1997; Cho et al., 2014; Zilly et al., 2017). Unfortunately, this
solution usually results in networks with more parameters and more complicated state
processing. Notably, these architectures do not allow for an arbitrary state transforma-
tion, despite some approaches to provide a deeper state processing in state-of-the-art
architectures (Pascanu et al., 2014; Chung et al., 2015; Zilly et al., 2017).

Another approach to these problems is the usage of the second-order optimization
technique. Among others, evolutionary algorithms (EA) can be used to train neural
networks (Stanley et al., 2019). One particularly interesting class of these algorithms is
evolution strategies (ES), which are known to perform well in a multitude of situations.
However, most state-of-the-art evolution strategies rely on costly matrix operations to
achieve good results. As they are usually applied to search spaces with up to several
hundred dimensions, they are not a feasible basis for a neural network optimizer.

1.1. Thesis contributions

This thesis, presented in the form of a series of publications, is devoted to solving the
problem of neural network training’s instability in the context of sequential data. The
main contributions can be summarized as follows:

• We propose a novel least redundant gated recurrent neural network architecture
that solves the gradient explosion/vanishing problem while reducing the number of
parameters compared to state-of-the-art models.

• We introduce a metaheuristics-based training method for neural networks. Using
this approach, we subsequently show that the second-order optimization method
allows for training vanilla recurrent neural networks, particularly on tasks with
significant state drift problems.

• We show how differential images between series can improve the model’s perfor-
mance on medical data classification task. Combining this strategy with custom
neural architecture, we propose the first fully-automated approach to skin allergic
reaction recognition.
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In Chapter 2 we describe the current state of the art in neural network optimizers,
architectural solutions to the problem of training instabilities of recurrent neural net-
works, and draw a picture of skin allergy recognition. As presented in Fig. 1, training
instabilities can be addressed in two distinct phases of solving a recurrent task.

The first phase takes place during the architecture design of the network. In Chapter 3
we propose two distinct architectural solutions to the instability problems. One solution
uses a convolutional neural network (CNN) and fixed-state processing, while the other is
a new, minimal gated recurrent module. We show the effectiveness of both approaches,
while also introducing the first fully-automated skin allergic reaction recognition system
based on the former solution.

On the other hand, instead of an architectural solution, a different kind of optimizer
can be used to train neural networks. In Chapter 4 we introduce a new second-order
neural network optimizer and show its effectiveness on several different tasks for both
convolutional and recurrent neural networks.

1.2. List of publications

The thesis is based on three original works (2 published and one accepted for publica-
tion):

• [P1] Neumann Łukasz, Nowak Robert, Stępień Jacek, Chmielewska Ewelina,
Pankiewicz Patryk, Solan Radosław, and Jahnz-Różyk Karina. “Thermography
based skin allergic reaction recognition by convolutional neural networks.”, Scien-
tific Reports 12.1 (2022).
Contribution:
As the first author in this publication, the PhD Candidate designed an image
alignment algorithm, neural classifier, and U-Net segmentation presented in the
publication. In collaboration with co-authors, PhD Candidate implemented and
tested the solution, as well as prepared the manuscript for publication.
Ministerial score: 140
Impact factor: 4.996
Percentage of contribution: 70%

• [P2] Neumann Łukasz, Lepak Łukasz, Wawrzyński Paweł. “Least redundant
gated recurrent neural network.”, 2023 International Joint Conference on Neural
Networks (IJCNN), IEEE, 2023, (accepted for publication)
Contribution:
As the first author, the PhD Candidate was responsible for developing and analyzing
the proposed method. Together With co-authors, PhD Candidate designed the
algorithm, prepared the manuscript for publication, and presented it during the
conference.
Ministerial score: 140
Percentage of contribution: 70%

• [P3] Jagodziński Dariusz, Łukasz Neumann, and Paweł Zawistowski1. “Deep
Neuroevolution: Training Neural Networks Using a Matrix-Free Evolution Strat-

1 All authors contributed equally.
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1.2. List of publications

egy.” Neural Information Processing: 28th International Conference, ICONIP
2021.
Contribution:
As the equally contributing author, the PhD Candidate implemented, tested, and
analyzed the proposed algorithm in this publication. With co-authors, the PhD
candidate designed the method and prepared the manuscript for publication.
Ministerial score: 140
Percentage of contribution: 33.3%
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1.2. List of publications

Figure 1. Training neural architectures in the sequential data processing context. To mitigate
optimization instabilities, different approaches are used, either architectural or optimizer-based.
Boxes with green backgrounds indicate solutions investigated in this thesis.
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2. Background

2.1. Training neural networks

In this work, we focus on the problems encountered during training neural networks,
particularly in the context of sequential data modeling. Mathematically, training is an
optimization task defined as follows:

min
w

Q(w)= 1
n

n∑
i=1

Q i(w),

where w are the networks parameters (also called weights), Q(w) is the loss function,
and Q i is the value of the loss function on the i-th data sample. There are two main
classes of methods that solve such task: gradient-based (first-order) and Hessian-based
(second-order) approaches. Most methods follow the iterative approach, wherein at
each step of the algorithm the weights of the network are corrected until the (hopeful)
convergence of the process.

2.1.1. First-order methods

Gradient descent The most widely used training methods nowadays are based on the
gradient descent mechanism, first introduced in (Cauchy et al., 1847). This approach
requires that the loss function be differentiable and works by adjusting the weights in
opposition to the gradient. It can be formalized as:

w := w−η∇Q(w)= w− η

n

n∑
i=1

∇Q i(w),

where η is a scaling factor influencing the magnitude of the parameters’ update, conven-
tionally known as the learning rate. First used in the context of non-linear problems
by (Curry, 1944), this method needs to calculate the gradient in each step. This is
impractical, as it effectively forces the processing of the entire dataset in each step.

Stochastic Gradient Descent (SGD) is an adaptation of the gradient descent method,
which allows for calculating the estimate of the gradient on the (typically small) subset
of data, called batch. As the name suggests, the algorithm calculates the stochastic
estimation of the gradient in each step and uses it to adjust the weights of the model:

w := w−η∇Q i(w)

13



2.1. Training neural networks

where Q i(w) is the loss calculated on the batch. SGD can converge to local minima and
usually establishes a pattern of “zig-zagging” between steps, even for trivial quadratic
optimization problems.

Momentum mechanism was proposed in (Rumelhart et al., 1986) in order to help SGD
converge quicker and solve the problem of zig-zagging. This extension to the original
algorithm linearly combines a gradient update in a specific step with a gradient update
from the previous step:

w := w−η∇Q i(w)+α∆w

where ∆w is the gradient update from i−1th step and α is the exponential decay factor
which weights the contribution of the new gradient update in relation to the previous
update. Intuitively, this algorithm recreates a movement of a heavy ball (parameters) on
the surface (search space). Nesterov (2003) proposed a popular modification of the SGD
with momentum, wherein the order of weight and momentum updates is switched; that
is, the jump in the accumulated direction is done first, followed by the correction to the
velocity vector.

A further variation of the SGD focused on the per-parameter learning rate. Ada-
Grad (Duchi et al., 2011) achieved it by tracking the gradient squares per parameter
and scaling the base learning rate accordingly. RMSProp (Tieleman et al., 2012) does so
by accumulating the vector of the running averages of the magnitudes of gradients and
dividing the base learning rate by such vector.

Kingma and Ba (2014) introduced an RMSProp-based algorithm called Adaptive
Moment Estimation (Adam). This method combines the per-parameter learning rate
technique from RMSProp with the momentum mechanism. Adam proved to be a widely
used optimizer (Llugsi et al., 2021) and has been extended or modified in numerous
fashions. AdaMax is a variation proposed in the original Adam paper (Kingma and
Ba, 2014), which is based on the infinity norm. Loshchilov and Hutter (2017) proposed
decoupling weight decay regularization in Adam.

Gradient-based methods typically employ the backpropagation technique(Werbos,
1974) to calculate the update for each parameter. This technique applies the Leibniz
chain rule to each layer of the network, propagating the gradient from the last layer to
the first one. While this method is widely used, it has some limitations. In one of them,
the vanishing gradient problem (Hochreiter et al., 2001), as the depth of the network
increases, the gradient tends to decrease exponentially. This can cause the weight
updates in the first layer to become extremely small, or in certain situations, the training
process may come to a halt altogether. Another issue regarding the backpropagation
algorithm is the imposed limitations on the neurons’ activation functions (Rojas, 1996,
Chapter 7). Daskalakis and Panageas (2018) theoretically showed that gradient descent
methods do not to converge to local min-max solutions (also called saddle points).

2.1.2. Second-order methods

An alternative to gradient-based optimizers is second-order methods. These algo-
rithms use the Hessian matrix as a basis for the optimization process. They can thus
converge faster and to a global minimum by leveraging the curvature of the objective
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2.1. Training neural networks

function. However, the operations on the Hessian matrix are computationally costly both
in terms of memory (O(n2)) and time (O(n3)). With current neural architectures, the size
of the search space and thus the size of the Hessian, the application of second-order
methods which use this matrix is unfeasible. There are several approaches to approximate
the Hessian matrix and reduce the computational complexity such that they become
applicable to training neural networks.

Levenberg–Marquardt algorithm (LM) (Levenberg, 1944; Marquardt, 1963) is a
modification of the Gauss-Newton method (Gauss, 1809) which uses gradient information.
Both were designed to solve nonlinear least squares problems in an iterative fashion. LM
uses an additional regularization term that controls the balance between first-order and
second-order contributions to the optimization process. Classic LM algorithm works for
small architectures, but as the size of the network grows, the computational complexity
renders it unusable (Bilski et al., 2018). Several modifications of the LM exist, which
allow it to operate for bigger networks. Ampazis and Perantonis (2002) proposed the
addition of momentum to the algorithm helping the convergence on flat spots. Bilski et al.
(2020) proposed local modification of the algorithm, which splits the Jacobian matrix
allowing for a better computational complexity.

Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) (Liu
and Nocedal, 1989) is a method that approximates the BFGS algorithm using constrained
memory resources. Instead of storing the inverse of the entire Hessian matrix, the
algorithm estimates it based on selected vectors resulting in linear space scaling. L-BFGS
uses gradient information to guide its optimization and estimate the Hessian. One of
the significant constraints of L-BFGS is its inability to work with small batches of data.
There have recently been attempts at mitigating this problem; however, the results are
mixed depending on the task and optimized architecture (Bollapragada et al., 2018;
Berahas and Takáč, 2020).

Truncated-Newton methods are a family of second-order algorithms that solve opti-
mization problems with high dimensionality. The approach consists of two loops. The
inner one iteratively tries to solve the Newton equations and is truncated, hence the
name. The outer loop focuses on the nonlinear optimization task, iteratively updating
the solution using the results of the inner solver. Martens et al. (2010) proposed its usage
to train neural networks, calling the approach Hessian-free.

Kronecker-factored Approximate Curvature (K-FAC) introduced by Martens and
Grosse (2015) is an efficient second-order optimizer. The low computational complexity
is achieved by approximating the inverse of the Fisher information matrix in a specific
format that lends itself to the Kronecker factorization. While relatively fast, the original
method only works for fully-connected networks. Ba et al. (2017) extended K-FAC to
support convolutional neural networks, and Martens et al. (2018) introduced the mod-
ification of the algorithm for the recurrent architectures. Notably, these architectural
constraints prevent the algorithm from optimizing arbitrary neural networks. Tang
et al. (2021) proposed modifying the method to bridge the computational gap between it
and first-order methods. However, this modification only works for fully-connected and
convolutional architectures.
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Neuroevolution denotes the idea of using evolutionary algorithms to design and train
neural networks (Risi and Togelius, 2015; Stanley et al., 2019). These approaches are
not necessarily second-order optimizers; for example, Genetic Algorithm was used to
successfully train neural networks in the reinforcement learning setting (Such et al., 2017).
In this setting Salimans et al. (2017) showed that Evolution Strategies (ESs) (Schwefel
and Schwefel, 1977; Rechenberg, 1973) are also viable network optimizers. ESs are a
class of algorithms inspired by natural evolution and iteratively modify (mutate) the
population (set of potential solutions called “individuals”) and select the best-performing
individuals.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen and Oster-
meier, 2001) is the best known algorithm in this class. It has been successfully applied
to multiple optimization problems. CMA-ES uses an estimated covariance matrix to
draw new populations from the multivariate Gaussian distribution. This results in
basic computational complexity of O(n3). As such, CMA-ES can be feasibly applied to
problems with up to several hundred dimensions and does not lend itself to neural
network optimization. Notably, there is a hypothesis that the covariance matrix in the
CMA-ES approximates the inverted Hessian of the search space. Shir and Yehudayoff
(2020) proved it for a static model relying on a quadratic approximation.

Differential Evolution Strategy (DES) was introduced by Jagodziński and Arabas
(2017); Arabas and Jagodziński (2020) to overcome the computational complexity of
CMA-ES. This method is a crossover between CMA-ES and Differential Evolution
(DE) (Storn and Price, 1995). Specifically, DES does not use the covariance matrix
to generate a new population. Instead, a history of population midpoints is a basis for
univariate Gaussian random vectors, which are combined with difference vectors between
individuals from past populations. The authors of DES proved that populations generated
using their approach are effectively drawn from the multivariate Gaussian distribution,
such as in CMA-ES, but without estimating or calculating the covariance matrix. While
the computational complexity problems are mitigated in DES, it is still a black-box
second-order optimizer not adapted to neural network training. Similarly to L-BFGS,
DES does not work with batched data. Instead, the individual needs to be evaluated on
the entire dataset. Moreover, the suggested initial population for the DES should be
drawn from the uniform distribution. This goes against standard initialization techniques
for neural networks, which take into account the architecture of the network (Glorot and
Bengio, 2010; He et al., 2015). Finally, DES does not use explicit gradient information.
While this is desirable for some tasks and neural architectures, there are cases in which
gradient information is available and does not cause stability issues during training.

2.2. Neural architectures for sequential data modeling

Recurrent neural networks (RNNs) Traditionally, to model sequential data in neural
networks, a recurrent architecture was used (Elman, 1990; Robinson and Fallside, 1987;
Werbos, 1988; Jordan, 1986). The one introduced by Jordan (1986) is usually considered
the “vanilla” RNN architecture. In this setting, a single cell processes data series one
step at a time in the following manner:
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2.2. Neural architectures for sequential data modeling

ht = f (wht−1 +uxt +b)

where xt is the input at t-th time step, u, w, b are cell’s parameters, f is the activation
function of the network and ht is the hidden state of the network. This architecture
allows for the accumulation of information between different time steps of the input.

To train such networks using a gradient-based method, a Backpropagation Through
Time (BPTT) algorithm (Robinson and Fallside, 1987; Werbos, 1988; Mozer, 1995) is used.
In essence, this technique unfolds the network in time, creating a graph of networks,
each with input at a specific time step, connected with hidden states between time steps.
These networks share the weights, as they are essentially the same network in each time
step. Then, using the chain rule, the gradient is computed and propagated backward
through time, hence the name. Finally, the weights are updated with respect to the
gradient accumulated across all time steps. The size of the graph is equal to the length
of the input series. What follows is that for longer input sequences, problems with
gradient are especially highlighted. Even a slight change in the RNN’s weights can lead
to gradient vanishing or exploding, as described by Bengio et al. (1994). As a result, the
weights’ updates tend to zero or infinity. In either case, the training process does not
succeed. Pascanu et al. (2013) alleviated the problem to some extent by introducing a
gradient norm clipping strategy. Arjovsky et al. (2016) showed that gradient stabilization
is possible in shallow RNNs when orthogonal weights matrices are used. Most popular
solutions to the gradient problems are based on special recurrent architectures, which
employ the usage of a gating mechanism. While the BPTT approach is the most popular
one, there recently has been research proposing the usage of forward propagation through
time to train RNNs (Kag and Saligrama, 2021).

Long Short-Term Memory (LSTM) , introduced by Hochreiter and Schmidhuber
(1997), solve the problem of vanishing/exploding gradient. The idea behind this archi-
tecture is to include an additional module that decides when to store some information
in the hidden state and when to forget it. This is achieved by introducing three gates,
which regulate the information flow into the cell. LSTM has three gates, namely input,
output, and forget gate, which work in the following manner:

f t =σ(Wf xt +U f ht−1 +b f )

i t =σ(Wixt +Uiht−1 +bi)

ot =σ(Woxt +Uoht−1 +bo)

c̃t = tanh(Wcxt +Ucht−1 +bc)

ct = f t ⊙ ct−1 + i t ⊙ c̃t

ht = ot ⊙ tanh(ct)

where f t, i t, ot are forget, input, and output gates’ activations respectively, c̃t is cell
input activation, ct is cell state, tanh is hyperbolic tangent activation function, σ is a
sigmoid activation function and ⊙ is a Hadamard product. Forget gate regulates the
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extent to which the previously accumulated information should be upheld. In contrast, the
input gate determines which information from the current input should be incorporated
into the cell’s state. Each gate does so by assigning a real number between 0 and 1 to
each value in the state/input vector, where 0 would discard the information while 1 would
keep it. The output gate decides which information from the current state should be
output, again by assigning values between 0 and 1.

LSTM architecture successfully mitigates the gradient vanishing problem by allowing
gradients to flow unchanged through time. The architecture has been widely applied
to solve problems in fields such as speech recognition (Graves, 2013), machine transla-
tion (Wu et al., 2016), drug design (Gupta et al., 2018), and many others (Schmidhuber,
2015). However, this success comes at a price. LSTM has a substantially more complex
architecture, which incurs both computational costs, as well as memory costs (more
parameters due to three gates). There have been several LSTM extensions, but most
of them still suffer from the problems mentioned above. Gers and Schmidhuber (2001);
Gers et al. (2002) introduced peephole connections, which allow the gates to use the cell
state to calculate their activations. Cooijmans et al. (2016) proposed batch normalisation
of the hidden-to-hidden transition. Nguyen et al. (2020) showed that the addition of
momentum into the architecture allows for faster convergence of the model.

Gated Recurrent Unit (GRU) is a simplification of the LSTM architecture proposed
by Cho et al. (2014). GRU contains only two gates, as opposed to LSTM’s three, namely the
input and forget gate, respectively called the update and the reset gate. Their interactions
work in the following way:

zt =σg(Wzxt +Uzht−1 +bz)

r t =σg(Wrxt +Urht−1 +br)

ĥt =φh(Whxt +Uh(r t ⊙ht−1)+bh)

ht = (1− zt)⊙ht−1 + zt ⊙ ĥt

where zt, r t are update and reset gate activations respectively and ĥt is the candidate
for the new hidden state. There are alternative formulations of the GRU cell by Dey and
Salem (2017). GRU reduces the number of gates (and thus the number of parameters in
the network) while maintaining results comparable to LSTM.

Deep state transformations in RNNs Typically architectures based on LSTM or
GRU cells organize them in multiple consecutive layers (Graves, 2013). Each neuron
within a layer receives input that comprises the previous states of all the neurons in
that layer. This allows the whole network to perform a deep transformation of the input.
Nevertheless, the internal state of the network undergoes a shallow transformation
limited to a single layer.

Pascanu et al. (2014) introduced Deep Transition RNNs (DT-RNNs) and Deep Transi-
tion RNNs with Skip connections (DT(S)-RNNs) in which multiple nonlinear layers are
used for the recurrent transition. This deepens the state transformation. However, such
an approach suffers from gradient vanishing due to long credit assignment paths.
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Chung et al. (2015) increased the recurrence depth of a stacked RNN by adding
the global gating unit, which mediates the signal flow between different layers of the
network. The resulting architecture, called Gated-Feedback RNN (GF-RNN), results in
greater recurrence depth. On the other hand, GF-RNN necessitates more connections as
the depth increases, allows only a subset of state cells to reach the deepest layers, and
encounters gradient propagation issues over longer paths.

Zilly et al. (2017) proposed Recurrent Highway Networks (RHN), which builds on
the LSTM architecture by adjusting the gates in a multilayer fashion. The resulting
cell is able to apply a deep transformation of its state while successfully coping with the
gradient vanishing problem. Nevertheless, as it is still an architecture based on LSTM,
it still requires three gates (and thus more parameters) compared to architectures with
fewer gates.

Continuous-time recurrent neural networks (CTRNN) are one particularly in-
teresting approach to recurrent neural networks which has been recently gaining trac-
tion Ciccone et al. (2018); Chang et al. (2019); Kag et al. (2020); Erichson et al. (2020);
Rusch et al. (2022). These architectures are based on a system of ordinary differential
equations (ODEs) to model the state of the network. CTRNNs are known to outperform
gated recurrent neural networks and, in some cases, attention-based architectures.

Attention-based approach , such as transformer (Vaswani et al., 2017), often tend to
outperform recurrent neural networks. Notably, these architectures do not suffer from
the vanishing gradient due to the skip connections. On the other hand, there are some
areas/tasks in which usage of attention-based models is not feasible (Hansen et al., 2020;
Jia et al., 2021). Additionally, some architectures, e.g., R-Transformer (Wang et al., 2019),
ASRNN (Lin et al., 2021), MahNN (Liu et al., 2020) combine attention and RNNs to
achieve better results.

2.3. Allergic skin reaction recognition

In our work, we show how fixed state processing can be used to classify medical
sequential data - allergic skin reaction images. In this section we provide the background
information about state of the art in the diagnosis of the allergic reactions.

Apart from medical history, there are currently two popular approaches to diagnosing
allergies to specific reactions. In the first one, the level of particular Immunoglobin
E antibodies in human serum or plasma is measured in vitro (Lambert et al., 2015).
This test can only be used to diagnose type I (immediate) allergic reactions. The second
approach is an in vivo method employing the usage of skin tests (Heinzerling et al., 2013).
Type I allergy can be diagnosed with the skin prick test, while patch tests are used to
diagnose type IV allergies. Using this technique, a small amount of allergen is placed on
the skin, which is then punctured by the lancet. Additionally, histamine and negative
control are applied, serving as reference points for the diagnosis. Next, external signs of
the reaction are observed, and both wheal and erythema areas are measured. Finally,
the diagnosis is made by a trained professional on an arbitrary scale from zero to five.
Due to the ability of skin tests to map the specific reaction of a patient’s immune system
to an allergen, it is generally believed that these tests serve as a dependable indicator
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of an individual’s hypersensitivity to the substances being tested (Larenas-Linnemann
et al., 2017).

What follows are clear limitations of the current approach. First, the grading is
subjective, so meta-analysis of patients diagnosed by different professionals is prob-
lematic. Diagnosis is based on the visual assessment and measurement of the wheal.
However, Nelson et al. (1998) showed that the technique used to puncture a patient’s
skin influences the wheal size. Moreover, the wheal is created by the fluid released by
the skin’s microvessels under the influence of histamine. Unfortunately, the wheal may
also be caused by toxic dermatitis or even by negative control. Therefore, the wheal is a
non-specific symptom of the allergic reaction.

Recently, non-invasive low-wavelength infrared (LWIR) imaging has been success-
fully used to diagnose skin burns, breast cancer, and melanoma skin cancer (Gur-
jarpadhye et al., 2015). Thermography can be used to assess acute inflammatory
changes (Ramirez-GarciaLuna et al., 2022). Notably, it can serve as the basis of the
wheal recognition (Baillie et al., 1990; Justo et al., 2016). Rok et al. (2017) demonstrated
that thermovision-based tests yield a high level of sensitivity, specificity, and accuracy,
exhibiting a solid agreement between the reference method employed in the clinic and
the in vitro serum Immunoglobin E results.

There have been few attempts at automatic skin allergic reaction recognition, however,
the ones based on thermography were purely exploratory. Moreno et al. (2020) showed
that β-Lactam allergy classification is possible using a neural network trained on patients’
questionnaire data. Convolutional networks can be used to diagnose skin diseases (Shan-
thi et al., 2020; Vanitha and Geetha, 2021). The link between thermal and allergic
reactions has been observed (Rok et al., 2016, 2017; Stanev et al., 2020). However, these
works do not introduce a fully automatic end-to-end classification approach. Anzengruber
et al. (2019) attempted to classify allergic skin reactions using patch tests and the FLIR
ONE application. All of the mentioned thermographic-based works suffer from small
dataset sizes.
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3. Mitigating stability problems using custom
neural architectures

In this chapter, we present the architectural approach to solving network instability
problems in sequential data modeling. All of the following observations are described in
detail in publications P1 and P2.

In publication P1 we show an example of classical state processing approach to
sequential data modeling based on delta images and convolutional neural networks. The
proposed system is the first in the world fully automatic skin allergy recognition pipeline.
It is able to automatically detect allergic skin reactions based on thermographic images
and patient data. The proposed novel pipeline works in the following way:

1. Injection areas on the patient’s forearms are marked with circular shapes.
2. Visible-spectrum and thermographic images of the patient’s forearms are taken

using a specialized device with correlated cameras and restraints, which help im-
mobilize the forearm.

3. Medical personnel performs allergen injections in the marked areas.
4. Fifteen minutes after the injection, visible-spectrum and thermographic images of

the forearms are taken once again.
5. Visible-spectrum images (both pre- and post-injection ones) are segmented based

on the marks on the skin using the U-Net network (Ronneberger et al., 2015). This
process creates reference points on the forearms.

6. Custom heuristic algorithm is used to fill in the gaps in the marks grid
7. Pre- and post-injection images are correlated by finding a transformation matrix

between images based on the reference points. The intuition behind this step is
to estimate the change in the position of the patient’s forearm between two sets of
images. We propose two different approaches to this step, one using a homography
matrix and the other one based on linear regression, translations, and rotations.

8. Delta thermal images are created by subtracting aligned pre-injection images from
post-injection ones. This step can be regarded as a fixed, simple state transformation
between two time steps in the series.

9. As each image contains eight injection areas, the images (both post-injection visible-spectrum
one and delta thermal one) are segmented using reference points into small regions
of interest.

10. Convolutional neural network is used to classify each injection area. We test several
approaches regarding the network’s input — single image (either visible-spectrum
one or delta thermal one) or both images. Regardless of the case, essential patient
attributes are also fed to the model, containing information regarding sex, age,
weight, and body temperature.

To test our approach, a clinical study has been conducted. One hundred patients
underwent skin prick allergy tests with 12 allergens, totaling 404 thermal and 404
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visible-spectrum images. After the segmentation phase and filtering out technically-invalid
ones, a total of 1584 allergic reaction samples were obtained. During our studies, we
tested both the segmentation method, as well as the allergic reaction classifier. We
arrived at the following conclusions:

• Thermographic images can effectively be used for the recognition of allergies in
humans.

• sequential data can be modeled by the CNN architecture using naive step-to-step
processing.

• Proposed custom neural architecture outperforms standard state-of-the-art convo-
lutional neural networks due to the stability of the training.

• The proposed system is the first automatic and objective approach to skin allergic
reaction classification.

The above work uses naive, fixed-state modeling between time steps. In most cases,
however, such a simple approach is not feasible. In the article P2 we present a novel
RNN architecture, which allows for a significantly more elaborate, adaptive way of
state modeling. The recurrent cell, called Deep Memory Update (DMU), can perform
the arbitrary nonlinear transformation of its memory state. Additionally, it is able to
alleviate gradient propagation issues while using only a single gate. The proposed unit
consists of the feedforward neural network (FNN) and the memory cell. FNN processes
the state and the input, and its output is fed into the memory cell in the following manner:

〈zt, ĥt〉 =FNN(ht−1, xt)

ht = ht−1 ⊙σ(zt)+ f (ĥt)⊙ (1−σ(zt)),

where “⊙” denotes the Hadamard product, xt, zt, ĥt are the input, memory preservation
vector, and direction of the state change at time step t respectively, ht is both the memory
state and output at time step t, 1 is a vector of ones, σ is a unipolar soft step function,
e.g., the logistic sigmoid, and f is an activation function, e.g., hyperbolic tangent. The
usage of FNN with at least two dense layers allows the state to be arbitrarily processed,
with the depth of the network dictating the depth of the state transformation. DMU has
fewer weights per memory cell in its simplest form compared to other state-of-the-art
gated RNN architectures such as GRU, LSTM, or RHN. This is achieved by using a single
gate within the cell.

To further improve the network’s stability and reduce convergence time, we proposed
an initialization strategy for the unit, as well as learning rate scaling for the entire
neural model incorporating DMU cells. During initialization, we recommended setting
the bias for the zt vector to a high value, which allows the network to mostly preserve
the memory state between the time steps. In our experimental setting, we combined
DMU cells with a dense layered subnetwork for the output. We proposed the following
learning rate scaling:

βDMU = β

2n
.
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where β is the learning rate for the output subnetwork, and n is the depth of DMU’s
FNN.

We theoretically showed that DMU is safe from gradient propagation issues. We
tested the proposed architecture and compared it to state-of-the-art competitors on
three synthetic tasks and four problems based on real-world data. The former were
proposed by Hochreiter and Schmidhuber (1997) and the latter are polyphonic music
modelling (Boulanger-Lewandowski et al., 2012), natural language modelling (Zaremba
et al., 2014), machine translation (Tatoeba, 2020; ManyThings, 2020), and pixel-by-pixel
ordered/permuted MNIST classification (Le et al., 2015). Additionally, we performed a
scaled learning rate ablation to show the impact of the proposed scaling on the network
results.

The results allowed us to conclude our study in the following ways:
• DMU is able to compete and often outperform state-of-the-art RNN architectures.
• The proposed module uses fewer parameters than LSTM, RHN, GRU, and other

state-of-the-art architectures.
• Gradient propagation issues during DMU’s training are alleviated by the design.
• Depth of the memory state transformation does not improve network’s performance.
• Proposed learning rate scaling improves the results of the model, especially so for

the deeper memory processing FNNs.
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4. Novel Evolution Strategy-based neural
network optimizer

In the previous chapter, we explored how specific neural architectures can solve
gradient propagation issues. Alternatively, a second-order optimizer can be used to train
arbitrary architectures. In this chapter, we explore such an optimizer, proposed in P3.
The algorithm, called neural Differential Evolution Strategy (nDES), is based on a DES
algorithm, which in turn is a crossover between DE and CMA-ES. We adapted DES to
handle significantly larger search space, effectively allowing it to train neural networks.

In our approach, the algorithm uses a population of neural networks, each represented
by a flattened, one-dimensional vector of parameters. We proposed a different initializa-
tion strategy for the population based on the Glorot and Bengio (2010) initialization. We
introduced a batching technique to overcome the need to evaluate each individual on an
entire dataset. The dataset is split into random batches prior to the training. During
training, each individual gets assigned a batch in a cyclical manner. An Exponentially
Weighted Moving Average (EWMA) of the fitness on the batch is tracked for each batch.
This allows nDES to select the best individuals, i.e., the ones that yield better fitness
values on the batch in comparison to its EWMA, while significantly reducing the time of
the evaluation of the population. If EWMA batching is used, the result of the optimization
process is selected in a different manner. During the late stages of training, most of the
fitnesses will be near zero as the process converges, and most individuals cannot improve
their score compared to the EWMA. In such cases, the final population is evaluated on
the entire validation dataset, and the best-performing individual is selected as the result
of the optimization process.

In some cases, the gradient propagation issues are absent, so the gradient information
could be used without influencing the training stability. We provided a way to use
this information to speed up the convergence of nDES. This is done by introducing an
additional mutation, which we call gradient-based rotation. If this operator is used, an
additional backpropagation pass is calculated during the evaluation of the individual.
Next, a classic SGD step is taken to modify the weights with respect to the gradient
information. This technique is especially useful for larger architectures where the
size of the population is smaller than the total number of optimized parameters in the
network. An intuition behind this method in the aforementioned case is the following:
metaheuristic tries to find a solution on the sub-hyperplane spanned by the population.
At the same time, the gradient mutation operator rotates this sub-hyperplane.

We evaluated nDES in the context of convolutional neural network training using
FashionMNIST (Xiao et al., 2017) dataset. We compared the networks optimized by
nDES with the ones optimized by Adam. Additionally, we have tested the performance
of gradient mutation. Moreover, we proposed and evaluated the approach in which the
network is pretrained using Adam and fine-tuned using nDES once Adam-based training
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converges. Regarding sequential data processing, we compared Adam and nDES on
addition, multiplication, and parity problems proposed by Hochreiter and Schmidhuber
(1997). Notably, we have used Jordan’s RNN in these tasks to further focus on the
instability problems in classic recurrent architectures.

Based on the experimental results, we have reached the following conclusions:
• nDES is able to successfully compete with the state-of-the-art gradient optimizers.
• Using an evolution strategy on problems with orders of magnitude higher than

previously reported is feasible with proposed modifications.
• nDES allows for training classic RNN architectures on problems with high insta-

bility factor, unlike the state-of-the-art first-order methods.
• Combining the second-order approach with gradient information yields the best

results.
• Long running time of the training makes nDES unfeasible for larger architectures.
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5. Discussion and final remarks

5.1. Conclusion

In this thesis, we investigated mitigation strategies against instabilities during train-
ing neural networks using sequential data. We have used fixed state processing and
custom CNN architecture to create the first fully automatic and objective skin allergic
reaction classification method. Next, we introduced a novel least redundant gated recur-
rent neural network called DMU and showed that it often outperforms state-of-the-art
competitors while achieving a reduction in the number of network’s parameters. Addition-
ally, we came to an interesting, counter-intuitive conclusion regarding the depth scaling
of the state processing subnetwork in the proposed architecture. Finally, we proposed a
new second-order optimizer nDES, which is based on the modified Evolution Strategy
algorithm. We showed that by using nDES we can train vanilla RNN architectures to
solve difficult sequential problems with significant internal state drift. All proposed
solutions have been published and the code for nDES 1 and DMU 2 is freely available
online.

5.2. Open questions

The introduction of methods described in this thesis led to several interesting future
research opportunities, which we describe below.

How does DMU perform in combination with the attention mechanism? In this
thesis, we put a great focus on gated recurrent neural architectures. As noted, they are
usually outperformed by attention-based models such as transformers. Nevertheless,
their low computational overhead merits their usage in settings with restricted hardware.
Nevertheless, there are promising architectures, which combine the attention mechanism
with RNN architectures (Wang et al., 2019; Lin et al., 2021; Liu et al., 2020). In our
future research, we will evaluate the performance of the DMU architecture combined
with the attention mechanism. In particular, we are interested in the effect of the depth
of DMU’s FNN on the performance of the entire architecture.

Why does DMU perform so well on synthetic tasks? In Chapter 3 we showed
that DMU outperforms state-of-the-art alternatives such as GRU or LSTM, sometimes
significantly so. The exact reason behind this performance gap is unknown. We want to
better explore and understand DMU’s training process on synthetic tasks. Gaining an
insight into this optimization process could allow us to further improve the architecture.

1 https://github.com/fuine/nDES/
2 https://github.com/fuine/dmu
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5.2. Open questions

It should also give us a better understanding of the optimization process in the context
of hard state drift problems.

How do models trained with nDES fare against adversarial attacks? The model’s
robustness against adversarial attacks has become an important issue in recent years,
especially so in models deployed in the real world. As first-order optimization is currently
the most popular way to train neural networks, the majority of attacks are prepared
against networks trained in this manner. In future work, we will evaluate neural networks
trained with nDES in the adversarial setting.

What is the possible speed-up of the nDES optimizer? As noted in Chapter 4, the
main weakness of the nDES optimizer is the training time. However, the computational
bottleneck of the algorithm, namely the evaluation loop, is embarrassingly parallel.
We plan to rewrite this loop with the parallel execution and benchmark the resulting
algorithm on multiple GPU units. We theorize that with such a rewrite we would be able
to train some state-of-the-art neural architectures.

How would the introduction of deep state processing in our skin allergic
recognition pipeline improve the results? In Chapter 3 we showed that a pipeline
using a fixed, one-step state processing is able to correctly classify skin allergic reactions.
However, the current approach has some limitations, namely the patient needs to wait
roughly 15 minutes after injection for the assessment, and pre- and post-injection images
need to be correlated with a heuristic approach, which is not perfect. To mitigate these
issues we will explore the possibility of classification based on the video sequence of the
reaction. Our hypothesis is that we can reduce the assessment time to approximately
5 minutes. Moreover, processing the video sequence with a deep neural network could
improve the results as it should contain more information, particularly with regard to
the dynamics of the blood flow around the injection point.

28



6. Academic Achievements

This thesis describes the academic achievements published in articles [P1]-[P3].
Additionally, the PhD candidate has the following academic achievements:

Articles
• Neumann Ł., Nowak R., Okuniewski R., Wawrzyński P.: Machine Learning-Based

Predictions of Customers’ Decisions in Car Insurance, Applied Artificial Intelligence,
vol. 33, no. 9, 2019, pp. 817-828, DOI:10.1080/08839514.2019.1630151

• Nowak R., Neumann Ł., Franus W., Dąmbski M., Smółkowski A., Zawistowski
P.: Machine learning models for predicting customer decision in motor claims
settlements, In: Proceedings of SPIE: Photonics Applications in Astronomy, Commu-
nications, Industry, and High-Energy Physics Experiments 2019, vol. 11176, 2019,
SPIE - The International Society for Optics and Photonics, ISBN 9781510630659,
111761U-1-111761U-6, DOI:10.1117/12.2536523

• Neumann Ł., Nowak R.: Heuristic hyperparameter optimization for multilayer
perceptron with one hidden layer, In: Proceedings of SPIE: Photonics Applications
in Astronomy, Communications, Industry, and High-Energy Physics Experiments
2018, vol. 10808, 2018, SPIE - The International Society for Optics and Photonics,
ISBN 9781510622036, 108082A-1-108082A-8, DOI:10.1117/12.2501569

• Kuśmirek W., Nowak R., Neumann Ł.: New tool to assemble repetitive regions
using next-generation sequencing data, In: Proceedings of SPIE: The Interna-
tional Society for Optical Engineering , vol. 10445, 2017, SPIE - The International
Society for Optics and Photonics, ISBN 978-151061354-6, 104452V-1-104452V-8,
DOI:10.1117/12.2280030

• Neumann Ł., Nowak R., Kuśmirek W.: Katome: de novo DNA assembler imple-
mented in rust, In: Proceedings of SPIE: Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments 2017, Proceed-
ings of SPIE: The International Society for Optical Engineering , vol. 10445, 2017,
SPIE - The International Society for Optics and Photonics, ISBN 978-151061354-6,
104451D-1-104451D-8, DOI:10.1117/12.2280206

• Cichosz P., Jagodziński D., Matysiewicz M., Neumann Ł., Nowak R., Okuniewski
R., Oleszkiewicz W.: Novelty detection for breast cancer image classification, In:
Proc. SPIE. 10031, Photonics Applications in Astronomy, Communications, Indus-
try, and High-Energy Physics Experiments 2016, vol. 10031, 2016, SPIE , ISBN
9781510604858, pp. 1003135-1-1003135-12, DOI:10.1117/12.2249183

• Jagodziński D., Matysiewicz M., Neumann Ł., Nowak R., Okuniewski R., Oleszkiewicz
W., Cichosz P.: Feature selection and definition for contours classification of ther-
mograms in breast cancer detection, In: Proc. SPIE. 10031, Photonics Applications
in Astronomy, Communications, Industry, and High-Energy Physics Experiments



6.0. Chapter 6. Academic Achievements

2016, vol. 10031, 2016, SPIE , ISBN 9781510604858, 100312U-1-100312U-9,
DOI:10.1117/12.2249064

• Matysiewicz M., Neumann Ł., Nowak R., Okuniewski R., Oleszkiewicz W., Ci-
chosz P., Jagodziński D.: Automatic recognition of thermographic examinations
for early detection of breast cancer, In: Proc. SPIE. 10031, Photonics Applica-
tions in Astronomy, Communications, Industry, and High-Energy Physics Experi-
ments 2016, vol. 10031, 2016, SPIE , ISBN 9781510604858, 100312X-1-100312X-7,
DOI:10.1117/12.2249067

• Neumann Ł., Nowak R., Okuniewski R., Oleszkiewicz W., Cichosz P., Jagodziński
D., Matysiewicz M.: Preprocessing for classification of thermograms in breast cancer
detection, In: Proc. SPIE. 10031, Photonics Applications in Astronomy, Communi-
cations, Industry, and High-Energy Physics Experiments 2016, vol. 10031, 2016,
SPIE , ISBN 9781510604858, 100313A-1-100313A-8, DOI:10.1117/12.2249307

• Nowak R., Okuniewski R., Oleszkiewicz W., Cichosz P., Jagodziński D., Matysiewicz
M., Neumann Ł.: Asymmetry features for classification of thermograms in breast
cancer detection, In: Proc. SPIE. 10031, Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments 2016, vol. 10031,
2016, SPIE , ISBN 9781510604858, 100312W-1-100312W-8, DOI:10.1117/12.2249066

• Okuniewski R., Nowak R., Cichosz P., Jagodziński D., Matysiewicz M., Neumann
Ł., Oleszkiewicz W.: Contour classification in thermographic images for detection of
breast cancer, In: Proc. SPIE. 10031, Photonics Applications in Astronomy, Commu-
nications, Industry, and High-Energy Physics Experiments 2016, vol. 10031, 2016,
SPIE , ISBN 9781510604858, 100312V-1-100312V-8, DOI:10.1117/12.2249065

• Oleszkiewicz W., Cichosz P., Jagodziński D., Matysiewicz M., Neumann Ł., Nowak
R., Okuniewski R.: Application of SVM classifier in thermographic image classifica-
tion for early detection of breast cancer, In: Proc. SPIE. 10031, Photonics Applica-
tions in Astronomy, Communications, Industry, and High-Energy Physics Experi-
ments 2016, vol. 10031, 2016, SPIE , ISBN 9781510604858, 100312T-7-1-100312T-7-,
DOI:10.1117/12.2249063

Additional 48 co-authored articles published as a member of the ALICE Collaboration.

Posters
• Neumann, Ł., Gambin, T., Kuśmirek, W., & Nowak, R. (2019). Deep learning

approach to rare CNV detection, Polish Bioinformatics Society Symposium 2019
• Neumann, Ł., Gambin, T., Kuśmirek, W., & Nowak, R. (2019). Deep learning

approach to rare CNV detection, Polskie Porozumienie na rzecz Rozwoju Sztucznej
Inteligencji (PP-RAI) 2019

• Neumann, Ł., Lepak, Ł., & Wawrzyński, P. (2023). Least Redundant Gated Recur-
rent Neural Network, International Joint Conference on Neural Networks 2023

Projects
• Nucleotide methylation classification using machine learning methods on the Oxford

Nanopore based data. Project leader: mgr inż. Neumann Łukasz, 01-09-2020 -
28-02-2021

30



6.0. Chapter 6. Academic Achievements

• Recurrent neural networks for processing of sequential and graph data. Project
leader: dr hab. inż. Wawrzyński Paweł, 01-01-2022 - 31-12-2023

• Search engine for job offers with automatic correlation of bidders and applicants.
Project leader: mgr inż. Dariusz Jagodziński, 01-11-2021 - 31-12-2023

• Thermal and visual image analysis to classify skin alergic response using machine
learning and computer vision algorithms. Project leader: dr hab. inż. Nowak
Robert Marek, 15-06-2018 - 31-12-2020

• Higosense - telemedical system for remote pediatric diagnostics based on an in-
novative multi-sensory device and automatic interpretation algorithms. Project
leader: dr hab. inż. Nowak Robert Marek, 25-01-2019 - 13-05-2019

• The use of artificial intelligence algorithms in the car insurance market to claims
handling process. Project leader: dr hab. inż. Nowak Robert Marek, 04-09-2018 -
28-02-2019

• Machine learning algorithm to analyze auto insurance data. Project leader: dr hab.
inż. Nowak Robert Marek, 04-09-2017 - 08-12-2017

• Thermographic image classification for early detection of breast cancer. Project
leader: dr hab. inż. Nowak Robert Marek, 04-01-2016 - 01-12-2016

31





Bibliography

Ampazis, N. and Perantonis, S. J. (2002). Two highly efficient second-order algo-
rithms for training feedforward networks. IEEE Transactions on Neural Networks,
13(5):1064–1074.

Anzengruber, F., Alotaibi, F., Kaufmann, L. S., Ghosh, A., Oswald, M. R., Maul, J.-T.,
Meier, B., French, L. E., Bonmarin, M., and Navarini, A. A. (2019). Thermography: High
sensitivity and specificity diagnosing contact dermatitis in patch testing. Allergology
International, 68(2):254 – 258.

Arabas, J. and Jagodziński, D. (2020). Toward a matrix-free covariance matrix adaptation
evolution strategy. IEEE Trans. on Evolutionary Computation, 24(1):84–98.

Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary evolution recurrent neural
networks. In International Conference on Machine Learning, pages 1120–1128.

Ba, J., Grosse, R., and Martens, J. (2017). Distributed second-order optimization using
kronecker-factored approximations. In International Conference on Learning Repre-
sentations.

Baillie, A., Biagioni, P., FORSYTH, A., GARIOCH, J. J., and McPherson, D. (1990).
Thermographic assessment of patch-test responses. British Journal of Dermatology,
122(3):351–360.

Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite
state markov chains. The annals of mathematical statistics, 37(6):1554–1563.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

Berahas, A. S. and Takáč, M. (2020). A robust multi-batch l-bfgs method for machine
learning. Optimization Methods and Software, 35(1):191–219.

Bilski, J., Kowalczyk, B., and Grzanek, K. (2018). The parallel modification to the
levenberg-marquardt algorithm. In Artificial Intelligence and Soft Computing: 17th
International Conference, ICAISC 2018, Zakopane, Poland, June 3-7, 2018, Proceedings,
Part I 17, pages 15–24. Springer.

Bilski, J., Kowalczyk, B., Marchlewska, A., and Zurada, J. M. (2020). Local
levenberg-marquardt algorithm for learning feedforwad neural networks. Journal of
Artificial Intelligence and Soft Computing Research, 10(4):299–316.

Bollapragada, R., Nocedal, J., Mudigere, D., Shi, H.-J., and Tang, P. T. P. (2018). A
progressive batching l-bfgs method for machine learning. In International Conference
on Machine Learning, pages 620–629. PMLR.

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. (2012). Modeling temporal de-
pendencies in high-dimensional sequences: Application to polyphonic music generation
and transcription. In ICML.

Box, G. E. and Jenkins, G. M. (1970). Time series analysis forecasting and control.
Technical report, WISCONSIN UNIV MADISON DEPT OF STATISTICS.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P.,



6.0. Bibliography

Lee, Y. T., Li, Y., Lundberg, S., et al. (2023). Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.

Cauchy, A. et al. (1847). Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538.

Chang, B., Chen, M., Haber, E., and Chi, E. (2019). AntisymmetricRNN: A dynamical
system view on recurrent neural networks. In International Conference on Learning
Representations.

Chiara, M., D’Erchia, A. M., Gissi, C., Manzari, C., Parisi, A., Resta, N., Zambelli, F.,
Picardi, E., Pavesi, G., Horner, D. S., et al. (2021). Next generation sequencing of
sars-cov-2 genomes: challenges, applications and opportunities. Briefings in Bioinfor-
matics, 22(2):616–630.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078.

Choi, K., Fazekas, G., and Sandler, M. (2016). Text-based lstm networks for automatic
music composition. arXiv preprint arXiv:1604.05358.

Chowdhary, K. (2020). Natural language processing. Fundamentals of artificial intelli-
gence, pages 603–649.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2015). Gated feedback recurrent neural
networks. In ICML, pages 2067–2075.

Ciccone, M., Gallieri, M., Masci, J., Osendorfer, C., and Gomez, F. (2018). Nais-net:
Stable deep networks from non-autonomous differential equations. In Advances in
Neural Information Processing Systems, volume 31, pages 3025–3035.

Cooijmans, T., Ballas, N., Laurent, C., Gülçehre, Ç., and Courville, A. (2016). Recurrent
batch normalization. arXiv preprint arXiv:1603.09025.

Curry, H. B. (1944). The method of steepest descent for non-linear minimization problems.
Quarterly of Applied Mathematics, 2(3):258–261.

Dagum, P., Galper, A., and Horvitz, E. (1992). Dynamic network models for forecasting.
In Uncertainty in artificial intelligence, pages 41–48. Elsevier.

Dagum, P., Galper, A., Horvitz, E., and Seiver, A. (1995). Uncertain reasoning and
forecasting. International Journal of Forecasting, 11(1):73–87.

Daskalakis, C. and Panageas, I. (2018). The limit points of (optimistic) gradient descent
in min-max optimization. Advances in neural information processing systems, 31.

Dey, R. and Salem, F. M. (2017). Gate-variants of gated recurrent unit (gru) neural
networks. In 2017 IEEE 60th international midwest symposium on circuits and systems
(MWSCAS), pages 1597–1600. IEEE.

Dietterich, T. G. (2002). Machine learning for sequential data: A review. In Structural,
Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops
SSPR 2002 and SPR 2002 Windsor, Ontario, Canada, August 6–9, 2002 Proceedings,
pages 15–30. Springer.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7).

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.
Erichson, N. B., Azencot, O., Queiruga, A., Hodgkinson, L., and Mahoney, M. W. (2020).

Lipschitz recurrent neural networks. arXiv preprint arXiv:2006.12070.
Fathi, M., Haghi Kashani, M., Jameii, S. M., and Mahdipour, E. (2022). Big data analytics

34



6.0. Bibliography

in weather forecasting: A systematic review. Archives of Computational Methods in
Engineering, 29(2):1247–1275.

Freeth, T., Bitsakis, Y., Moussas, X., Seiradakis, J. H., Tselikas, A., Mangou, H.,
Zafeiropoulou, M., Hadland, R., Bate, D., Ramsey, A., et al. (2006). Decoding the
ancient greek astronomical calculator known as the antikythera mechanism. Nature,
444(7119):587–591.

Gauss, C. F. (1809). Theoria motus corporum coelestium in sectionibus conicis solem
ambientium auctore Carolo Friderico Gauss. sumtibus Frid. Perthes et IH Besser.

Gers, F. A. and Schmidhuber, E. (2001). Lstm recurrent networks learn simple
context-free and context-sensitive languages. IEEE transactions on neural networks,
12(6):1333–1340.

Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2002). Learning precise timing
with lstm recurrent networks. Journal of machine learning research, 3(Aug):115–143.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference
Proceedings.

Granger, C. W. and Joyeux, R. (1980). An introduction to long-memory time series models
and fractional differencing. Journal of time series analysis, 1(1):15–29.

Graves, A. (2013). Generating sequences with recurrent neural networks.
arXiv:1308.0850.

Gupta, A., Müller, A. T., Huisman, B. J., Fuchs, J. A., Schneider, P., and Schneider, G.
(2018). Generative recurrent networks for de novo drug design. Molecular informatics,
37(1-2):1700111.

Gurjarpadhye, A. A., Parekh, M. B., Dubnika, A., Rajadas, J., and Inayathullah, M.
(2015). Infrared imaging tools for diagnostic applications in dermatology. SM journal
of clinical and medical imaging, 1(1):1.

Hansen, C., Hansen, C., Maystre, L., Mehrotra, R., Brost, B., Tomasi, F., and Lalmas, M.
(2020). Contextual and sequential user embeddings for large-scale music recommenda-
tion. In ACM Conf. on Recommender Systems, pages 53–62.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in
evolution strategies. Evolutionary computation, 9(2):159–195.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034.

Heinzerling, L., Mari, A., Bergmann, K.-C., Bresciani, M., Burbach, G., Darsow, U.,
Durham, S., Fokkens, W., Gjomarkaj, M., Haahtela, T., et al. (2013). The skin prick
test–european standards. Clinical and translational allergy, 3(1):3.

Hewamalage, H., Bergmeir, C., and Bandara, K. (2021). Recurrent neural networks for
time series forecasting: Current status and future directions. International Journal of
Forecasting, 37(1):388–427.

Hochreiter, S., Kolen, J. F., and Kremer, S. C. (2001). Gradient Flow in Recurrent Nets:
The Difficulty of Learning LongTerm Dependencies, pages 237–243. Wiley-IEEE Press.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8):1735–1780.

Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1):165–176.

35



6.0. Bibliography

Jagodziński, D. and Arabas, J. (2017). A differential evolution strategy. In 2017 IEEE
congress on evolutionary computation (CEC), pages 1872–1876. IEEE.

Jia, Z., Lin, Y., Wang, J., Feng, Z., Xie, X., and Chen, C. (2021). Hetemotionnet:
Two-stream heterogeneous graph recurrent neural network for multi-modal emotion
recognition. In ACM Int. Conf. on Multimedia, pages 1047–1056.

Jordan, M. I. (1986). Serial order: A parallel, distributed processing approach. Advances
in Connectionist Theory Speech, 121(ICS-8604):471–495.

Justo, X., Díaz, I., Gil, J., and Gastaminza, G. (2016). Prick test: evolution towards
automated reading. Allergy, 71(8):1095–1102.

Kag, A. and Saligrama, V. (2021). Training recurrent neural networks via forward
propagation through time. In ICML, pages 5189–5200.

Kag, A., Zhang, Z., and Saligrama, V. (2020). RNNs incrementally evolving on an equi-
librium manifold: A panacea for vanishing and exploding gradients? In International
Conference on Learning Representations.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. In ICLR.
Koumakis, L. (2020). Deep learning models in genomics; are we there yet? Computational

and Structural Biotechnology Journal, 18:1466–1473.
Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Proceedings of the
Eighteenth International Conference on Machine Learning, ICML ’01, page 282–289,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Lambert, C., Sarrat, A., Bienvenu, F., Brabant, S., Nicaise-Roland, P., Alyanakian, M.-A.,
Apoil, P.-A., Capron, C., Couderc, R., Evrard, B., et al. (2015). The importance of en iso
15189 accreditation of allergen-specific ige determination for reliable in vitro allergy
diagnosis. Allergy, 70(2):180–186.

Larenas-Linnemann, D., Luna-Pech, J. A., and Mösges, R. (2017). Debates in allergy
medicine: Allergy skin testing cannot be replaced by molecular diagnosis in the near
future. World Allergy Organization Journal, 10(1):32.

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint arXiv:1504.00941.

Lesk, A. M. (2017). Introduction to genomics. Oxford University Press.
Levenberg, K. (1944). A method for the solution of certain non-linear problems in least

squares. Quarterly of applied mathematics, 2(2):164–168.
Levy, J. J., Titus, A. J., Petersen, C. L., Chen, Y., Salas, L. A., and Christensen, B. C.

(2020). Methylnet: an automated and modular deep learning approach for dna methy-
lation analysis. BMC bioinformatics, 21(1):1–15.

Lin, J. C.-W., Shao, Y., Djenouri, Y., and Yun, U. (2021). Asrnn: A recurrent neural
network with an attention model for sequence labeling. Knowledge-Based Systems,
212:106548.

Liu, D. C. and Nocedal, J. (1989). On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1-3):503–528.

Liu, Z., Lu, C., Huang, H., Lyu, S., and Tao, Z. (2020). Hierarchical multi-granularity
attention- based hybrid neural network for text classification. IEEE Access,
8:149362–149371.

Llugsi, R., El Yacoubi, S., Fontaine, A., and Lupera, P. (2021). Comparison between
adam, adamax and adam w optimizers to implement a weather forecast based on

36



6.0. Bibliography

neural networks for the andean city of quito. In 2021 IEEE Fifth Ecuador Technical
Chapters Meeting (ETCM), pages 1–6. IEEE.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization.
Manning, C. D. (2022). Human language understanding & reasoning. Daedalus,

151(2):127–138.
ManyThings (2020). http://www.manythings.org/anki/. Retrieved 2020-05-05.
Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear param-

eters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–441.
Martens, J., Ba, J., and Johnson, M. (2018). Kronecker-factored curvature approx-

imations for recurrent neural networks. In International Conference on Learning
Representations.

Martens, J. et al. (2010). Deep learning via hessian-free optimization. In ICML, volume 27,
pages 735–742.

Martens, J. and Grosse, R. (2015). Optimizing neural networks with kronecker-factored
approximate curvature. In International conference on machine learning, pages
2408–2417. PMLR.

Mor, B., Garhwal, S., and Kumar, A. (2021). A systematic review of hidden markov
models and their applications. Archives of computational methods in engineering,
28:1429–1448.

Moreno, E. M., Moreno, V., Laffond, E., Gracia-Bara, M. T., Muñoz-Bellido, F. J., Macías,
E. M., Curto, B., Campanon, M. V., de Arriba, S., Martin, C., et al. (2020). Usefulness
of an artificial neural network in the prediction of β-lactam allergy. The Journal of
Allergy and Clinical Immunology: In Practice, 8(9):2974–2982.

Mozer, M. C. (1995). A focused backpropagation algorithm for temporal. Backpropagation:
Theory, architectures, and applications, 137.

Nelson, H. S., Lahr, J., Buchmeier, A., and McCormick, D. (1998). Evaluation of devices
for skin prick testing. Journal of allergy and clinical immunology, 101(2):153–156.

Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic course, vol-
ume 87. Springer Science & Business Media.

Nguyen, T. M., Baraniuk, R. G., Bertozzi, A. L., Osher, S. J., and Wang, B. (2020).
Momentumrnn: Integrating momentum into recurrent neural networks. arXiv preprint
arXiv:2006.06919.

Oore, S., Simon, I., Dieleman, S., Eck, D., and Simonyan, K. (2020). This time with
feeling: Learning expressive musical performance. Neural Computing and Applications,
32:955–967.

OpenAI (2023). Gpt-4 technical report. ARXIV.ORG.
Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2014). How to construct deep recurrent

neural networks. In ICLR.
Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent

neural networks. In ICML, pages 1310–1318.
Ramirez-GarciaLuna, J. L., Rangel-Berridi, K., Bartlett, R., Fraser, R. D., and

Martinez-Jimenez, M. A. (2022). Use of infrared thermal imaging for assessing acute
inflammatory changes: A case series. Cureus, 14(9).

Rechenberg, I. (1973). Evolutionsstrategie. Optimierung technischer Systeme nach
Prinzipien derbiologischen Evolution.

Risi, S. and Togelius, J. (2015). Neuroevolution in games: State of the art and open chal-

37



6.0. Bibliography

lenges. IEEE Transactions on Computational Intelligence and AI in Games, 9(1):25–41.
Robinson, A. J. and Fallside, F. (1987). The utility driven dynamic error propagation

network. Technical Report CUED/F-INFENG/TR.1, Cambridge University, Engineering
Department.

Rojas, R. (1996). Neural Networks: A Systematic Introduction. Springer-Verlag, Berlin,
Heidelberg.

Rok, T., Rokita, E., Tatoń, G., Guzik, T., and Śliwa, T. (2017). Thermographic imaging as
alternative method in allergy diagnosis. Journal of Thermal Analysis and Calorimetry,
127(2):1163–1170.

Rok, T., Rokita, E., Tatoń, G., Guzik, T., and Śliwa, T. (2016). Thermographic assessment
of skin prick tests in comparison with the routine evaluation methods. Advances in
Dermatology and Allergology/Postępy Dermatologii i Alergologii, 33(3):193–198.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In Navab, N., Hornegger, J., Wells, W. M., and Frangi,
A. F., editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015, pages 234–241. Springer International Publishing.

Routhier, E. and Mozziconacci, J. (2022). Genomics enters the deep learning era. PeerJ,
10:e13613.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. nature, 323(6088):533–536.

Rusch, T. K., Mishra, S., Erichson, N. B., and Mahoney, M. W. (2022). Long expressive
memory for sequence modeling. In International Conference on Learning Representa-
tions.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution strategies as
a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,
61:85–117.

Schwefel, H.-P. and Schwefel, H.-P. (1977). Evolutionsstrategien für die numerische
optimierung. Springer.

Shanthi, T., Sabeenian, R., and Anand, R. (2020). Automatic diagnosis of skin diseases
using convolution neural network. Microprocessors and Microsystems, 76:103074.

Shir, O. M. and Yehudayoff, A. (2020). On the covariance-hessian relation in evolution
strategies. Theoretical Computer Science, 801:157–174.

Stanev, E., Dencheva, M., Lyapina, M., and Forghani, P. (2020). Thermographic exami-
nation of prick test reactions with local anesthetic. Journal of Thermal Analysis and
Calorimetry, 140(1):225–231.

Stanley, K., Clune, J., Lehman, J., and Miikkulainen, R. (2019). Designing neural
networks through neuroevolution. Nature Machine Intelligence, 1:24–35.

Storn, R. and Price, K. (1995). Differential evolution: A simple and efficient adaptive
scheme for global optimization over continuous spaces. J. of Global Opt., 23.

Sturm, B. L., Santos, J. F., Ben-Tal, O., and Korshunova, I. (2016). Music transcription
modelling and composition using deep learning. arXiv preprint arXiv:1604.08723.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and Clune, J. (2017).
Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567.

Tang, Z., Jiang, F., Gong, M., Li, H., Wu, Y., Yu, F., Wang, Z., and Wang, M. (2021). Skfac:

38



6.0. Bibliography

Training neural networks with faster kronecker-factored approximate curvature. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13479–13487.

Tatoeba (2020). https://tatoeba.org. Retrieved 2020-05-05.
Tieleman, T., Hinton, G., et al. (2012). Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière,
B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample,
G. (2023). Llama: Open and efficient foundation language models. ARXIV.ORG.

Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., and Singer, Y. (2005). Large
margin methods for structured and interdependent output variables. Journal of
machine learning research, 6(9).

Vanitha, N. and Geetha, M. (2021). A study on deep learning methods for skin dis-
ease classification. International Journal of Engineering and Management Research,
11(2):48–52.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In NIPS.

Wang, Z., Ma, Y., Liu, Z., and Tang, J. (2019). R-transformer: Recurrent neural network
enhanced transformer. arXiv:1907.05572.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma,
M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P., Dean, J.,
and Fedus, W. (2022). Emergent abilities of large language models. Transactions on
Machine Learning Research. Survey Certification.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the
behavioral sciences. ph. d. thesis, harvard university, cambridge, ma, 1974.

Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent
gas market model. Neural Networks, 1(4):339–356.

Whittle, P. (1951). Hypothesis testing in time series analysis, volume 4. Almqvist &
Wiksells boktr.

Wu, Y., Schuster, M., Chen, Z., Le, Q., Quoc, V., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., and Gao, Q. (2016). Google’s neural machine translation system: Bridging the
gap between human and machine translation. arXiv:1609.08144.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms.

Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural network regulariza-
tion. arXiv:1409.2329.

Zilly, J. G., Srivastava, R. K., Koutník, J., and Schmidhuber, J. (2017). Recurrent highway
networks. In ICML.

39



Appendices

40
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ARFIMA – Autoregressive Fractionally Integrated Moving Average
ARIMA – Autoregressive Integrated Moving Average
ARMA – Autoregressive Moving Average
Adam – Adaptive Moment Estimation
BPTT – Backpropagation Through Time
CMA-ES – Covariance Matrix Adaptation Evolution Strategy
CNN – Convolutional Neural Network
CTRNN – Continuous-Time Recurrent Neural Networks
DBN – Dynamic Bayesian Network
DES – Differential Evolution Strategy
DE – Differential Evolution
DMU – Deep Memory Update
DT(S)-RNN – Deep Transition RNNs With Skip Connections
DT-RNN – Deep Transition RNN
EA – Evolutionary Algorithm
ES – Evolution Strategy
EWMA – Exponentially Weighted Moving Average
FNN – Feedforward Neural Network
GF-RNN – Gated-Feedback RNN
GRU – Gated Recurrent Unit
HMM – Hidden Markov Model
K-FAC – Kronecker-Factored Approximate Curvature
L-BFGS – Limited-Memory Broyden–Fletcher–Goldfarb–Shanno Algorithm
LM – Levenberg–Marquardt Algorithm
LSTM – Long Short-Term Memory
LWIR – Low-Wavelength Infrared
nDES – neural Differential Evolution Strategy
RHN – Recurrent Highway Networks
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SGD – Stochastic Gradient Descent
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Thermography based skin 
allergic reaction recognition 
by convolutional neural networks
Łukasz Neumann1*, Robert Nowak1, Jacek Stępień2, Ewelina Chmielewska1, 
Patryk Pankiewicz1, Radosław Solan2 & Karina Jahnz‑Różyk3

In this work we present an automated approach to allergy recognition based on neural networks. 
Allergic reaction classification is an important task in modern medicine. Currently it is done by 
humans, which has obvious drawbacks, such as subjectivity in the process. We propose an automated 
method to classify prick allergic reactions using correlated visible-spectrum and thermal images of 
a patient’s forearm. We test our model on a real-life dataset of 100 patients (1584 separate allergen 
injections). Our solution yields good results—0.98 ROC AUC; 0.97 AP; 93.6% accuracy. Additionally, 
we present a method to segment separate allergen injection areas from the image of the patient’s 
forearm (multiple injections per forearm). The proposed approach can possibly reduce the time of an 
examination, while taking into consideration more information than possible by human staff.

According to the World Health Organization (WHO), allergy is the third most common disease, it is classified 
as a threat to civilization. The twenty-first century is called the age of allergy epidemics. Experts at the European 
Academy of Allergy and Clinical Immunology predict that by 2025 over 50% of the European population will 
suffer from various types of allergies1. Unfortunately, more than half of allergy sufferers lack proper diagnosis and, 
consequently, also treatment2. In this context, a significant problem is the insufficient number of allergy special-
ists, for which effective compensation is possible by increasing the degree of automation of allergy diagnosis as 
well as by transferring tests from specialized centers to doctors and primary care centers.

Along with medical history, allergy tests may be able to confirm whether a particular substance is causing 
symptoms. Currently in clinical practice the widely used in vitro laboratory test allows indirect diagnostics of 
only one type of allergy by determining the level of specific IgE antibodies in human serum or plasma involved 
in the type I (immediate) allergic reaction3. The second technique is an in vivo functional method in the form 
of skin tests, allowing for the diagnosis of both type I (skin prick test—SPT) and type IV (delayed - patch test) 
allergies4. In this method tiny amounts of allergen are dropped into a small puncture made by a lancet. The 
area around the puncture is then observed for signs of an allergic reaction. The wheal and erythema regions are 
marked and measured using a ruler and related by trained professionals to the size of the histamine control and 
reported on a 0-5 scale. Because skin tests of various types allow mapping the actual response of the patient’s 
immune system to the allergen it is assumed that they are a clinically reliable predictor of individual hypersen-
sitivity to the tested substances5.

Unfortunately, both methods have limitations, can lead to wrong diagnoses, are invasive and require trained 
professionals to perform the test and to interpret results.

The skin test results are observed by the doctor and, based on a subjective visual assessment of the symptoms, 
associated with an allergic skin reaction. This applies the difficulty of establishing a standardized measure for the 
observed key skin allergic reaction in the form of the so-called allergic bubble. The bubble size depends on the 
technique of puncturing the patient’s skin during allergen application6. Moreover, a bubble is formed under the 
influence of fluid penetration from the skin’s microvessels dilated by the released histamine, but it may also appear 
in other situations such as toxic dermatitis or even at the site of a negative test; a bubble is non-specific symptom.

In the last decade, new methods have been intensively sought to produce readings of skin allergy tests, using 
reliable markers that ensure repeatability of the results. There is significant potential for non-invasive far infrared 
imaging (LWIR), for which relatively shallowly located allergic skin reactions are completely transparent and can 
easily be recorded with appropriately sensitive instruments7. Infrared imaging has been helpful in non-invasive 
diagnosis of breast cancer, melanoma skin cancer, and skin burns8.
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LWIR skin imaging enables recording the hyperthermic allergic reaction accompanying the posthistamine 
perfusion effect)9. The sensitivity, specificity and accuracy of thermovision tests were assessed as high10, with 
very high agreement between the reference method used in the clinic and in vitro sIgE results.

Our solution uses a visible and an infrared camera simultaneously, therefore allergic bubble and an skin 
allergic reaction could be both observed. The data are collected using a new device, where visible and thermal 
pictures are calibrated at pixel level. The analysis uses a series of pictures taken both before and after applying 
the allergens. Moreover, the general medical investigation data, like age, gender, body temperature, are used.

The system works on the images of the entire forearm, with multiple allergens per forearm. The algorithms 
generate fragments of image for single application, called segments, and classify each of them separately. The 
segmentation process is based on U-Net architecture, while classification model is a custom convolutional 
architecture.

To the best of our knowledge, there are not any comparable state-of-the-art solutions. Some artificial intel-
ligence models supporting allergists are available. For example, in11 neural network supports the diagnosis of the 
β-Lactam Allergy. Visible-spectrum images were classified by neural network models to detect more widespread 
skin diseases12,13. There were attempts to correlate thermal and allergic reactions10,14,15, but they were purely 
exploratory and did not introduce an end-to-end automatic approach to recognizing allergic reactions. One 
study that attempted to classify reactions used the patch test approach in which allergen-soaked pads were put 
on the patient’s back, and the underlying skin was analyzed using FLIR ONE application16. Notably, both studies 
were done on datasets substantially smaller than ours.

The contribution of this paper can be summarized in the following points: 

	 (I)	 Usage of thermographic images to the recognition of allergies in humans;
	 (II)	 Novel, automatic, and objective method to mark allergies in prick tests;
	 (III)	 Comparison of different light spectras (thermal and visible) as an input to the neural network classifier.

We show that using the proposed method we’ve obtained nearly perfect results in terms of AUC (0.98) and AP 
(0.97). As previously stated, there are not any state-of-the-art solutions. One similar research tested patch-based 
approach and reported significantly worse results (AUC 0.85). However, it is unclear if these methods can be 
directly compared, as they differ in the way allergen is introduced to the patient’s body.

This article is organized as follows. “Input” section depicts the input to the system. “Segmentation method” 
section depicts the segmentation algorithm, “Classification methods” section provides the neural network 
description used for classification, as well as training and validating techniques. “Results” section describes the 
dataset of thermal and visual images with full medical documentation, as well as the results. Finally, the discus-
sion is provided in “Discussion” section.

Input
The system takes three main components as an input, namely a pair of thermographic images, a pair of visible-
spectrum images and tabular data. All of them show the patient’s forearms at two moments in time, called a 
series, before allergen application and 15 min after allergen application.

Visible-spectrum images and thermographic ones, which are taken at the same time, are correlated on the 
pixel level. There is not such correlation between series. Device used to produce these images is described in 
“Dataset” section. Samples of the images are shown in Fig. 1.

Thermographic photos have a single channel. Each pixel corresponds to a temperature reading from the 
thermographic camera. Visible spectrum images focus on a patient’s skin and hives which in some cases appear 
as result of allergen injections. The second use of these images is to localize areas where allergens have been 
injected, using marks drawn on the arm by the person performing the examination.

The data describes patient’s sex, age, weight, height and body temperature measured at the beginning of an 
examination.

Segmentation method
Segmentation problem overview.  The purpose of the segmentation process is to find the general areas 
in which allergens were applied, because the dataset does not contain such information. It’s necessary to find 
or approximate the positions of all allergens on the forearm, because the ground truth is directly tied to each 
allergen separately and the classifier evaluates each allergen separately. The positions of the allergens are marked 
on the skin on the patient forearms’ as squares (histamine) and circles (other allergens and negative control) by 
a nurse before the examination. As patients’ forearms differ in shape it is not possible to use a fixed grid pattern 
to find allergen positions. Moreover, a patient has the ability to slightly change the angle of the forearm once it 
is fixed in the machine, as well as move it forwards/backwards (that is along the horizontal axis on the images). 
This is depicted in Fig. 1a,b.

The main segmentation problems are hairy forearms, incomplete marking for application positions, and dif-
ferent marker colors. Due to these problems classic segmentation methods, such as color-based segmentation 
or Canny edge detection17, do not yield satisfactory results.

U‑Nets.  We use the U-Net18 model as a basis for the segmentation process. We used the original architecture 
proposed by the authors. We manually mark all the allergen application areas by saving the injection point and 
a point on the highlighter marker. Based on this information we create binary masks, where each application 
area is marked by a circle. This is a simplification, as the real shapes of highlighter markers differ slightly (most 
notably rectangle for the histamine), however the resulting model yields acceptable results, as depicted in Fig. 2.
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We use the ADAM19 optimizer with binary cross-entropy (BCE) loss. The model is trained on images down-
scaled to 512× 385 (that is, halved in size) with pixel values normalized to the range [0, 1]. We train the model 
for 30 epochs.

Images that are the result of U-Net segmentation are then fed to the contour-searching algorithm20. Next, we 
filter out contours with appropriate size and shape (based on the bounding box).

Finally, in cases where not all markers are found, we use a heuristic approach to approximate the allergen 
grid based on the segments found and fill in the missing ones. The algorithm chooses segments using contours 

Figure 1.   Photos of patient’s forearm before (a, c, e) and after (b, d, f) allergen application. Colorbars in (e, f) 
show the temperature scale in Celsius degrees.
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and bounding rectangles with appropriate ratio and size. Next, segments are arranged in the grid by splitting 
them into two lines and finding proper positions by taking the offset from the right side. After that, the process 
searches for a minimal length vector between the positioned segments and fills in the missing ones, adding such 
vectors to the center of neighboring segments.

Classification methods
Delta thermal images.  Thermal images tend to contain features that can be indistinguishable from allergic 
reaction (e.g. blood vessels). We call image created by subtracting pre-reaction image from the post-reaction one 
a ‘delta’ thermal image. Ideally such image should contain only thermal changes caused by the allergic reaction, 
assuming that patient’s environment does not change. To create delta image pre- and post-reaction images need 
to be aligned. This is because it is not possible to take an image of a patient’s forearm in exactly the same position 
two separate times. Patients have some leeway to change the angle of the forearm, they can also rotate it slightly, 
as well as position it differently with respect to the arm restraints placed near the elbow and wrist of the forearm. 
This effect can be observed in Fig. 1a,b.

We tested two approaches to image alignment. In both techniques we exploit the fact that after the segmenta-
tion phase we have eight separate markers per image. The basic premise is to find a transform which would align 
two sets of markers between pre-reaction and post-reaction images. Note that this requires sensible segmentation 
results - in order for this approach to work we need to ensure that enough markers are found on both images and 
that these are matching markers. The more markers are found the better the alignment results.

In the first technique a homography matrix is estimated based on the sets of markers.
The second approach is simpler in terms of degrees of freedom. First, linear regression is fitted on each set 

of markers. This gives us two lines, each for pre- and post-reaction images. Next, a transformation consisting of 
translations and rotations is calculated. This transformation should minimize the distance between two lines.

Regardless of the technique used, once the transformation matrix is estimated, it is used to transform the 
pre-reaction image. Finally, a delta thermal image is created by means of subtraction.

Classifier input, preprocessing and augmentation.  The classification model works on a single seg-
ment images, that is for each found segment (allergen) on an image we cut out a separate region of interest and 
save it. We use segments found on the visible-spectrum images to cut out matching segments on thermal images, 
under the assumption that corresponding visible-spectrum and thermal images are pixel-perfectly correlated. 
For each segment found, the region of interest (ROI) is a 300× 300 square, with the center taken from the 
center of the segment. An average size of the bounding box for the segment is 85 pixels in our dataset ( σ = 6 , 
min 60, max 104), so ROI includes a substantial padding. This helps us to account for the minor inaccuracies 
in the segmentation method, as well as add context to information about the surroundings for the network. See 
“Discussion” section for more information about why this is important.

A sample in the dataset for the classification task consists of patient’s attributes and two 300× 300 images—a 
visible-spectrum one and a corresponding delta image. Attributes used for the classification are recorded from an 
interview—sex, age, weight and body temperature. Note that all samples for a single patient will share the values 
of these attributes, as they are not allergen specific. The ground truth for each sample is a binary label created 
based on the diagnosis of doctor-allergologist.

Patients’ attributes are rescaled to the range [0, 1]. Images are normalized with respect to the mean and 
standard deviation. Statistics used to normalize and rescale data are calculated on the training dataset and used 
for the test dataset.

The following augmentation methods are used for the images: random horizontal and vertical flips, random 
rotation for up to 45 degrees, and random translation up to 4 pixels, random zoom up to 1.3 ratio. Each transfor-
mation has a 50% chance of being used with parameters for specific transformation drawn from uniform distribu-
tion. Notably, if the model is trained on both visible-spectrum and thermal images then images for each sample 
are augmented identically (i.e. each sample has two images and both of them will be augmented in the same 
way, both in terms of which augmentation methods are used and specific parameters for these transformations).

Neural classifier.  Classification is based on a convolutional neural network. As described in “Classifier 
input, preprocessing and augmentation” section a single sample consists of two images—one with three channels 
and one single-channeled, together with a patient’s attributes. In our experiments we test using either one of the 
images, or both. In the latter case (both images used) we fuse images together after preprocessing and augmenta-
tion steps into a single four-channel tensor. The patient’s attributes are fed into the first fully-connected layer.

The proposed architecture of the convolutional subnetwork is depicted in Table 1. We use average pooling 
layers with 3× 3 kernel and stride 2. All convolutional layers use 3× 3 kernels and are followed by batch normali-
zation. The number of input channels is changed on the basis of the input data—four channels for both images 
used, one channel for thermal-only classification and three channels for visible-spectrum-only one. The fully 
connected subnetwork comprises of a Dense layer with 64 output channels followed by a LeakyReLU, Dropout 
and Dense layer with a single output channel.

We use Leaky-ReLU activation functions for all convolutional and dense layers except for the output layer, 
which uses softmax activation. ADAM optimizer with decoupled weight decay regularization21 is used. Weight 
decay is set to 10−4 , while the negative slope of Leaky-ReLU is 10−2 and the learning rate is set to 0.001. The 
dropout value between two dense layers is 0.5. Cross-entropy loss is used as a loss function.

Training is early-stopped after 80 epochs, as the model has a tendency to overfit, as seen on Fig. 4.
The proposed architecture was selected as the best performing from among several state-of-the-art architec-

tures: MobileNetV222, DenseNet-BC-76, DenseNet-BC-12123, ResNet-1824, where each architecture was used 
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without the original fully-connected layer(s). Instead their convolutional parts were used, with four-channel 
inputs. All models used the same fully-connected layers, as proposed in our architecture.

Ethics.  The data collection procedure was approved by Komisja Bioetyki przy Wojskowym Instytucie Medyc-
znym, protocol number 15/WIM/2017 on the 15.03.2017. The procedure was performed with accordance to the 
guidelines and regulations of the said commision. Informed consent was obtained from all participants.

Results
Dataset.  The data were collected throughout years 2018–19 in the Clinic of Internal Medicine, Pneumonol-
ogy, Allergology and Clinical Immunology of the Military Institute of Medicine, Warsaw, Poland. To illustrate 
allergic hyperthermia, the InfraScanTM instrument developed by Milton Essex SA was used. Milton Essex SA is 
a company partially funding this research. InfraScanTM has a high-resolution thermovision measuring system 
with an uncooled microbolometric matrix, enabling the recording of hyperthermic skin reactions with a diam-
eter of less than 0.3mm. The instrument was developed for capturing allergic reactions, technical data of the 
thermovision system can be found in Supplementary Tables S1 and S2 online.

This device consists of a visible-light camera correlated with thermodetectors at pixel level and a frame with 
restraints near the patient’s wrist and elbow. The restraints help immobilize the forearm and allow for smaller 
variations in the position/tilt of the forearm on the images. Despite these measures, patients still can slightly 
rotate the forearm and medical staff needs to make sure that restraints are put in similar places each time the 
image is taken.

To gather the images, first, the allergen application fields were marked on each of patient’s forearms. Next, 
images (both thermal and visible-spectrum) of the patient’s forearms were taken before the allergen application. 
The allergens were then applied, and the patient was asked to wait for 15 min in a sitting position. After this rest 
period, the images of both forearms were again taken. To account for various environmental factors the following 
steps were followed throughout the data gathering process: 

1.	 Prior to the examination the device was placed in the examination room for 60 min to stabilize the tempera-
ture of its cover and detection hardware.

2.	 The examination was performed in a closed, air conditioned room without intensive air flow. The temperature 
and humidity in the room were stabilized and measured respectively 22 ◦C and 45% . Specialized air condi-
tioning and humidifier systems were used to ensure stable conditions throughout the examination process.

3.	 Acquisition of images in each sequence was preceded by an automatic, single-point recalibration procedure. 
This procedure uses a blackbody temperature reference placed inside the head of the device. Additionally, it 
also corrects thermal drift based on data from sensors placed around microbolometric matrix and proprietary 
algorithms.

4.	 Patients were qualified for the examination based on the various medical premises. Additionally, all physi-
ological aspects of the thermoregulation process were taken into account. These included drugs and other 
substances influencing body temperature and thermogenesis. Before the examination, each patient spent 
15 min in a waiting room with a specialized air-conditioning humidification system with a temperature and 
humidity precisely like the temperature and humidity in the examination room. During the examination, 
the patient was in the examination room.

The details of the data gathering process were described in the study protocol MESX/ISC/09/18 (Infrared Imag-
ing of Field of Allergic Reaction).

The dataset consists of interviews and photographs gathered from 100 participants (47 men and 53 women), 
who underwent a series of skin prick allergy tests with 12 allergens. In total 404 thermal and 404 visible spectrum 
images were gathered. All photos are sized 1024× 770 pixels. Samples were split equally between two regions: 
right and left hand. For control purposes, a histamine (positive sample) and negative control sample were used 

Table 1.   Output channels for the convolutional part of the network. All layers (including pooling) have 3× 3 
kernels. All convolutional layers are followed with batch normalization and LeakyReLU activation.

Output channels Pooling after convolution

32 Yes

64 Yes

64

128

128 Yes

256

256 Yes

256

256 Yes

256

256 Yes
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along with allergens. In total eight allergen application fields were placed on the patient’s forearm, which resulted 
in 32 samples from all regions and series. The whole dataset contains 1584 allergic reaction samples with 501 
(31.6%) positive and 1083 (68.4%) negative cases. A total of 1600 segments were obtained, including hyperther-
mic allergic reactions as well as histamine and negative control, however some were discarded due to technical 
issues in the questionnaire.

The last part of the dataset is a collection of interviews. It contains basic information about each patient and 
diagnoses of allergic reactions. All the substances used, along with histamine and negative control samples, are 
listed in an interview. The region they are associated with and their position on the patient’s forearm, which are 
part of the data collected, enable the matching of the doctor’s diagnosis to fragments of images corresponding to 
proper reactions. This diagnosis is used to create binary ground-truth labels for the classification task.

To obtain segmentations for the entire dataset we run a leave-one-out cross-validation on the U-Net model 
and save the calculated segments.

Evaluation methods.  We use Intersection over Union (IoU) to estimate segmentation results. For each 
segment we calculate the intersection area between a manual segmentation and an automatic one, as well as area 
of union. IoU is then calculated as intersection

union
.

To evaluate our classification approach we use ten-fold cross-validation as well as leave-one-out cross-valida-
tion (LOOCV). To avoid a situation in which the model has seen other parts of the hand in the test set we can not 
simply stratify and fold over reactions. Instead we fold over patients, ensuring that the model has not seen either 
other parts of the hand or the patient’s attributes. The mean and standard deviation used to normalize data are 
calculated on the training part of the data for each split. A model evaluation is based on the receiver operating 
characteristic (ROC) and precision-recall curve (PRC) and their corresponding numerical statistics—area under 
the curve (AUC) for ROC and average precision (AP) for PRC. Additionally, we check the accuracy of the model 
on a threshold that is selected to maximize the F1 score (in practice close to 0.5).

Segmentation.  Results of segmentation are satisfactory, as presented in Figs. 2 and 3. In practice we do 
not need to achieve IoU of 1, as the manual segmentation is always a perfect circle, and due to scaling and arm 
position it will not always be the case. This fact partially explains why the IoU distribution is centered around 
0.9. Moreover, as described in “Classifier input, preprocessing and augmentation” section we add a substantial 
margin around each segment found and so small deviations from the actual center of the segment should not 
influence the classification process too strongly.

Classification.  Overall we achieve roughly 93.5% accuracy on the dataset. Detailed results are depicted in 
Table 2. Notably, the ten-fold validation results are close to the leave-one-out validation results and so we report 
them for different experiments, as it takes considerably less time to calculate ten-fold validation results. Results 
indicate that U-Net based segmentation is comparable to manual segmentation. Interestingly, if the model is 
trained only on thermal images it performs as well as the one trained on both visible-spectrum and thermal 
images. A model that is trained on only visible-spectrum images performs worse (89.71% vs 93.24%) than the 
one trained on both types of images.

Loss and accuracy changes throughout the training process are shown in Fig. 4. They were calculated on a 
single validation split. Since the model has a slight tendency to overfit after approx. 100 epochs we use early 
stopping. Notably the exact moment of stopping is not as critical since the effect is gradual and there is a span 
of several dozen epochs during which the training process can be halted.

Precision recall curve and ROC curve are depicted in Fig. 5, while a confusion matrix for the thermal-only 
cross-validation results is presented in Table 3.

Figure 2.   Normalized intersection area between manual and predicted segments.
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Discussion
The results are promising in that we are able to achieve the same model performance both using only ther-
mal images and thermal combined with visible spectrum images. Moreover, the model trained only on visible 
spectrum images yielded worse results. This indicates that thermographic photography can be used to classify 
allergic reactions. Additionally, this approach should work in the same way regardless of the skin color of the 
patient (assuming correct segmentation). One limitation of exclusively using thermal images is that the patient 
should have a normal heart and respiration rate, as high-intensity physical activity results in images similar to 
acute allergy reactions.

There are two main problems that influence the results of classification. Hair on the forearm is the first one, 
as it makes segmentation harder but notably more hair has distinctly lower temperature. This in turn means that, 
with thick enough hair, the image is somewhat obfuscated and it is harder to recognize allergic reaction patterns. 
The second problem stems from the fact that blood flows freely throughout the entire forearm, and so it happens 

Figure 3.   Sample segmentation results for problematic image. First row shows the result for a hairy forearm, 
while the second row shows the result for a different marker color (blue).

Table 2.   Validation results for different types of segmentation and input data. The best values are in bold.

Input spectra

Segmentation Validation ROC AUC​ PRC AP Accuracy (%)Visible Thermal

✓ ✓ U-Net Leave-one-out 0.975 0.956 93.50

✓ ✓ manual 10-fold 0.970 0.952 92.79

✓ ✓ U-Net 10-fold 0.978 0.961 93.24

✓ ✗ U-Net 10-fold 0.940 0.880 89.71

✗ ✓ U-Net 10-fold 0.982 0.967 93.56
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that an allergic reaction does not necessarily occur in the place of the injection. This effect can be seen in Fig. 1f, 
where it is not clear which allergen caused which micro-thermal surge in temperature.

It is possible that with a bigger dataset we could reduce the impact of these factors. One approach that we want 
to examine in the future is a model, which takes the image of the entire forearm as an input and predicts reaction 
for each allergen. Currently training such models is not feasible, as the dataset is too small in comparison to the 
size of a single image which should be used for such an experiment. Using entire-forearm images should help us 

Figure 4.   Loss and accuracy of the proposed model based on a single split in the cross-validation procedure.

Figure 5.   Both figures calculated on the results of the cross-validation procedure for the proposed model, 
which was built only on thermal images (last row in Table 2).
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with the problem of blood flow. Another idea is to align images of the segments with respect to the blood flow. 
We experimented with that technique, but found that the results were worse, most probably due to the limited 
augmentation scope. If we align the images then random flips are no longer used and rotations are much smaller 
(between [−10◦, 10◦] ). With such augmentations and the size of our current dataset model tended to aggressively 
overfit around the 20th epoch and achieved overall worse results. We want to note that with a bigger dataset this 
idea could actually boost the results.

In the future we also want to focus on researching the exact time that post-injection images are taken. The 
current allergological standard is the examination of patients after roughly 15 min post-injection. Our initial 
research shows that while this is the time required for the on-skin effects to show (i.e. hives and color change), it 
is not the case for the thermal reaction. We believe that it is possible to change the examination time to approxi-
mately 5 min, however this claim needs more research to validate it.

Additionally, we plan on assessing the robustness of the model with respect to high-frequency filtering. 
We theorize that it should be rather robust in this regard, since reactions do not have sharp edges and sudden 
gradient changes.
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Abstract. In this paper, we discuss an evolutionary method for train-
ing deep neural networks. The proposed solution is based on the Dif-
ferential Evolution Strategy (DES) – an algorithm that is a crossover
between Differential Evolution (DE) and the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES). We combine this approach with
Xavier’s coefficient-based population initialization, batch processing, and
gradient-based mutations — the resulting weight optimizer is called neu-
ral Differential Evolution Strategy (nDES). Our algorithm yields results
comparable to Adaptive Moment Estimation ADAM for a convolutional
network training task (50K parameters) on the FashionMNIST dataset.
We show that combining both methods results in better models than
those obtained after training by either of these algorithms alone. Fur-
thermore, nDES significantly outperforms ADAM on three classic toy recur-
rent neural network problems. The proposed solution is scalable in an
embarrassingly parallel way. For reproducibility purposes, we provide a
reference implementation written in Python.

Keywords: neuroevolution · neural network · deep learning · differential evo-
lution · genetic algorithm.

1 Introduction

Deep artificial neural networks (DNNs) are among the most prominent break-
throughs in modern computer science. This success is largely founded on an
effective way of establishing weights in DNNs. The backpropagation algorithm
allows neural networks to be trained using a low computational cost gradient-
based method. It enables all the weight updates to be simultaneously computed,
using just one forward pass through the network, followed by a backward one.

Strong algorithmic efficiency orientation comes with several problems. The
first-order methods used for weight optimization give no guarantees that the pro-
cedure will find the global minimum if the cost function is multimodal. Optimiza-
tion may fall into the basin of attraction of one local optimum and prematurely
? All authors contributed equally.
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converge. Computing the gradient one layer at a time and iterating backwards
from the last may prevent the first layer’s weights from changing the value of
the gradient due to the vanishing gradient problem [11]. Gradient decreases ex-
ponentially with network depth, while the first layer’s weight updates can be
vanishingly small, or in some cases, the training process may completely stop.
Backpropagation computes gradients by the chain rule, which leads to certain
limitations of the neurons’ activation functions [15, Chapter 7].

The restrictions imposed by the adopted learning method forced researchers
to pursue new network layer types and connection schemes to address the van-
ishing gradient problem. This led to architectures like residual networks [10],
or long short-term memory networks (LSTM) [12]. Also, standard activation
functions like sigmoid and hyperbolic tangent ceased to be used in favour of the
rectified linear unit (ReLU) [13], which has a constant derivative and has started
to be the default activation when developing multi-layer perceptrons (MLPs).

Despite the progress, the root cause of the gradient optimization problems
remains unchanged. Therefore, instead of struggling with the consequences of
using a given optimization method, it might be more effective to use a different
one altogether. One alternative lies in the field of neuroevolution [17], which uses
evolutionary algorithms (EAs) to generate (or rather evolve) artificial neural
networks.

This paper presents a neuroevolution method for deep neural network train-
ing based on an evolution strategy. We are motivated by previous research [1]
that indicates the possibility of searching through the possible solution space
with the contour fitting property without using any costly matrix algebra op-
erations. Network parameters can be established according to the second-order
optimization method based on the implicitly used Hessian matrix of DNNs’
weight search space. The idea of this method is to use the Differential Evolution
Strategy (DES [1]) algorithm, which is a crossover between Differential Evolution
(DE) [18] and the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [9], with the use of batch processing and gradient-based mutation. We call
the method the neural Differential Evolution Strategy — nDES. The two main
contributions of this work are as follows:

– the paper introduces a new ES called nDES, tailored to high dimensional
optimization tasks typical for neural network training,

– we explore the effectiveness of batch-processing and gradient mutations in
the proposed method,

– we empirically analyze the properties of nDES by evaluating it against the
well established gradient-based ADAM optimizer and show that our method
achieves superior performance on synthetic tasks, which are considered hard
for gradient-based methods while obtaining results comparable to ADAM in
settings "easier" for the latter method,

The paper is organized in the following way. In Section 2 we provide relevant
information regarding DES and finally introduce nDES. The method is then veri-
fied empirically in experiments described and discussed in Section 3. Section 4
concludes the paper and describes possible directions for future work.
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2 Proposed Method

This Section introduces the (nDES) method, an evolutionary neural network
training approach. Before formulating nDES, we provide some necessary back-
ground information that underlines both the desirable properties and limitations
of evolutionary strategies from the deep learning perspective. These prompt the
need for a new method.

2.1 Groundwork

Evolution strategies are popular randomized search heuristics in Rn that excel in
the global optimization of continuous landscapes. Their mechanism is primarily
characterized by the mutation operator, whose variance is drawn from a mul-
tivariate normal distribution using an evolving covariance matrix. It has been
hypothesized that this adapted matrix approximates the inverse Hessian of the
search landscape. This hypothesis has been proven for a static model relying
on a quadratic approximation [16]. The covariance matrix over selected deci-
sion vectors in strategy (1, λ) has the same eigenvectors as the Hessian matrix.
When the population size is increased, the covariance becomes proportional to
the inverse of the Hessian.

The process of generating points with multivariate normal distribution is
relatively costly. Evolution strategies with a covariance matrix estimation have
an internal computational complexity of at least O(n2). CMA-ES is a popular
evolution strategy within the field of global optimization, and it has a basic
complexity O(n3) [8]. The basic limitation is the number of degrees of freedom
of the covariance matrix in the n-dimensional space. The C(t) matrix has n2+n

2

parameters that must be updated to determine the C(t+1) matrix. So at least
n2+n

2 calculations in each generation are needed, just to determine the new co-
variance matrix. Generating individuals with a multivariate normal distribution
with a given covariance matrix has a computational complexity of O(n2). The
implementation of a multivariate normal distribution generator N (m,C) with
a given full covariance matrix C and expected value m is a computationally
non-trivial task. However, the formula can be transformed as follows:

N (m,C) ∼ m+N (0, C)

∼ m+ C
1
2N (0, I)

(1)

Spectral decomposition of a covariance matrix C allows C
1
2 to be factorized by

using a series of transformations and substitutions [7]. The following formula
can be obtained:

C
1
2 = BDBT (2)

where:

B is an orthogonal matrix (B−1 = BT and BBT = I), in which columns form
an orthonormal basis of eigenvectors of matrix C
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D is a diagonal matrix with square roots of eigenvalues of C as diagonal ele-
ments. D2 = DD = diag(d1, . . . , dn)2 = diag(d21, . . . , d

2
n), where d2n is n-th

eigenvalue of matrix C

From Eqs. (1) and (2), the following equation can be obtained [7]:

N (m,C) ∼ m+ C
1
2N (0, I)

∼ m+BDBTN (0, I)︸ ︷︷ ︸
N (0,I)

∼ m+BDN (0, I)

(3)

The formula (3) allows the generation of points with multivariate normal distri-
bution to be simplified by using spherical (isotropic) normal distributionN (0, I).
According to that formula, each generation of a single point requires the multipli-
cation of the orthogonal matrix B, the diagonal matrix D and the n-dimensional
result vector N (0, I). The process of matrix multiplication with a Coppersmith
andWinograd algorithm [5] has a computational complexity of at leastO(n2.376),
but the complexity of matrix C factorization into a BDBT is O(n3).

Typically, evolution strategies are benchmarked on problems on a scale of up
to hundreds of dimensions [2]. This is in stark contrast to the number of parame-
ters of state-of-the-art neural networks. Here, the high computational complexity
of evolution strategies makes their use virtually impossible. However, there is a
possibility to generate new points using multivariate Gaussian distribution with-
out an explicitly defined covariance matrix. (DES) [1] is an algorithm that is a
crossover between DE and CMA-ES. It uses combinations of difference vectors
between archived individuals and univariate Gaussian random vectors along di-
rections of past shifts of population midpoints (Algorithm 1 Line 14). According
to the experimental results, DES reveals a linear convergence rate for quadratic
functions in a broad spectrum of Hessian matrix condition numbers. The authors
of this method also experimentally verified that DES tends to perform contour
fitting. The authors of DES have proved in their article that it is possible to
achieve w(t+1)

i ∼ N (m,C) without an explicitly calculated or estimated covari-
ance matrix.

Overcoming the computational difficulties connected with applying DES to
larger dimensionalities is thus an auspicious direction for research. Potentially,
this could lead to a method that has the desirable properties of very effective
second-order approaches.

2.2 nDES Method Formulation

On a high level, the (nDES) method is a variant of DES specifically tailored for
solving high dimensional optimization tasks typical for neural network training.
Because of DES primary usability as evolutionary algorithm, it may manifest
some numerical and memory complexity problems for high dimensional opti-
mization. We introduce several crucial modifications to the original metaheuris-
tic to make it applicable in such circumstances. To further exploit the fact that
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1 t← 1

2 initialize
(
W (1) =

{
w

(1)
1,...,λ : w

(1)
i ∼ N (0, 6

fin+fout
)
})

3 while !stop do
4 evaluate

(
W (t); Q̂

)

5 m(t+1) =
1

µ

µ∑

i=1

w
(1)
i

6 ∆(t) ←m(t+1) −m(t)

7 if t = 1 then
8 p(t) ←∆(t)

9 else
10 p(t) ← (1− cc)p(t−1) +

√
µcc(2− cc)∆(t)

11 for i = 1, . . . , λ do
12 pick at random τ1, τ2, τ3 ∈ {1, ..., H}
13 j, k ∼ U(1, ..., µ)

14 d
(t)
i ←

√
cd
2

(
w

(t−τ1)
j −w

(t−τ1)
k

)

15 +
√
cd∆

(t−τ2) ·N(0, 1) +
√
1− cdp(t−τ3) ·N(0, 1)

16 w
(t+1)
i ←m(t+1) + d

(t)
i

17 if gradientMutation then
18 w

(t+1)
i ← w

(t+1)
i + ε∇Q̂(w

(t)
i )

19 else if randomNoise then
20 w

(t+1)
i ← w

(t+1)
i + (1− ccov)t/2 ·N(0, I)

21 t← t+ 1

22 return wbest

Algorithm 1:Outline of the neural Differential Evolution Strategy

in such optimization scenarios, the gradient is usually available, we also propose
ways to utilize this information in the algorithm.

Algorithm 1 presents the nDES outline and reveals a structure somewhat
typical to evolution strategies: an initial population consisting of individuals is
created (Line 2). This is later iteratively processed by the outer loop (Lines 3
to 21) and finally, after the stop criterion gets triggered, the best-found individual
is returned (Line 22). When applied to neural networks, each individual in the
population corresponds to the trained network’s weights. We discuss the details
of this process below.

Each individual in the first population is initialized (Line 2) according to a
multivariate normal distribution, with zero mean and standard deviation equal to
Xavier’s coefficient for each layer of the underlying network ([6]). In other words,
standard deviation differs for each layer — it is proportional to the inverse of
the total number of input (fin) and output (fout) connections to that layer. This
approach takes into account the underlying structure of the optimized models
and speeds up convergence.

A pass through the main loop of the algorithm (Lines 3 to 21) corresponds
to a single iteration of the method. Each iteration begins with evaluating the
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individual networks according to the loss function Q̂ (Line 4). If the training
dataset is too big to calculate this function in a single forward pass, we in-
troduce the batching technique, which involves multiple tweaks to the method.
Before the optimization, the training dataset is split into batches, which stay con-
stant throughout the training process. Next, an Exponentially Weighted Moving
Average (EWMA) value is set to zero for each batch. Each individual in the
population gets assigned to a data batch — the assignment is cyclical, in the
order the batches were created. The individual’s fitness is the difference between
the loss function evaluated on the given batch and its EWMA value. After all
points have been evaluated, the EWMA for each batch is updated with the new
fitness values. The update follows the formula below:

Q̄t =
αt

nt

nt∑

i

Q̂i + (1− αt) Q̄t−1 (4)

αt =
1
3
√
t

(5)

where Q̄t is the EWMA value for the batch in the t-th iteration, Q̂i is the fitness
value for the i-th point that evaluated the batch, nt is the total number the batch
has been evaluated in the t-th iteration, and αt is the multiplier value in the t-th
iteration. Using EWMA-based fitness helps nDES to select the best points (i.e.,
ones that improve the current state) as opposed to favouring points evaluated
on batches that were easy to classify. Note that this technique influences the
procedure used to return the best individual found (Line 22), which is described
below.

After evaluating the population, we use µ best individuals to calculate the
center of the population and its shift from the previous iteration, which under-
goes exponential smoothing (Lines 5 to 10). In the next steps, the new population
gets initialized (Lines 11 to 20). The construction of each individual involves pa-
rameters drawn from three historical iterations (Line 12). These allow us to
construct the difference vector (Line 14) and mutate the population center to
form the new individual (Lines 17 to 20).

The nDES method uses one or two mutation operators. The first one is stan-
dard differential mutation, conducted by adding the difference vector to the
population center (Line 16). The second one is optional and comes in two types:
random noise perturbation (Line 20) or gradient-based rotation (Line 18), which
we discuss below.

The rotation-based approach is dedicated to the tasks in which the gradient
can easily be computed and does not cause numeric issues. Technically, these
gradients are obtained as follows: after evaluating an individual (i.e., calculating
the cost function), we calculate the backpropagation pass. The mutation then
incorporates a classic SGD step, which is especially useful when the population
size is smaller than the optimized network’s number of parameters. Under such
circumstances, the population spans a sub-hyperplane in the space of possible
solutions (since λ < N). In such a case, one can think about the above tech-
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nique as using the gradient information to rotate the sub-hyperplane, while nDES
optimizes solutions within it.

To select the best solution (wbest) for the optimization process (Line 22),
different approaches are used depending on batching. Without batching, each
point is evaluated on the entire dataset, so we select the point with the lowest
fitness in the history as the best one. However, in the other case, the EWMA
modification makes this approach unfeasible for nDES. The reason is that the
modified fitness value would be the lowest for the point that showed the most
improvement on a particular batch of data. Such a point would most probably
not be the best solution, as the fitness values’ improvements tend to drop near
zero in the late stages of the training (i.e., there is relatively little progress as
the optimization process starts to converge). Therefore, we evaluate all points in
the final population on the validation set and return the best-performing one.

To better specialize nDES for various tasks, we introduce three different vari-
ants of the method:

– nDES: optimizing from scratch, with differential and random noise mutations,
– nDES-G: optimizing from scratch using differential and rotational mutations,
– nDES-B: bootstrapping the optimization with a gradient method and then

optimizing this pre-trained network with nDES using only differential muta-
tion.

In the nDES-B case, we first train the model using a gradient method (in our
experiments, ADAM) with early stopping to prevent overfitting. Next, we use the
weights of the model to initialize the population of our evolution strategy. Specif-
ically, the mean of the sampling distribution for the initial population is set using
the weights of the pre-trained model. Afterwards, normal nDES optimization is
used. The motivation here is to check whether it is possible to make any im-
provements to a model for which a gradient optimizer has apparently converged.
Note that using gradients within nDES-B would potentially harm the results in
this case. The reason is that the gradient-based method uses early stopping –
thus, the gradients calculated for the point at which the method ended could
overfit the model rather than improve it.

3 Experiments

We conducted a series of experiments to evaluate the proposed method’s perfor-
mance on training neural networks. Below, we report the results obtained while
training a CNN on one of the popular benchmark datasets to showcase how nDES
handles highly dimensional optimization tasks. We also include a section dedi-
cated to multiple RNN toy problems, which are very difficult for gradient-based
methods.

All the experiments were conducted using an implementation created in Py-
Torch v. 1.5 framework [14] and a machine with an Intel Core i7-6850K processor,
128GB RAM, and a single GTX 1080 Ti GPU card.
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3.1 Training CNNs

The CNN experiments were conducted using the model summarized in Table 1
trained on the FashionMNIST [20] dataset. The neural network consisted of two
convolutional layers with soft-sign activation and max pooling, and two linear
layers – the first one with soft-sign and the second with soft-max activation func-
tions. This architecture has 50,034 trainable parameters in total, which defines
quite a challenging task in terms of metaheuristic optimization.

To thoroughly analyze the results, we will analyze multiple aspects connected
with the training process and the models it produced. Firstly, we will report on
the generated models’ accuracy to get a high-level overview of their relative
performance. Furthermore, to check whether there are any structural differences
in their behaviour, we will compare their confusion matrices and analyze their
robustness to adversarial noise. Finally, to focus on the stability of the training
process, we will present learning curves from different training runs.

Table 1. Architecture of the neural network used to classify the FashionMNIST dataset

Layer Layer’s output dim. Param. #
Conv2d-1 20× 24× 24 520
Conv2d-2 32× 8× 8 16,032
Linear-3 64 32,832
Linear-4 10 650

Accuracies obtained for the FashionMNIST dataset are depicted in Table 2.
nDES was run with the following hyperparameters: ccum = 0.96; history = 16;
batch size = 64; validation size = 10000. The dataset was normalized with respect
to the mean and standard deviation prior to the optimization process, and no
further augmentation techniques were used. The boundaries for weights were
[−2, 2].

To evaluate the training stability, in Fig. 1 (left) we also provide loss and
accuracy learning curves obtained during multiple runs of nDES. From the plots,
we may conclude that the training process seems stable and repeatable. In the
case of nDES-B, the learning curves are presented in Fig. 1(right). At first sight,
these might appear less stable; however, this is because the algorithm starts from
a point already optimized using ADAM, and thus the plot’s scale is different.

Table 2. Experimental results obtained on the FashionMNIST dataset. We report ac-
curacy values along with their standard deviations for each of the methods considered

Method Test acc.
mean

Test acc. σ Test loss
mean

Test loss σ

ADAM 89.89 0.17 0.2854 0.0031
nDES 86.44 0.24 0.3836 0.0048

nDES-G 89.15 0.37 0.3253 0.0064
nDES-B 90.67 0.17 0.2761 0.0032
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Fig. 1. Results of repeated training runs on the FashionMNIST dataset presented on
individual curves. The left column depicts nDES results and the right one (nDES-B) the
case in which the model is first trained with ADAM and then with nDES.

One measure in which ADAM and nDES differ significantly is the execution
time. On average, training the model using ADAM in this experiment took about
one minute, while using nDES took about 55 hours. We do not present a pre-
cise performance comparison, as it would require more in-depth analysis. This
difference stems from the fact that in order for nDES to work properly, it needs
to make significantly more passes through the training dataset than ADAM. This
problem is, however, embarrassingly parallel [19], and we discuss it in Section 4.

3.2 Training RNNs

RNN models are useful in tasks connected with sequence modelling. One crucial
problem that escalates when these sequences become longer is vanishing/exploding
gradients, which impair the performance of gradient-based methods. As previ-
ous research indicates [3], metaheuristics seem to be more robust against this
problem. To evaluate whether this also holds in nDES, we conducted experiments
on three synthetic datasets taken from the classic [3, 12] papers — these are:

– the parity problem: given a sequence of 1’s and −1, the model has to predict
a class — 1 if the sequence contains an odd number of 1’s and −1 otherwise,

– the addition problem: given a sequence of real numbers (within [-1,1]) and a
binary mask, the task is to predict the sum of numbers for which the mask
values are equal to 1,

– the multiplication problem: similar to the addition problem, the model has
to predict the product of its masked input sequence.

During all three experiments, we used a neural network consisting of a single
recurrent layer with four neurons, each having a hyperbolic tangent activation
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Fig. 2. Results obtained for all sequence modelling problems

function and an output layer with a single, linearly activated neuron. All neurons
in the recurrent layer have the same input, whose size depends on the task at
hand. This architecture was chosen arbitrarily, as to our surprise, all of the classic
papers describing these toy problems lack the precise descriptions of the model.

To compare nDES with a gradient method, we used the ADAM optimizer on
all problems. We used mean squared error (MSE) loss for all problems and the
results are presented in Fig. 2 and Table 3. Although these tasks are challenging
for gradient-based methods, nDES successfully solved them. When analyzing the
plots, it can be seen that the difficulty of the toy problems increased along with
sequence size. Furthermore, not all optimization runs found the actual minimas
(for which the loss equals zero). In all cases, nDES was more effective — ADAM
could only barely cope with the shortest sequences. One interesting case is with
the addition and multiplication problems, for which the longer sequences turned
out to be easier for nDES than the shortest ones. This phenomenon was especially
visible in the case of the latter.

Table 3. Results obtained for all sequence modelling problems — we report the ob-
tained means and standard deviations. In each case, nDES obtained better results

Loss mean Loss std dev.
Problem Seq. length ADAM nDES ADAM nDES

addition
10 0.0033 0.0018 0.0010 0.0002
25 0.0379 0.0070 0.0024 0.0112
50 0.0393 0.0179 0.0008 0.0148

multiplication
10 0.0152 0.0093 0.0044 0.0007
25 0.0625 0.0111 0.0048 0.0152
50 0.0607 0.0320 0.0013 0.0237

parity
10 0.7583 0.1894 0.3469 0.3019
25 0.9994 0.7485 0.0021 0.4003
50 1.0004 0.9494 0.0022 0.1881
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4 Closing Remarks

The changes to DES proposed in this paper lead to a method that can be useful in
neural network training. Training CNNs with nDES leads to models with compa-
rable accuracy to a modern gradient-based method, which experimentally proves
that nDES can be a useful algorithm within the field of deep neuroevolution. From
an optimization task perspective, using nDES during the conducted experiments,
we were able to solve optimization tasks that had orders of magnitude more di-
mensions than the ones in previous literature concerning DES reports. Thus, our
method resolves the computational complexity problems in evolution strategies,
allowing them to be used on dimensionalities not manageable before.

Apart from experiments focused on pushing the dimensionality boundaries,
the promising results obtained for RNNs also suggest an exciting research di-
rection. Note that whereas CNN architectures seem to be a perfect match for
gradient-based optimization methods, for RNNs, specialized architectures (like
LSTM [12] or the more recent gated recurrent unit (GRU) [4]) have been devel-
oped to overcome the limitations of these methods and make training possible.
The excellent performance obtained by nDES on challenging RNN tasks suggests
that it is worth evaluating on a larger scale how well modern metaheuristic
methods cope in such a setting. The possibility to effectively train RNN models
without the need to use structural workarounds for gradient optimizers‘ defi-
ciencies could significantly impact domains like natural language processing or
recommender systems. Applying nDES to more real-world RNN architectures is
thus also a direction worth pursuing.

The source code of nDES implementation and all experiments is available at
https://github.com/fuine/nDES.

Further development of nDES will focus on solving the encountered problems.
One particular source of problems, which limited the scope of experiments in
this paper, is that nDES relies on the history of the population to perform well.
Moreover, the population size should be multiple times larger than the problem’s
dimensionality, as suggested by the authors of DES (λ = 4n). Both these factors
result in significant memory requirements and suggest that scaling nDES with the
size of the architectures might pose a real difficulty, particularly in the case of
deep convolutional models known for their sheer number of parameters. However,
the parts of nDES that are the most computationally expensive (i.e., evaluation of
the population) are embarrassingly parallel. Therefore, further increases in task
dimensionality, and thus experiments on more complicated neural networks, seem
to be only a technical hurdle — one resolvable by using multiple GPU cards and
parallelizing the evaluation loop.
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Abstract—Recurrent neural networks are important tools for
sequential data processing. However, they are notorious for
problems regarding their training. Challenges include capturing
complex relations between consecutive states and stability and
efficiency of training. In this paper, we introduce a recurrent
neural architecture called Deep Memory Update (DMU). It is
based on updating the previous memory state with a deep
transformation of the lagged state and the network input. The
architecture is able to learn to transform its internal state using
any nonlinear function. Its training is stable and fast due to
relating its learning rate to the size of the module. Even though
DMU is based on standard components, experimental results
presented here confirm that it can compete with and often
outperform state-of-the-art architectures such as Long Short-
Term Memory, Gated Recurrent Units, and Recurrent Highway
Networks.

Index Terms—recurrent neural networks, universal approxi-
mation

I. INTRODUCTION

Recurrent Neural Networks (Recurrent NNs, RNNs) are
designed to process sequential data and are vital components
of systems that perform speech recognition [1], machine
translation [2], handwritten text recognition [3], and other
tasks [4].

An intuitively designed RNN is prone to gradient explosions
or vanishing [5] due to its recurrent nature. The impact of
a given input on future outputs of the RNN may vanish or
explode with time. Specialized architectures with gates, namely
Long Short-Term Memory (LSTM) networks [6] and Gated
Recurrent Unit (GRU) networks [7], are designed to overcome
this problem at the level of a single neuron. While these
networks are widely successful, they come with a cost — their
memory state undergoes only single-layer transformation from
one time instant to another.

Several recurrent architectures apply deep processing of
their internal states [8]–[10]. However, they are complex or
challenging to train.

This paper addresses the above shortcomings by introducing
a neural module designed to prevent the previously mentioned
gradient problems while allowing the state transformation
to be modelled by an arbitrary feedforward neural network.
We call this module Deep Memory Update (DMU). 1. As
a result, state transformation can easily be shaped in DMU.
Additionally, the architecture is resistant to problems of gradient

1We make the code available at https://github.com/fuine/dmu

exploding/vanishing. Experimental results presented in the
paper confirm that DMU performs well in comparison to its
state-of-the-art counterparts.

RNNs are often outperformed by feedforward networks with
attention, especially by the transformer [11]. However, the
computational complexity of these techniques excludes them
from some applications [12], [13]. It is also likely that some
combination of attention and RNNs, such as R-Transformer
[14], ASRNN [15] and others [16], will outperform both.
Therefore, in this paper, we focus solely on RNNs.

II. RELATED WORK

Early RNNs [17]–[20] suffered from the problem of gradient
vanishing/exploding, defined by [5]: A small change in the
RNN’s weights causes its future output’s change that is
vanishing or exploding in time. As a result, the impact of
RNN’s weights on its performance is either close to zero or
infinity. In either case, it is impossible to train such a network.
A gradient norm clipping strategy proposed in [8] may mitigate
this problem to some extent. [21] used orthogonal matrices of
weights in shallow RNNs to stabilize the gradient successfully.

The gradient vanishing/exploding problem was alleviated at
a cell level with Long Short-Term Memory (LSTM) networks
[6]. A neuron in such a network is a state machine with
several so-called gates. The neuron generally preserves its state
from one time to another but may also change it. The change
depends on the dot product of the neuron inputs and its weights
computed in its gates. LSTMs have been enhanced with batch
normalization of a recurrent signal [22].

[7] proposed an architecture based on neurons simpler than
those in LSTMs, called Gated Recurrent Units (GRUs). Despite
its simplicity, it generally preserved the favourable properties
of LSTM. [23] proposed a unit whose state was only computed
based on its previous state and the outputs of the preceding
neural layer. Networks based on such units, Independently
Recurrent Neural Networks (IndRNNs), tend to outperform
LSTMs and GRUs.

Capturing long-term dependencies in input sequences is
a crucial challenge that RNNs face. [24] proposed to increase
the lag of recurrent connections in higher network layers
geometrically. [25] introduced SkipRNN that learns to skip
state updates and shorten the effective size of the computational
graph. [26] prove that RNNs operate via transformations
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of time, and the gates in LSTM and GRU networks are
a straightforward way to perform these transformations.

LSTMs and GRUs are usually organized in several layers
stacked on top of one another [27]. Input to each neuron
within a layer includes the previous states of all the neurons
in the layer. This way, at each time instant, the network
input undergoes a deep transformation. However, the internal
state of the network undergoes only a shallow, single-layer
transformation.

Being able to apply an arbitrary nonlinear, deep transfor-
mation to its internal state is a valuable feature of a recurrent
neural network. [28] proposed to increase the recurrence
depth by adding multiple nonlinear layers to the recurrent
transition, resulting in Deep Transition RNNs (DT-RNNs)
and Deep Transition RNNs with Skip connections (DT(S)-
RNNs). Gradient propagation issues are exacerbated in these
architectures due to long credit assignment paths. [9] added
extra connections between all states across consecutive time
steps in a stacked RNN, which also increases recurrence depth.
However, their model requires additional connections with
increasing depth, gives only a fraction of state cells access to
the deepest layers, and faces gradient propagation issues along
the longest paths.

[10] introduced Recurrent Highway Networks (RHNs), which
can be understood as LSTMs with specialized multilayer gates.
These networks apply deep processing to their internal state
while successfully coping with gradient vanishing/exploding.
However, our proposed architecture requires only two state-
processing gates as opposed to LSTM’s three. Additionally,
DMU allows for an arbitrary feedforward network to process
the state.

A number of concepts may facilitate the performance of
RNNs. [29] proposed a scheme of initialization of weights
in these networks. RNNs are usually trained with Stochastic
Gradient Descent with gradient estimates computed with
backpropagation through time. However, recent work of [30]
on forward propagation through time calls this practice into
question. An interesting alternative to gated recurrent neural
networks is network simulators of continuous dynamical
systems [31]–[34].

III. METHOD

In this section, we introduce the Deep Memory Update
(DMU) module. It is a neural module with memory designed
to have the following properties:

1) Its memory state can undergo an arbitrary nonlinear
transformation from one moment to another.

2) The module can easily preserve its memory state from
one moment of time to another.

3) Its learning is relatively fast and stable.

A. General structure

We present the structure of the Deep Memory Update (DMU)
module in Fig. 1. The module operates in discrete time t =
1, 2, . . . . At each time, the module is fed with the input xt ∈

Fig. 1. Structure of Deep Memory Update module. The module comprises
the feedforward neural network, which can arbitrarily process the state and a
memory layer. The output of the module is also its hidden state.

Rm and produces the vector ht ∈ Rd, which is both its memory
state and its output.

A lagged memory state, ht−1, together with an input of the
block, xt, are fed to a feedforward neural network, FNN. The
network’s output layer is linear with 2d neurons. It produces
two vectors: zt ∈ Rd determines to what extent the memory
state should be preserved, and ĥt ∈ Rd determines the direction
in which the state should change.

A pair of i-th elements of zt and ĥt are fed to a i-th memory
cell. The new cell state is a weighted, with zt, average of the
old state, ht−1, and ĥt. The memory state update takes the
form

〈zt, ĥt〉 = FNN(ht−1, xt) (1)

ht = ht−1 ◦ σ(zt) + f(ĥt) ◦ (1− σ(zt)), (2)

where “◦” denotes the elementwise product, 1 is a vector of
ones, σ is a unipolar soft step function, e.g. the logistic sigmoid,

σi(z) =
ezi

1 + ezi
for zi ∈ R, (3)

and f is an activation function, e.g.

fi(z) = tanh(zi) for zi ∈ R. (4)

Our proposed recurrent architecture is compared with GRU
[7] in the supplementary material.

Let us consider how the required properties of DMU are
achieved.

1) Since a feedforward neural network with at least two
dense layers is a universal function approximator, the
network state can undergo the arbitrary nonlinear trans-
formation from one time moment to another.

2) The block preserves its memory state for large values of
zt. In particular, for zt = +∞ we have ht = ht−1.

3) For efficient and stable training of the network, it is
enough that the learning rate of the module is sufficiently
lower than that of the rest of the network, as discussed
in Section III-C.
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B. Initialization
The FNN block should be a universal approximator. It can

be a multilayer perceptron with at least two layers, including
a linear output layer. This layer needs to be linear because its
output should not be limited. It should be possible that zt � 1
which causes the memory state to be preserved, ht ∼= ht−1.

We recommend using the standard ways of initializing neural
weight matrices in the FNN block, with one exception. Namely,
upon weights’ initialization, we recommend adding a positive
scalar to the biases of the neurons that produce zt values, e.g.,
3. With positive elements of zt, the memory state of the DMU
module will be, by default, largely preserved from one moment
t to another. This addition is optional in most of the tasks,
however if the network initialized in the standard way fails to
converge, the positive bias usually helps.

We use Xavier initialization [35] in all of the experiments.
Additionally, in synthetic tasks, we use the positive bias with
a value of 3.

C. Training
Training of DMU may be based on gradient backpropagation

through time and using the gradient with a method of stochastic
optimization such as Stochastic Gradient Descent or ADAM
[36]. These methods apply a learning rate to each trained weight.
In turn, the learning rate defines a speed of optimization along
derivatives with respect to this weight. Typically, the learning
rates are equal for all weights.

Let us consider DMU as a module in a feedforward
architecture. Its learning speed and stability can be noticeably
improved by distinguishing a module’s learning rate and setting
its value smaller than that of the rest of the architecture. The
learning of recurrent modules is exposed to instability, which
naturally limits its learning speed. Nevertheless, it does not
need to limit the learning speed of the surrounding feedforward
modules, which are less exposed to instability, and thus may
learn faster.

In our experiments in Sec. IV, we combine n-layer DMU
modules with n′-layer feedforward output subnetworks. For
β > 0 being a learning rate for the output subnetwork we use
a learning rate of the DMU module, βDMU, equal to

βDMU =
β

2n
. (5)

The deeper the DMU module, the lower its learning rate.
Additionally, when weight decay is used in the network training,
its strength in the DMU module is reduced 2n times.

D. Gradient propagation in DMU
In order to analyze gradient propagation in DMU, we adopt

the following further assumptions and notation:
• The detailed structure of the FNN inside DMU is presented

in Fig. 2, with Ai, B,C,D denoting weight matrices,
ai, b, c denoting bias vectors and fi denoting activation
functions.

• Activation functions in hidden layers of FNN are bipolar
sigmoids with derivatives and absolute values covering
the intervals (0, 1] and (−1, 1), respectively.

• σ takes the form (3). Therefore, σ′(z) = σ(z)(1−σ(z)) <
1− σ(z).

• Vectors considered are in row form.

Fig. 2. Structure of the feedforward module inside DMU. Ai, B, C and D
denote weight matrices, ai, b and c denote vectors of biases and fi denotes
activation functions.

Note that ht are in fact weighted averages, over i ≥ 0, of
f(ĥt−i) never exceeding (−1, 1). Therefore, the elements of
ht also never exceed (−1, 1).

Let us analyze how the loss Lt′ resulting from the network
output at time t′ propagates back to time t− 1 < t′. We have
the following recursion:

dLt′

dht−1
=

dLt′

dht

dht
dht−1

=
dLt′

dht

d
dht−1

(
ht−1 ◦ σ(zt) + f(ĥt) ◦ (1− σ(zt))

)

=
dLt′

dht

(
diag (σ(zt)) + [ht−1] ◦

dzt
dht−1

◦ [σ′(zt)] +
dĥt

dht−1
◦

◦
[
f ′(ĥt)

]
◦ [1− σ(zt)]−

[
f(ĥt)

]
◦ dzt

dht−1
◦ [σ′(zt)]

)

=
dLt′

dht

(
diag (σ(zt)) +

[
ht−1 − f(ĥt)

]
◦ dzt

dht−1
◦ [σ′(zt)]

+
dĥt

dht−1
◦
[
f ′(ĥt)

]
◦ [1− σ(zt)]

)
,

(6)

where diag (v) denotes the diagonal matrix with the vector v
on its diagonal and [v] denotes the matrix with the same vector
vT in each column.

By neglecting activation functions inside the FNN block, we
reduce it to a cascade of linear transformations and obtain the
following approximations of the Jacobi matrices in (6):

dzt
dht−1

∼= BT

(
n−2∏

i=1

Ai

)T

,
dĥt

dht−1
∼= CT

(
n−2∏

i=1

Ai

)T

.

(7)
Considering that σ(zt) ∈ (0, 1), ht−1 − f(ĥt) ∈ (−2, 2),
σ′(zt) ∈ (0, 1−σ(zt)), f ′(ĥt) ∈ (0, 1), we obtain the following
condition on non-increasing gradient:

? Eigenvalues of the matrices BT
(∏n−2

i=1 Ai

)T
and

CT
(∏n−2

i=1 Ai

)T
remain in the intervals (−1/2, 1/2) and

(−1, 1), respectively.
Essentially, that means that the components of the weight
matrices in the FNN block should not be too large.

When the above condition (?) is satisfied, the gradient de-
creases when propagated back according to the first component
of (6), that is, by a factor of σ(zt). Intuitively, when the memory
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state ht−1 is preserved to another time-step proportionally to
σ(zt), the impact of this memory state on future performance
is preserved likewise.

IV. EXPERIMENTAL STUDY

To evaluate the DMU architecture, we test it on three
synthetic problems and three modern problems based on real-
life data. The synthetic problems are taken from [6], and are
noisy sequences, adding, and temporal order. The modern data-
based problems are polyphonic music modelling [37], natural
language modelling [38], and Spanish/German/Portuguese to
English machine translation tasks [39], [40].

We compare our DMU module using shallow architectures
with ordinary recurrent neural networks (RNNs), GRU, LSTM,
and RHN in the synthetic problems. We also compare DMU in
its deep version with RHN in the data-based problems. To make
the comparison fair, we embed a recursive subnetwork within
the same neural architecture. That subnetwork is a layer or a few
layers of recurrent units or a DMU module or RNH. Moreover,
for each depth of RNNs, we compare different architectures
of similar sizes measured by the number of weights.

A reader may find details of our experimental setting,
hyperparameters of architectures and their training in the
supplementary material.

A. Adding problem

The first task will be called “Adding”. It is taken from [6,
sec. 5.4].

a) Results.: We present the results for the adding problem
in Fig. 3. We conclude that DMU significantly outperforms all
other modules, and GRU scores better than LSTM. RNN and
RHN are not able to reach any threshold within 100 training
epochs for any hyperparameters.

B. Temporal order

The next task, referred to as “TempOrd”, is taken from [6,
sec. 5.6, Task 6b].

a) Results.: The results for the TempOrd task are depicted
in Fig. 4. We note that DMU has faster convergence than GRU
and maintains similar results for high thresholds (up to 10−4).
For lower thresholds, DMU outperforms GRU. LSTM reaches
partial success on higher thresholds but fails for lower ones.
RNN and RHN fail for all thresholds without a single successful
100 epoch run.

C. Noise-free and noisy sequences

We call this task “NoiseSeq”. It is taken from [6, sec. 5.2].
a) Results.: Figure 5 contains the results for the NoiseSeq

task. We observe that GRU and DMU obtain similar results, in
most cases reaching all the loss thresholds, with GRU training
faster. RHN in about half of the cases does not reach any
threshold, and in the other half, it reaches all of them. RNN
performs worse than RHN, and LSTM performs worse than
RNN.

D. Polyphonic music modelling

In this subsection, we evaluate modules on the polyphonic
music modelling task, referred to as “PolyMusic”, based on
the Nottingham music dataset [37].

a) Results.: The results of the polyphonic music mod-
elling can be found in Table I. In this problem, DMU
outperforms RHN at 3 out of 4 depths with regard to test
mean loss.

TABLE I
POLYMUSIC: RESULTS — LOSS. N DENOTES THE NUMBER OF HIDDEN

LAYERS.

train test
N model best µ σ best µ σ

1 RHN 3.34 3.38 0.08 3.552 3.598 0.037
DMU 2.94 2.96 0.04 3.57 3.63 0.05

2 RHN 3.39 3.41 0.10 3.55 3.61 0.06
DMU 3.02 3.09 0.07 3.49 3.55 0.04

5 RHN 3.44 3.68 0.16 3.73 3.85 0.11
DMU 3.22 3.21 0.06 3.63 3.69 0.03

10 RHN 3.70 3.93 0.14 3.90 4.08 0.12
DMU 3.52 3.54 0.15 3.95 4.04 0.09

E. Natural language modelling

The task called “NatLang” is based on the Penn Treebank
corpus of English [41].

a) Results.: Table II shows the results. DMU achieves
consistently better results than RHN, often by a large margin.
Only for a depth of 2 RHN performs slightly better than DMU
with respect to the mean test perplexity.

TABLE II
NATLANG: RESULTS — PERPLEXITY (LOWER = BETTER). N IS THE DEPTH

OF THE NETWORK.

train test
N model best µ σ best µ σ

1 RHN 61.10 66.53 6.07 106.11 110.39 4.36
DMU 56.63 59.42 3.14 105.35 106.13 0.48

2 RHN 62.90 66.32 4.23 104.89 109.83 4.04
DMU 64.42 64.86 1.43 109.60 110.13 0.47

5 RHN 82.33 86.10 3.83 123.16 124.97 1.92
DMU 92.40 94.06 1.11 117.92 120.37 1.46

10 RHN 85.97 149.43 86.87 124.46 171.60 60.38
DMU 118.20 119.48 1.53 130.05 131.83 1.44

F. Machine translation

Next, we test the modules in the context of machine transla-
tion using recurrent architectures. The task is based on datasets
of pairs of corresponding Spanish/Portuguese/German and
English sentences [39], [40]. We will call experiments based
on subsequent pairs “Spa2Eng”, “Por2Eng”, and “Ger2Eng”.

a) Results.: Table III contains the results. DMU achieves
a better perplexity score than RHN for all three language pairs
at each depth of both networks except for Portuguese at depth 1.
Additionally, both networks achieve the best results for a depth
of 1 or 2. Performance generally deteriorates with growing
depth, significantly faster for RHN than for DMU.
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Fig. 3. Adding: Results of 51 runs, five graphs for different loss thresholds, a curve presents how many runs reach a given loss threshold at a given training
epoch.

Fig. 4. TempOrd: Results of 51 runs, five graphs for different loss thresholds.

Fig. 5. NoiseSeq: Results of 51 runs, five graphs for different loss thresholds.

G. Ordered and permuted MNIST

Finally, we compare DMU to selected state-of-the-art
modules on the pixel-by-pixel MNIST image classification
problem [29]. Each image is represented as a flattened array
of pixels, and the module processes it one after another. Such
setup allows us to evaluate the internal state drift on long
inputs, as each image contains 784 pixels. The task comes in
two flavors - sequential, in which each image is flattened in a
row-wise manner and permuted, in which we apply the same
random permutation to each image after flattening.

a) Results.: Table IV contains the results.

H. Learning rate ablation

We verify how a reduction of a DMU learning rate according
to (5) impacts the performance of the neural architecture with

this module. In this order, we register the performance of each
architecture with approximately optimized, with a grid search,
learning rate. In one variant, the learning rate is constant for
the whole architecture. In the other, the learning rate of the
DMU module and the learning rate for the rest are bound
with (5). Numerical results of this ablation are presented in
Tables. V–VII. Note that this ablation does not make sense for
the analyzed synthetic problems because the recurrent module
is the entire architecture in these cases. The results confirm
that efficiency benefits from reducing the learning rate of the
DMU module.

V. DISCUSSION

Since the seminal paper of [6] the development of recurrent
neural networks has been stimulated by the need to avoid
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TABLE III
TRANSLATION: RESULTS — PERPLEXITY (LOWER = BETTER). L. –

LANGUAGE PAIR.

train test
l. N model best µ σ best µ σ

Sp
a2

E
ng

1 RHN 8.26 7.72 0.29 5.80 6.31 0.36
DMU 7.13 7.24 0.17 5.89 6.05 0.14

2 RHN 8.82 8.50 0.22 6.53 7.10 0.36
DMU 9.07 8.52 0.38 6.91 7.18 0.32

5 RHN 12.38 24.68 12.48 12.34 47.60 41.68
DMU 7.74 7.91 0.35 7.50 8.02 0.35

10 RHN 58.74 58.73 0.92 110.54 141.77 56.01
DMU 8.78 8.84 0.26 7.99 8.40 0.23

Po
r2

E
ng

1 RHN 3.95 3.98 0.09 3.65 3.80 0.16
DMU 3.91 3.93 0.11 3.54 3.68 0.10

2 RHN 4.29 4.33 0.06 3.67 3.93 0.18
DMU 4.63 4.45 0.14 3.74 3.97 0.14

5 RHN 6.25 7.50 0.83 6.55 7.62 0.85
DMU 4.65 4.74 0.09 4.56 4.69 0.10

10 RHN 48.58 48.35 0.37 79.10 99.86 23.80
DMU 5.12 5.29 0.18 4.92 5.06 0.12

G
er

2E
ng

1 RHN 4.66 4.63 0.16 4.27 4.35 0.06
DMU 4.28 4.50 0.12 4.10 4.21 0.08

2 RHN 5.26 5.10 0.11 4.41 4.59 0.10
DMU 5.38 5.28 0.07 4.56 4.79 0.19

5 RHN 8.13 9.24 1.24 7.93 9.18 1.28
DMU 5.33 5.42 0.12 5.21 5.33 0.12

10 RHN 47.99 48.41 0.29 83.47 134.79 92.37
DMU 5.91 5.82 0.23 5.63 5.74 0.07

gradient exploding or vanishing in backpropagation through
time. Indeed, these phenomena are likely to occur in neural
networks with feedback loops. In LSTM and GRU architectures,
they were eliminated at the cell level.

The DMU neural module introduced in this paper is based on
memory cells whose state is updated with the weighted average
of their previous content and new values proposed for them.
Both the weights and the new proposed values come from
a feedforward subnetwork whose inputs include the previous

TABLE IV
TEST ACCURACY ON ORDERED AND PERMUTED PIXEL-BY-PIXEL MNIST.

Name ordered permuted N # params

LSTM baseline by [21] 97.3% 92.7% 128 ≈68K
MomentumLSTM [42] 99.1% 94.7% 256 ≈270K
Unitary RNN [21] 95.1% 91.4% 512 ≈9K
Full Capacity Unitary RNN [43] 96.9% 94.1% 512 ≈270K
Soft orth. RNN [44] 94.1% 91.4% 128 ≈18K
Kronecker RNN [45] 96.4% 94.5% 512 ≈11K
Antisymmteric RNN [33] 98.0% 95.8% 128 ≈10K
Incremental RNN [31] 98.1% 95.6% 128 ≈4K/8K
Exponential RNN [46] 98.4% 96.2% 360 ≈69K
Sequential NAIS-Net [34] 94.3% 90.8% 128 ≈18K
Lipschitz RNN [32] 99.4% 96.3% 128 ≈34K

DMU (ours) 98.5% 93.4% 96 ≈20K
DMU (ours) 98.7% 93.4% 128 ≈34K

TABLE V
POLYMUSIC: VARIED LEARNING RATE ABLATION RESULTS — LOSS.

DMU-C — DMU WITH AN EQUAL LEARNING RATE FOR ALL MODULES.

train test
N model best µ σ best µ σ

1 DMU-C 2.72 2.81 0.08 3.34 3.38 0.04
DMU 2.94 2.96 0.04 3.57 3.63 0.05

2 DMU-C 2.99 3.03 0.20 3.43 3.49 0.04
DMU 3.02 3.09 0.07 3.49 3.55 0.04

5 DMU-C 3.25 3.31 0.24 3.90 3.99 0.11
DMU 3.22 3.21 0.06 3.63 3.69 0.03

10 DMU-C 3.75 nan nan 4.26 5.03 0.63
DMU 3.52 3.54 0.15 3.95 4.04 0.09

TABLE VI
NATLANG: VARIED LEARNING RATE ABLATION RESULTS — PERPLEXITY.
DMU-C — DMU WITH AN EQUAL LEARNING RATE FOR ALL MODULES.

train test
N model best µ σ best µ σ

1 DMU-C 68.99 71.12 1.78 109.23 111.20 1.42
DMU 56.63 59.42 3.14 105.35 106.13 0.48

2 DMU-C 81.31 81.01 1.69 117.56 118.17 0.65
DMU 64.42 64.86 1.43 109.60 110.13 0.47

5 DMU-C 108.90 579.68 235.39 138.13 542.20 202.04
DMU 92.40 94.06 1.11 117.92 120.37 1.46

10 DMU-C 696.30 697.57 0.69 642.18 642.91 0.44
DMU 118.20 119.48 1.53 130.05 131.83 1.44

TABLE VII
TRANSLATION: VARIED LEARNING RATE ABLATION RESULTS — ACCURACY.

DMU-C — DMU WITH AN EQUAL LEARNING RATE FOR ALL MODULES.

train test
l. N model best µ σ best µ σ

Sp
a2

E
ng

1 DMU-C 0.91 0.85 0.14 0.70 0.67 0.04
DMU 0.93 0.93 0.00 0.70 0.69 0.01

2 DMU-C 0.84 0.76 0.20 0.66 0.60 0.11
DMU 0.94 0.94 0.01 0.69 0.69 0.01

5 DMU-C 0.71 0.66 0.06 0.62 0.59 0.03
DMU 0.84 0.83 0.01 0.66 0.65 0.01

10 DMU-C 0.34 0.30 0.02 0.35 0.31 0.02
DMU 0.76 0.75 0.01 0.63 0.63 0.00

Po
r2

E
ng

1 DMU-C 0.94 0.93 0.02 0.78 0.77 0.01
DMU 0.93 0.94 0.01 0.78 0.77 0.00

2 DMU-C 0.94 0.93 0.02 0.75 0.75 0.01
DMU 0.96 0.95 0.01 0.78 0.77 0.00

5 DMU-C 0.77 0.63 0.20 0.70 0.59 0.16
DMU 0.86 0.86 0.00 0.73 0.73 0.01

10 DMU-C 0.32 0.32 0.00 0.32 0.32 0.00
DMU 0.81 0.80 0.01 0.71 0.71 0.00

G
er

2E
ng

1 DMU-C 0.92 0.92 0.02 0.75 0.75 0.00
DMU 0.92 0.93 0.01 0.75 0.75 0.00

2 DMU-C 0.88 0.90 0.01 0.73 0.72 0.01
DMU 0.94 0.94 0.01 0.75 0.74 0.00

5 DMU-C 0.72 0.70 0.02 0.66 0.65 0.01
DMU 0.85 0.84 0.01 0.71 0.70 0.01

10 DMU-C 0.44 0.34 0.06 0.45 0.34 0.05
DMU 0.80 0.78 0.01 0.68 0.68 0.00

state of the memory cells. Architectures based on the DMU
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module compete with and often outperform those based on
LSTM or GRU. The gradient vanishing/exploding problem is
solved in DMU at the module level.

In some applications, deep transformation of the network
state is necessary. However, then the effective length of
the gradient path increases, which may destabilize training.
RHN successfully coped with this problem at the expense of
the complexity of its architecture. DMU applies a typical
feedforward block of any depth for state transformation.
Training stability is ensured by appropriately reducing the
learning rate of the DMU module. As a result, DMU performed
better than RHN of the same depth in all three analyzed data-
based problems with a handful of exceptions.

Interestingly, contrary to [10] we note that depth-scaling of
the model did not yield better results. We speculate that it can
be explained by the lack of regularization other than weight
decay. This was a deliberate choice to compare RHN and DMU
modules without any unnecessary architectural additions.

In the future, we want to further investigate DMU’s fast
convergence rate on synthetic tasks. A greater understanding of
the model’s behaviour could help us improve the architecture
and provide additional insight into the state drift problem of
RNNs in general.

VI. CONCLUSIONS

In this paper, we propose DMU — a recurrent neural
module that can perform an arbitrary nonlinear transformation
of its memory state. Three experiments with synthetic data
(Adding, Temporal order, Noisy sequence) presented here
compare neural architectures based on DMU with those based
on RNN, LSTM, and GRU. DMU yields the best results in
two of them while having results comparable to the best
module in the third one. Three experiments with real-life
data (Polyphonic music, Natural language modelling, Machine
translation) compare neural architectures based on DMU with
those based on Recurrent Highway Networks of the same depth.
The architecture based on DMU outperformed RHN in 15 out
of 20 analyzed mean test score cases while staying competitive
in the other five cases.

ACKNOWLEDGMENTS

The project was funded by POB Research Centre for
Artificial Intelligence and Robotics of Warsaw University
of Technology within the Excellence Initiative Program –
Research University (ID-UB). We gratefully acknowledge the
contribution of Aleksander Zamojski, Lidia Wojciechowska
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APPENDIX A
COMPARISION OF DMU AND GRU

In the notation applied in this paper operation of a GRU [7]
layer can be expressed as

rt =Wrxt + Urht−1 + br

ĥt =Whxt + Uh(σ(rt) ◦ ht−1) + bh

zt =Wzxt + Uzht−1 + bz

ht = ht−1 ◦ σ(zt) + f(ĥt) ◦ (1− σ(zt))
where Wr, Ur,Wh, Uh,Wz, Uz and br, bh, bz are matrices and
vectors of weights. The operation of DMU is presented in
eqs. (1) and (2). In the most straightforward configuration, this
network is a layer of linear units. Then

ĥt =Whxt + Uhht−1 + bh

zt =Wxxt + Uxht−1 + bx

ht = ht−1 ◦ σ(zt) + f(ĥt) ◦ (1− σ(zt))
(A.1)

Therefore, DMU is simpler in this basic configuration, thus
having fewer weights per memory cell than a layer of GRUs,
as it does not have the reset gate. In the general configuration,
DMU can apply an arbitrary nonlinear transformation to its
state, which GRU is unable to do. In practice, GRU layers are
often stacked on one another which improves its performance
on tasks that require complex nonlinear transformation of state.
However, the state of the stacked GRU layers still can not be
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TABLE VIII
ARCHITECTURES USED THE FOR THE COMPARISON OF DIFFERENT NEURAL

MODULES IN SYNTHETIC EXPERIMENTS.1RECURRENT BLOCK.

experiment RNN LSTM GRU RHN DMU

NoiseSeq rc. blk1 (5, 5) (2, 2) (2, 3) ((3, 3)) ((5, 4))
weights no. 595 880 687 672 573

Adding rc. blk1 (5, 5) (2, 2) (3, 2) ((4, 3)) ((5, 5))
weights no. 111 99 108 136 106

TempOrd rc. blk1 (6, 6) (2, 3) (2, 4) ((4, 3)) ((5, 6))
weights no. 236 212 208 224 203

TABLE IX
ARCHITECTURES USED FOR THE COMPARISON OF RHN AND DMU. WE

REPORT THE NUMBER OF NEURONS IN FEEDFORWARD LAYERS. THE LAST
LAYER OF THE DMU’S FNN ON THE TRANSLATION TASK ALWAYS HAS 200

NEURONS. FOR THE TRANSLATION TASK, WEIGHTS’ NUMBERS ARE
PROVIDED FOR SPA2ENG, GER2ENG, AND POR2ENG, RESPECTIVELY.

experiment depth RHN DMU weights no.

PolyMusic

1 100 100 46.7K
2 100 122 66.9K
5 100 131 127K
10 100 136 228K

NatLang

1 100 100 1.7M
2 100 122 1.7M
5 100 131 1.8M
10 100 136 1.9M

Translation

1 200 200 27.8M/36.6M/24.5M
2 200 340 28.0M/36.8M/24.7M
5 200 300 28.4M/37.3M/25.2M
10 200 300 29.2M/38.1M/26.0M

arbitrarily transformed in a single time instant since parts of
this state are transformed within single layers.

LSTM [6] and RHN [10] are based on different, much more
complex equations with even more weights. LSTM has twice
more weights per memory cell than DMU has in the basic
configuration.

APPENDIX B
EXPERIMENTS

A. Architectures

We present architectures for each problem in Table VIII
and Table IX. Corresponding hyperparameters can be found
in Table VIII. The recurrent subnetwork is characterized by
the number of units in subsequent layers. For example, a GRU
subnetwork with two layers of 10 and 20 neurons will be
briefly denoted by (10, 20). A DMU block with two FNN
layers of 10 and 20 neurons will be denoted by (10, 20, 10)
to account for the layer of memory cells within the block. In
the data-based problems, we evaluate each module at varying
depths. In all cases, the compared architectures have matching
numbers of trained parameters. Hyperparameters for the models
were selected based on the random and grid searches and
then fine-tuned manually. The metric used to evaluate the
hyperparameters was calculated on the validation subset in
each case.

B. Training

The data is split into training, validation, and testing set. On
synthetic problems, training continues until the loss reaches a

specified threshold (10−6) on the validation set or the training
budget is depleted. The error is then registered on the testing
set and presented here. We follow a similar procedure for real-
life problems, except the training process is stopped once the
optimizer reaches the final epoch. All metrics are calculated
using the model from the epoch with the best metric score on
the validation set.

We run the experiment five times for each modern
task/model/depth combination and aggregate the results. Stan-
dard result aggregation, such as averaging loss over time, would
not be interpretable in the synthetic tasks since training is often
unstable in these experiments. Therefore, the results for each
synthetic problem are presented for multiple thresholds of the
loss value. We plot the number of experiment runs that have
reached the threshold in or before the specific epoch for each
threshold. These thresholds allow us to assess how fast and
how likely the module converges to a specific loss value. Thus,
we can gain an insight into the quality of the module. Faster
attainment of a specific threshold and convergence to lower
thresholds are both desirable for the algorithm.

Hyperparameters used for each experiment/neural module are
presented in Table X and Table XI. We use ADAM optimizer
to train all architectures.

TABLE X
HYPERPARAMETERS USED FOR SYNTHETIC TASKS.

experiment hyperpameter RNN LSTM GRU RHN DMU

NoiseSeq

learning rate 0.01 0.002 0.05 0.05 0.02
seq. per epoch 200 200 200 200 200
min seq. length 100 100 100 100 100
max epochs 100 100 100 100 100

Adding

learning rate 0.01 0.001 0.05 0.02 0.02
seq. per epoch 200 200 200 200 200
min seq. length 100 100 100 100 100
max epochs 100 100 100 100 100

TempOrd

learning rate 0.01 0.005 0.02 0.02 0.05
seq. per epoch 200 200 200 200 200
min seq. length 100 100 100 100 100
max epochs 100 100 100 100 100

C. Hardware

Our experiments have been performed on a PC equipped
with AMD™Ryzen 1920X, 64GB RAM, 4×NVidia™RTX
2070 Super.

D. Testing strategy

To evaluate synthetic tasks, we run an experiment for each
module 51 times and aggregate the results. On real-life data
tasks, we aggregate results over five runs for each recurrent
module. We report metrics obtained in the best runs. These
runs are selected based solely on their performance on the test
set. Therefore, in some cases, metrics reported in the best
column for the training dataset are worse than those in the
mean column.
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TABLE XI
HYPERPARAMETERS USED FOR EACH EXPERIMENT AND EACH NEURAL

MODULE.

experiment depth hyperpameter RHN DMU

PolyMusic

all max epochs 500 500

1
learning rate 0.005 0.005
weight decay 0.001 0.0001
scheduler gamma 1.0 1.0

2
learning rate 0.005 0.005
weight decay 0.001 0.0001
scheduler gamma 1.0 1.0

5
learning rate 0.005 0.005
weight decay 0.001 0.0001
scheduler gamma 1.0 1.0

10
learning rate 0.005 0.002
weight decay 0.001 0.0001
scheduler gamma 1.0 1.0

NatLang

all max epochs 40 40

1
learning rate 0.02 0.02
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.9

2
learning rate 0.02 0.02
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.9

5
learning rate 0.02 0.01
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.98

10
learning rate 0.02 0.02
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.98

Spa2Eng/
Por2Eng/
Deu2Eng

all teacher forcing ratio 1.0 1.0
max epochs 50 50

1
learning rate 0.01 0.005
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.9

2
learning rate 0.01 0.01
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.9

5
learning rate 0.01 0.003
weight decay 0.0001 0.0001
scheduler gamma 0.9 1.0

10
learning rate 0.01 0.003
weight decay 0.0001 0.0001
scheduler gamma 0.9 1.0

E. Adding problem

In this problem, the network is fed with two-dimensional
vectors [a, b], where a is randomly chosen from the interval
[−1, 1], and b ∈ {−1, 0, 1} is a marker: −1 denotes the first
and last element of the sequence, there are two pairs marked
by 1, the rest are marked by 0. The task of the network is to
output the sum of a-s accompanied by b-s equal to 1 at the
end of the sequence. Each network analyzed is composed of
a recurrent block and a layer with softmax activation.

F. Temporal order

This task evaluates network’s ability to model temporal
ordering of data. The input and the output are both 8-

dimensional. They represent one of 8 symbols by one-hot
encoding. The input symbols are: E (start), B (end), X or Y .
X or Y occur at time t1, t2, t3. In all three of these occurrences
the choice of X or Y is random, the rest of a sequence is
filled with symbols a, b, c, d also selected at random. Sequence
length is chosen randomly between 100 and 110. t1, t2, t3
are selected randomly for each sequence, respectively between
10-20, 33-43 and 66-76. The output desired at the end of
a sequence is either Q,R, S, U, V,A,B,C, depending on the
combination of symbols that has occurred at times t1, t2 and
t3. Each network analyzed is composed of a recurrent block
and a layer with softmax activation.

G. NoiseSeq

We use noisy sequences to test the modules on the long time
lag problems. The network is fed with symbols one-hot encoded
in n-dimensional vectors. An input sequence is, with equal
probability 0.5, either (x, a1, . . . , an−2) or (y, a1, . . . , an−2),
where x, y, a1, . . . , an−1 are selected on random prior to an
experiment. The task of the network is to output the first symbol
in the input sequence when at n − 1-st step. Each analyzed
neural network is composed of a recurrent block and a layer
with softmax activation.

H. PolyMusic

Inputs and outputs are 88-dimensional. They represent the
binary encoding of possible piano-rolls at a current timestep (in
MIDI note numbers, between 21 and 108 inclusive). Sequences
vary in length. The task of the model is to predict the next time
step in the sequence (i.e., output at time t is equal to input
at time t+ 1). The loss function is a negative log-likelihood
averaged over all time steps in the dataset/batch. The neural
network is composed of a recurrent block and a layer with the
sigmoid activation.

I. NatLang

Inputs and outputs are single number representations of
the most frequent words in English and special tokens such
as “unknown” or “end of sequence”. Sequences include 100
words. The goal of the network is to predict another word
within the current sequence. The loss function is perplexity
(categorical cross-entropy exponent). See [38] for details. The
whole neural network comprises a recurrent block, followed by
a 100-neurons dense layer and an output layer with the softmax
activation. For this experiment, the input word embedding is
set to a small size (64) on purpose to limit overfitting.

J. Machine Translation

We use tokens representing words, punctuation marks,
sentence start, and sentence end in all languages. Each
token is encoded as a single, unique number. The goal is
to translate Spanish/Portuguese/German sentences into English
ones using a system with encoder-decoder architecture [7],
[47], [48]. A whole translator has encoder-decoder architecture.
An encoder is a recurrent block. A decoder is composed of
a recurrent block and a layer with the softmax activation.
Additionally, we use input and output embeddings of size 650.
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