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Abstract

In the thesis we investigate properties of information-theoretic measures for discrete dis-

tributions and show how most of them can be related to Möbius expansion of conditional

mutual information (CMI). Moreover, we study asymptotic distributions of such mea-

sures (Chapter 1). In Chapter 2 we consider four resampling scenarios, which can be

used for conditional independence (CI) testing: CI bootstrap, conditional randomisation,

bootstrap X and conditional permutation schemes. We study asymptotic distributions of

introduced measures evaluated for resampled data, as well as properties of the schemes

themselves, which are useful in CI testing. Chapter 3 covers numerical experiments con-

ducted in order to investigate performance of ĈMI and ĈMI-related measures as test

statistics in CI testing. Moreover, the related problem of testing global null hypothesis

corresponding to individual hypothesis of conditional independence is investigated.

Keywords: mutual information, conditional mutual information, interaction informa-

tion, information-theoretic criteria, resampling, bootstrap, asymptotic distribution, con-

ditional independence
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Streszczenie

W pracy zbadano własności miar teorioinformacyjnych dla zmiennych o rozkładach

dyskretnych i pokazano, w jaki sposób większość z nich jest związana z rozwinięciem

Möbiusa dla warunkowej informacji wzajemnej (CMI). W rozdziale 1 zbadano rozkłady

asymptotyczne takich miar. W rozdziale 2 wprowadzono cztery schematy ponownego

próbkowania, mające zastosowanie w testowaniu warunkowej niezależności: CI bootstrap,

conditional randomisation (warunkowa randomizacja), bootstrap X i conditional permu-

tation (warunkowe permutacje). Zbadano również zachowanie estymatorów miar oblic-

zonych na podstawie prób resamplingowych oraz własności samych schematów przydat-

nych w testowaniu warunkowej niezależności. W rozdziale 3 przeprowadzono ekspery-

menty numeryczne pokazujące zastosowanie ĈMI i kryteriów opartych na ĈMI jako

statystyk testowych w testowaniu warunkowej niezależności. Przerowadzono również

symulacje dotyczące testowanie hipotezy globalnej z indywidualnymi hipotezami ze-

rowymi będącymi hipotezami o warunkowej niezależności zmiennych.

Słowa kluczowe: informacja wzajemna, warunkowa informacja wzajemna, informa-

cja interakcyjna, kryteria teorioinformacyjne, ponowne próbkowanie, bootstrap, rozkład

asymptotyczny, warunkowa niezależność
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Introduction

Conditional independence (CI) is one of the central concepts in statistics, which plays

a fundamental role in such areas as e.g. casual inference, dependence analysis and re-

gression modelling. Checking CI is a building block for feature selection. In particular,

CI testing is a crucial part of algorithms used for discovering Markov Blanket (MB) such as

e.g. GS (Grow and Shrink [27]) or IAMB (Incremental Association Markov Blanket [40]).

Such algorithms typically apply a series of conditional independence tests in order to learn

a structure from observational data and recover MB if the CI condition can be verified

without errors.

Testing for conditional independence is much more challenging than for unconditional

independence. In discrete case, conditional independence of two variables given the third

one holds if for every layer of conditioning variable (i.e. within each subset for which

the value of conditioning variable is fixed) the two variables are independent. Thus curse

of dimensionality is a significant obstacle when the dimensionality of the conditioning

variable is high. Conditional independence testing in a continuous case is even more

difficult [37].

Conditional mutual information (CMI) is a measure of conditional dependence stud-

ied in information theory, which possesses many attractive properties. This explains its

frequent use. Also it is a source of many CMI-based measures of dependence ([6]). The

CMI-based measures are usually called criteria, as they are often used as scoring criteria

to measure how potentially useful a feature may be when used to explain a dependent

variable. The criteria are designed to cope better with the problem of multidimensionality,

but on the other hand they miss many useful properties of CMI.

In the thesis we investigate properties of such CMI-based measures for discrete dis-



tributions and show how most of them can be related to Möbius expansion of CMI.

Moreover, we study asymptotic distributions of such measures (Chapter 1). In Chapter

2 we consider four resampling scenarios, which can be used for CI testing: CI bootstrap,

conditional randomisation, bootstrap X and conditional permutation schemes. We study

asymptotic distributions of empirical conditional mutual information and introduced mea-

sures evaluated for resampled data, as well as properties of the schemes themselves, which

are useful in CI testing. Chapter 3 covers numerical experiments conducted in order to

investigate performance of ĈMI and ĈMI-related measures as test statistics in CI test-

ing. Moreover, the related problem of testing global null hypothesis corresponding to

individual hypothesis of independence is investigated.

Similar concepts as in Chapter 2 have been studied earlier. Conditional randomisation

test and its permutational counterpart were introduced in [8] and [5], respectively. They

both rely on the availability of the distribution of the potential explanatory variable given

a vector of other variables, which may contain confounding factors. Other schemes of

resampling applying conditional permutations used for CI testing are proposed in [41], in

which also a semi-parametric approach included in simulations in Chapter 3 is proposed.

Conditional permutation scheme for ĈMI-related measures was also used in [20] and [18],

in which the asymptotic distributions of the criteria estimators were obtained (these

results have been extended in Chapter 1), although theoretical analysis of the behaviour

of ĈMI and criteria based on resampled samples was limited.
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Chapter 1

Information-theoretic measures

In this chapter we first recall the definitions of measures such as entropy and mu-

tual information used in information theory, and their basic properties. Next we give

the definition of 3 and k-way interaction information and state its representations in

terms of entropy and mutual information and their inverse formulas. In particular, we

establish Möbius formula, which gives a representation of conditional mutual information

in terms of interaction informations. Then we focus on feature selection criteria based on

the previously presented measures and Möbius formula.

Let X, Y and Z be discrete random variables with values in X , Y and Z, respectively.

We assume that X , Y and Z are finite. We denote the probability mass function by p

and instead of using e.g. pX for the probability mass function of the random variable X,

we will write simply p(x). By p(x|z) we will denote probability of obtaining X = x given

Z = z, and p(x, y, z) is a joint probability mass function of (X, Y, Z) etc.

X, Y and Z might be multivariate and in some cases we will use the notation

Z = ZS = (Z1, Z2, . . . , Z|S|) to underline that Z is multivariate. S is a set of indices

and for convenience we assume that S = {1, 2, . . . , k} and |S| = k. By ZT we denote

the subvector of variables (Zt1 , Zt2 , . . . , Zti) with elements such that their indices are from

a set T = {t1, t2, . . . , ti} ⊆ S.

Logarithm in definitions below denotes the natural logarithm.

1.1. Basic measures

We introduce basic information theoretic measures for discrete random variables.

We refer to [9] for more information and properties.



CHAPTER 1. INFORMATION-THEORETIC MEASURES

Definition 1.1.1 (Entropy). The entropy of X is defined as

H(X) = −
∑
x∈X

p(x) log p(x) = −E log p(X).

Similarly, the joint entropy of X and Y equals

H(X, Y ) = −
∑

x∈X ,y∈Y

p(x, y) log p(x, y).

In the definition above the convention 0 log 0 = 0 is used. Note that from the definition

we also have that H(X) ≥ 0 and the equality holds if and only if X is constant.

Below we give the definition of conditional entropy of X given Y , which averages

entropies of X over all layers Y = y with respect to distribution p(y).

Definition 1.1.2 (Conditional entropy). The conditional entropy is defined in the fol-

lowing way

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log p(x|y)

= −
∑

x∈X ,y∈Y

p(x, y) log p(x|y) = −E log p(X|Y ),

where expected value is computed with respect to joint distribution p(x, y) of (X, Y ).

Next, we give a definition of Kullback-Leibler divergence, which is a measure of how

much two probability distributions p and q differ. That definition will be useful for

interpreting measures of dependence called mutual information and conditional mutual

information, and also it will give a different view on interaction information.

Definition 1.1.3 (Kullback-Leibler divergence). We define Kullback-Leibler divergence

between two probability mass functions p and q of a random variable X as

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

Kullback-Leibler divergence is defined if for all x ∈ X we have q(x) = 0 ⇒ p(x) = 0

and then we use a convention 0 log 0
0
= 0. If p(x) = 0, then 0 log 0 = 0 as previously.
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1.1. BASIC MEASURES

Kullback-Leibler divergence is non-negative and equals zero if and only if p = q (see

Theorem 2.6.3 in [9]).

Definition 1.1.4 (Mutual information). We define mutual information (MI) as

I(X, Y ) =
∑

x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
= DKL(p(x, y)||p(x)p(y)) = E log

p(X, Y )

p(X)p(Y )
.

Intuitively, the mutual information measures how much uncertainty of X is reduced

given the variable Y (or alternatively, how much uncertainty of Y is reduced due to

knowing X) as

I(X, Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X) = H(X) + H(Y ) − H(X, Y ), (1.1)

where entropy is understood as a measure of uncertainty. Another way to interpret mutual

information is to understand it as a measure of distance in terms of Kullback-Leibler

divergence between the joint distribution p(x, y) and its factorised counterpart p(x)p(y).

Equality of these two distributions is equivalent to the divergence between them being

equal to 0 and their independence.

1.1.1. Conditional independence and conditional mutual information

The definition of conditional independence and conditional mutual information and

its properties presented below play an important role in the following sections, especially

in Chapter 2, where we focus on distribution of plug-in estimators of conditional mutual

information based on resampled samples.

Two variables X and Y are conditionally independent given Z (we assume p(z) > 0)

if for all (x, y, z) ∈ X × Y × Z holds

p(x, y, z) = p(x|z)p(y|z)p(z).

Below we give the definition of conditional mutual information, which averages mutual

informations over all layers of conditioning variable.

15



CHAPTER 1. INFORMATION-THEORETIC MEASURES

Definition 1.1.5 (Conditional mutual information). Conditional mutual information

(CMI) is defined as

I(X, Y |Z) =
∑
z∈Z

p(z)
∑

x∈X ,y∈Y

p(x, y|z) log p(x, y|z)
p(x|z)p(y|z)

=
∑

x∈X ,y∈Y,z∈Z

p(x, y, z) log
p(x, y, z)

p(x|z)p(y|z)p(z)
= DKL(p(x, y, z)||p(x|z)p(y|z)p(z)).

We note that both mutual information and conditional mutual information are

non-negative [9] and might be considered as measures of strength of unconditional and con-

ditional dependence, respectively. In case of conditional mutual information the strength

of dependence is measured given the conditioning variable Z. Both measures equal zero

if and only if X ⊥⊥ Y (MI) or X ⊥⊥ Y |Z (CMI). What is more, we have that

I(X, Y |Z) =
∑
z∈Z

p(z)I(X, Y |Z = z),

where I(X, Y |Z = z) denotes mutual information for a pair of variables (X, Y ) given

Z = z with a probability mass function p(x, y|z), thus as p(z) > 0 and I(X, Y |Z = z) > 0

for all z, we have that

I(X, Y |Z) = 0 ⇒ I(X, Y |Z = z) = 0 for all z ∈ Z.

Hence, if X and Y are independent given Z, the variables are also independent on each

layer of Z.

We denote by pci probability mass function corresponding to X ⊥⊥ Y |Z (ci stands for

conditional independence) equal pci(x, y, z) = p(x|z)p(y|z)p(z), where

p(x|z) =
∑

y p(x, y, z)

p(z)

p(y|z) =
∑

x p(x, y, z)

p(z)

and p(z) =
∑

x,y p(x, y, z). We will show that pci minimises Kullback-Leibler divergence

of p and any probability mass function satisfying conditional independence. Namely,

the following lemma holds

16



1.1. BASIC MEASURES

Lemma 1.1.1. Probability mass function pci defined above minimises

DKL(p(x, y, z)||q(x, y, z)) over q ∈ C such that

C = {q(x, y, z) : q(x, y, z) = q(x|z)q(y|z)q(z)}.

Proof. Indeed,

DKL(p(x, y, z)||q(x, y, z))−DKL(p(x, y, z)||p(x|z)p(y|z)p(z)) (1.2)

=
∑
x,y,z

p(x, y, z) log
p(x, y, z)

q(x, y, z)
−
∑
x,y,z

p(x, y, z) log
p(x, y, z)

p(x|z)p(y|z)p(z)

=
∑
x,y,z

p(x, y, z) log
p(x|z)p(y|z)p(z)
q(x|z)q(y|z)q(z)

.

Next, by breaking the above expression into three sums, we obtain

∑
z

p(z)
∑
x

p(x|z) log p(x|z)
q(x|z)

+
∑
z

p(z)
∑
y

p(y|z) log p(y|z)
q(y|z)

+
∑
z

p(z) log
p(z)

q(z)
.

The expression
∑

x p(x|z) log
p(x|z)
q(x|z) is equal to Kullback-Leibler divergence of p(x|z) and

q(x|z) for a fixed value of Z (similarly for
∑

y p(y|z) log
p(y|z)
q(y|z) the expression under

the sum denotes DKL(p(y|z)||q(y|z)) and
∑

z p(z) log
p(z)
q(z)

= DKL(p(z)||q(z))). Thus (1.2)

is non-negative and equal to 0 if and only if q(x|z) = p(x|z), q(y|z) = p(y|z)

and q(z) = p(z).

Lemma 1.1.2 provides a way to decompose the entropy of a vector of variables

(Z1, Z2, . . . , Z|S|) and the mutual information of a variable X and a vector of variables

(Z1, Z2, . . . , Z|S|).

Lemma 1.1.2 (Chain rules [9]). (i) Chain rule for entropy has the following form

H(Z1, Z2, . . . , Z|S|) = H(Z1) +

|S|∑
i=2

H(Zi|Zi−1, . . . , Z1).

(ii) Chain rule for mutual information is given by

I(X, (Z1, Z2, . . . , Z|S|)) = I(X,Z1) +

|S|∑
i=2

I(X,Zi|Zi−1, . . . , Z1).
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CHAPTER 1. INFORMATION-THEORETIC MEASURES

In particular, for mutual information of Y and (X,Z1, Z2, . . . , Z|S|) we have that

I(Y, (X,Z1, Z2, . . . , Z|S|)) = I(Y,X) + I(Y, (Z1, Z2, . . . , Z|S|)|X) (1.3)

and

I(Y, (X,Z1, Z2, . . . , Z|S|)) = I(Y, (Z1, Z2, . . . , Z|S|)) + I(Y,X|(Z1, Z2, . . . , Z|S|)). (1.4)

1.1.2. Feature selection based on mutual information

Mutual information and conditional mutual information are used in feature selection.

First, we consider a problem in which we want to identify a subset of the most significant

variables of the size k, where 1 ≤ k ≤ |S|. Thus, we want to maximize the mutual

information between Y and a set of chosen variables, the size of which equals k, namely

argmax
T⊆S
|T |=k

I(Y, ZT ),

where ZT = (Zt1 , Zt2 , . . . , Ztk). To search through all possible subsets T of S such that

|T | = k, we need to compute
(|S|

k

)
mutual informations, thus this task usually is not

feasible for large number of features. In practise, instead of searching for the globally

optimal solution, some greedy algorithms are applied e.g. stepwise forward selection,

in which in the first step we choose the feature that maximizes mutual information and

then in kth step we choose such i ∈ Sc
k−1, that

argmax
i∈Sc

k−1

I(Y, ZSk−1∪{i}), (1.5)

where Sk is a set of variables chosen in k steps and Sc
k = S \ Sk. Thus in each step

the variable that gives the most information about Y given already chosen variables is

added to the set of selected variables. Note that from (1.4) we have

I(Y, ZSk−1∪{i}) = I(Y, ZSk−1
) + I(Y, Zi|ZSk−1

),

hence instead of (1.5) we can optimize argmaxi∈Sc
k−1

I(Y, Zi|ZSk−1
), as I(Y, ZSk−1

) depends

only on the already chosen features. In the following we will usually denote the candidate

18



1.2. INTERACTION INFORMATION

variable as X and the set of selected features as ZS, thus in the next sections we will

be interested in I(X, Y |ZS) and its approximations in order to examine, whether X is

significant in explaining Y in the presence of ZS.

1.2. Interaction information

Below we state definitions of 3-way and then k-way interaction information with notes

on differences in notation, signs and other details appearing in literature. We also provide

basic properties of the interaction information.

1.2.1. 3-way interaction information

The measure called interaction information was introduced by McGill [28] and the def-

inition was given for three random variables to quantify the gain or the loss in sample

information transmitted between any two of the variables, due to additional knowledge

of the third variable. The definition stated in [28] is based on entries in contingency table

instead of probabilities, but the main idea remains unchanged.

Definition 1.2.1 (Interaction information [28]). The interaction information of three

discrete random variables X, Y and Z (3-way interaction information) is defined as

II(X, Y, Z) = I(X, Y |Z)− I(X, Y ). (1.6)

Although it is not clear from (1.6) itself, interaction information in Definition 1.2.1 is

symmetric with respect to X, Y and Z as we have

II(X, Y, Z) = I(X, Y |Z)− I(X, Y ) = −H(X)−H(Y )−H(Z)

+H(X, Y ) +H(X,Z) +H(Y, Z)−H(X, Y, Z),

which follows from basic properties of entropy and mutual information (cf. (1.1) and

Lemma 1.1.2).

Interaction information is used to measure the strength of interaction between variables

i.e. from (1.6) we see that II(X, Y, Z) measures how much information of X about Y

we gain due to knowing additional variable Z. In contrast to MI or CMI, interaction

information can be negative. We give an example below showing that.
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CHAPTER 1. INFORMATION-THEORETIC MEASURES

Example 1.2.1. We will construct an example, in which I(X, Y |Z) = 0 and I(X, Y ) > 0

as in such a case we obtain negative interaction information as

II(X, Y, Z) = I(X, Y |Z)− I(X, Y ) < 0.

First, we notice that the condition I(X, Y |Z) = 0 is equivalent to conditional independence

of X and Y given Z, thus the joint probability should factorise in the following way

p(x, y, z) = p(x|z)p(y|z)p(z).

Assume that all variables are binary. Next, let Z ∼ Bern(1/2)

(P (Z = 0) = P (Z = 1) = 1/2), X ⊥⊥ Y |Z and

1− P (X = 1− z|Z = z) = P (X = z|Z = z) = α,

1− P (Y = 1− z|Z = z) = P (Y = z|Z = z) = α,

where z ∈ {0, 1} and α ∈ [0, 1]. The joint distribution of (X, Y ) can be calculated and

the corresponding probabilities are given in the table below:

(X, Y ) p(·, 0) p(·, 1)

p(0, ·) 1/2− α + α2 α− α2

p(1, ·) α− α2 1/2− α + α2

.

One can check, that for α ̸= 1/2 the variables X and Y are not independent, hence

I(X, Y ) > 0 and thus II(X, Y, Z) < 0 for α ̸= 1/2.

1.2.2. Generalisation: k-way interaction information

The Definition 1.2.2 of k-way interaction information comes from series of Fano’s

lectures [13] and in the book it is called as a general definition of the mutual information

between an arbitrary number of points. We note that the sign in (1.7) below is changed

compared to original definition in the case of an odd number of variables as we want inter-

action information to satisfy the recursive formula stated in Lemma 1.2.5 for any number

of variables k (this property also appears in [13]). We note that in [13] the definition is
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given without averaging over the distribution of the variables i.e. the analogous formula

to (1.7) misses the averaging term
∑

z1,z2,...,z|S|
p(z1, z2, . . . , z|S|) at the beginning.

Definition 1.2.2 (Interaction information [13]). The k-way interaction information

(the interaction information of k = |S| discrete random variables) of Z1, Z2, . . . , Z|S|

for |S| ≥ 1 is defined as

II(Z1, Z2, . . . , Z|S|)

= (−1)|S|
∑

z1,z2,...,z|S|

p(z1, z2, . . . , z|S|) log


|S|∏
i=1

∏
T⊆S
|T |=i

p(zt1 , . . . , zti)


(−1)i


= (−1)|S|

∑
z1,z2,...,z|S|

p(z1, z2, . . . , z|S|) log

∏
i1<i2

p(zi1 , zi2) · · ·∏
i1

p(zi1)
∏

i1<i2<i3

p(zi1zi2 , zi3) · · ·
.

(1.7)

Note that logarithmic expression involves probabilities of subvectors of ZS of even

dimension in the numerator and of odd dimension in the denominator.

Definition 1.2.2 for |S| = 2 yields II(Z1, Z2) = I(Z1, Z2) and for |S| = 1 we have that

II(Z1) = H(Z1). We define II(∅) = 0. For |S| = 3 we obtain

II(Z1, Z2, Z3) = −
∑

z1,z2,z3

p(z1, z2, z3) log
p(z1, z2)p(z1, z3)p(z2, z3)

p(z1)p(z2)p(z3)p(z1, z2, z3)

= −H(Z1)−H(Z2)−H(Z3) +H(Z1, Z2) +H(Z1, Z3) +H(Z2, Z2)−H(Z1, Z2, Z3),

(1.8)

thus Definition 1.2.2 of k-way interaction information is consistent with Definition 1.2.1

of 3-way interaction information. We also have the following generalisation of (1.8) for

k-way interaction information in terms of entropies for k > 3.

Lemma 1.2.2. The interaction information defined in (1.6) satisfies the equation

II(Z1, Z2, . . . , Z|S|) = −
|S|∑
i=1

∑
T⊆S
|T |=i

(−1)|S|−|T |H(Zt1 , Zt2 , . . . , Zti).

Proof. It follows in straightforward manner from Definition 1.2.2.
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Below we give the interpretation of interaction information using the Kirkwood super-

position approximation.

Definition 1.2.3 (Kirkwood superposition approximation). The Kirkwood approxima-

tion PK of a multivariate discrete random variable (Z1, Z2, . . . , Z|S|) with a probability

mass function p(z1, z2, . . . , z|S|) is given by

pK(z1, z2, . . . , z|S|) =

|S|−1∏
i=1

∏
T⊆S
|T |=i

p(zt1 , . . . , zti)


(−1)|S|−1−i

=



⌊|S|/2⌋∏
i=1

∏
T⊆S

|T |=2i−1

p(zt1 , . . . , zt2i−1
)

⌊(|S|−1)/2⌋∏
i=1

∏
T⊆S
|T |=2i

p(zt1 , . . . , zt2i)



(−1)|S|

=


∏

i1<i2

p(zi1 , zi2) · · ·∏
i1

p(zi1)
∏

i1<i2<i3

p(zi1zi2 , zi3) · · ·

(−1)|S|−1

.

(1.9)

PK is not necessarily probability distribution as it might not sum up to 1. We also note

that in (1.9) the probability of full vector ZS, p(z1, z2, . . . , z|S|), is not present neither in

the denominator nor in the numerator. We denote the norming constant by

η =
∑

z1,z2,...,z|S|

pK(z1, z2, . . . , z|S|)

and the normalized Kirkwood distribution by P̃K = PK/η.

Remark 1.2.3. Alternative view of Definition 1.2.2 is that the interaction information

is equal to the Kullback–Leibler divergence between joint probability of (Z1, Z2, . . . , Z|S|)

and its Kirkwood approximation pK(z1, z2, . . . , z|S|)

II(Z1, Z2, . . . , Z|S|) = DKL(P ||PK).

Lemma 1.2.4. If η ≤ 1 defined in Definition 1.2.3 of the Kirkwood superposition ap-

proximation, the interaction information is non-negative and, analogously, if η < 1 then

the interaction information is positive.
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Proof. We have that

DKL(P ||P̃K) = DKL(P ||PK) + log(η) (1.10)

and as the Kullback-Leibler divergence is non-negative for probability distributions P and

P̃K we obtain that for η ≤ 1

DKL(P ||PK) ≥ − log(η) ≥ 0. (1.11)

Thus when η ≤ 1 the interaction information is non-negative and analogously when

η < 1 the interaction information is positive. We note that Kullback-Leibler divergence

DKL(P ||PK) might be negative as PK is not a proper probability distribution (it does

not sum up to 1).

Lemma 1.2.5 (Recursive formula for interaction information). The interaction informa-

tion defined in (1.6) satisfies the recursive formula (or chain rule):

II(Z1, Z2, . . . , Z|S|) = II(Z1, Z2, . . . , Z(|S|−1)|Z|S|)− II(Z1, Z2, . . . , Z(|S|−1)),

where II(Z1, Z2, . . . , Z(|S|−1)|Z|S|) is defined in the following way (cf. Definition 1.1.2

of conditional entropy)

II(Z1, Z2, . . . , Z|S|−1|Z|S|) =
∑
z|S|

p(z|S|)II(Z1, Z2, . . . , Z|S|−1|Z|S| = z|S|). (1.12)

Proof. In view of Definition 1.7:

II(Z1, Z2, . . . , Z|S|) = (−1)|S|
∑

z1,z2,...,z|S|

p(z1, z2, . . . , z|S|) log

∏
i1<i2

p(zi1 , zi2) · · ·∏
i1

p(zi1)
∏

i1<i2<i3

p(zi1zi2 , zi3) · · ·

= (−1)|S|
∑

z1,z2,...,z|S|

p(z1, z2, . . . , z|S|) log

∏
i1<|S|

p(zi1 , z|S|) · · ·

p(z|S|)
∏

i1<i2<|S|
p(zi1 , zi2 , z|S|) · · ·

+ (−1)|S|
∑

z1,z2,...,z|S|

p(z1, z2, . . . , z|S|) log

∏
i1<i2<|S|

p(zi1 , zi2) · · ·∏
i1<|S|

p(zi1)
∏

i1<i2<i3<|S|
p(zi1 , zi2 , zi3) · · ·
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= (−1)|S|−1
∑
z|S|

p(z|S|)
∑

z1,z2,...,z|S|−1

p(z1, z2, . . . , z|S|−1|z|S|) log

∏
i1<i2<|S|

p(zi1zi2|z|S|) · · ·∏
i1<|S|

p(zi1 |z|S|) · · ·

− (−1)|S|−1
∑

z1,z2,...,z|S|−1

p(z1, z2, . . . , z|S|−1) log

∏
i1<i2<|S|

p(zi1 , zi2) · · ·∏
i1<|S|

p(zi1)
∏

i1<i2<i3<|S|
p(zi1zi2 , zi3) · · ·

= II(Z1, Z2, . . . , Z|S|−1|Z|S|)− II(Z1, Z2, . . . , Z|S|−1).

The third equation follows from the fact that for any number of variables |S| > 1 we have∑|S|−1
k=0 (−1)k

(|S|−1
k

)
= (1−1)|S|−1 = 0, thus we divide the numerator and the denominator

of the first expression by the same number of p(z|S|).

Usually the formula stated in Lemma 1.2.5 is used as an alternative recursive defi-

nition of k-way interaction information. Namely, we define II(Z1, Z2) = I(Z1, Z2) and

II(Z1, Z2|Z3) = I(Z1, Z2|Z3), then for |S| ≥ 3 interaction information is defined in the

following way

II(Z1, Z2, . . . , Z|S|) = II(Z1, Z2, . . . , Z|S|−1|Z|S|)− II(Z1, Z2, . . . , Z|S|−1),

where in each step conditional (k − 1)-way interaction information is defined in (1.12).

We note that in formula (1.12) we average interaction informations of Z1, . . . , Z|S|−1 com-

puted on layers of Z|S| = z|S| with respect to probabilities of the layer Z|S| = z|S| equal

to p(z|S|).

Now we state some results showing the relation between k-way interaction information

and other information theoretic measures as e.g. entropy. First we prove Theorem 1.2.6

and Corollary 1.2.6.1, which will be useful in proving statements below.

Theorem 1.2.6. Let f and g be real functions on the power set of {Z1, Z2, . . . , Z|S|} such

that for any T ⊆ {Z1, Z2, . . . , Z|S|} we have

f(T ) =

|T |∑
i=0

∑
W⊆T
|W |=i

g(W ). (1.13)

Then

g(T ) =

|T |∑
i=0

∑
W⊆T
|W |=i

(−1)|T |−if(W ). (1.14)
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Proof. We start with the right hand side of (1.14). We have that

|T |∑
i=0

∑
W⊆T
|W |=i

(−1)|T |−if(W ) =

|T |∑
i=0

∑
W⊆T
|W |=i

(−1)|T |−i

 i∑
j=0

∑
Z⊆W
|Z|=j

g(Z)


=

|T |∑
j=0

∑
Z⊆T
|Z|=j

|T |∑
k=j

(
|T | − j

k − j

)
(−1)|T |−kg(Z)

=

|T |∑
j=0

∑
Z⊆T
|Z|=j

(−1)|T |−j

|T |∑
k=j

(
|T | − j

k − j

)
(−1)k−jg(Z) =: (⋆).

We have that
|T |∑
k=j

(
|T | − j

k − j

)
(−1)k−j =

 0 if |T | − j > 0

1 if j = |T |

as the sum equals (1− 1)|T |−j for |T | ≠ j. That completes the proof as (⋆) = g(T ).

Corollary 1.2.6.1. Using the notation from Theorem 1.2.6 we have that if (1.14) is true

then (1.13) holds.

Proof. This is a simple consequence of Theorem 1.2.6 applied to the functions f̃ and g̃

defined as f̃(T ) = (−1)|T |f(T ) and g̃(W ) = (−1)|W |g(W ).

We recall that from Lemma 1.2.2 we have

II(Z1, Z2, . . . , Z|S|) = −
|S|∑
i=1

∑
T⊆S
|T |=i

(−1)|S|−|T |H(Zt1 , Zt2 , . . . , Zti).

Below we assume that H(∅) = 0 and II(∅) = 0.

Corollary 1.2.6.2. The entropy H(Z1, . . . , Z|S|) satisfies

H(Z1, Z2, . . . , Z|S|) = −
|S|∑
i=1

∑
T⊆S
|T |=i

II(Zt1 , Zt2 , . . . , Zti).

Proof. We obtain the conclusion from Lemma 1.2.2 and Corollary 1.2.6.1 defin-

ing f(T ) = II(Zt1 , Zt2 , . . . , Zti) and g(T ) = −H(Zt1 , Zt2 , . . . , Zti), where

T = {t1, t2, . . . , ti} ⊆ S.
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Lemma 1.2.7. The conditional interaction information II(Z1, Z2, . . . , Z|S||Y ) satisfies

the equation

II(Z1, Z2, . . . , Z|S||Y ) = −
|S|∑
i=1

∑
T⊆S
|T |=i

(−1)|S|−|T |H(Zt1 , Zt2 , . . . , Zti |Y ).

Proof. The proof follows from Lemma 1.2.2 and (1.12) (the formula for conditional infor-

mation interaction).

Similarly as in Corollary 1.2.6.2, we assume here that H(∅|Y ) = 0 and II(∅|Y ) = 0.

Corollary 1.2.7.1. The conditional entropy H(Z1, . . . , Z|S||Y ) satisfies the equation

H(Z1, Z2, . . . , Z|S||Y ) = −
|S|∑
i=1

∑
T⊆S
|T |=i

II(Zt1 , Zt2 , . . . , Zti |Y ).

Proof. We obtain the thesis from Lemma 1.2.7 and Corollary 1.2.6.1.

Lemma 1.2.8. The interaction information satisfies the equation

II(Y, Z1, Z2, . . . , Z|S|) =

|S|∑
i=1

∑
T⊆S
|T |=i

(−1)|S|−|T |I(Y, (Zt1 , Zt2 , . . . , Zti)).

Proof. The proof follows from

I(Y, (Zt1 , Zt2 , . . . , Zti)) = H(Zt1 , Zt2 , . . . , Zti)−H(Zt1 , Zt2 , . . . , Zti |Y )

and Lemmas 1.2.2 and 1.2.7, which represent the interaction information by a sum

of the entropies and Lemma 1.2.5 (a chain rule for interaction information).

Corollary 1.2.8.1. The mutual information satisfies the equation

I(Y, (Z1, Z2, . . . , Z|S|)) =

|S|∑
i=1

∑
T⊆S
|T |=i

II(Y, Zt1 , Zt2 , . . . , Zti)

Proof. The proof follows from Lemma 1.2.8 and Corollary 1.2.6.1.
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Lemma 1.2.9. The interaction information satisfies the equation

II(X, Y, Z1, Z2, . . . , Z|S|) =

|S|∑
i=0

∑
T⊆S
|T |=i

(−1)|S|−|T |I(X, Y |Zt1 , Zt2 , . . . , Zti).

Proof. For the first equation below we use Lemma 1.2.8 and we split the mutual informa-

tion terms into two groups - one with terms that contain the variable X and the second

that do not:

II(X, Y, Z1, Z2, . . . , Z|S|) =

|S|∑
i=0

∑
T⊆S
|T |=i

(−1)|S|+1−|T |−1I(Y, (X,Zt1 , Zt2 , . . . , Zti))

+

|S|∑
i=1

∑
T⊆S
|T |=i

(−1)|S|+1−|T |I(Y, (Zt1 , Zt2 , . . . , Zti)) = (−1)|S|I(X, Y )

+

|S|∑
i=1

∑
T⊆S
|T |=i

(−1)|S|−|T | (I(Y, (Zt1 , Zt2 , . . . , Zti)) + I(X, Y |Zt1 , Zt2 , . . . , Zti))

+

|S|∑
i=1

∑
T⊆S
|T |=i

(−1)|S|+1−|T |I(Y, (Zt1 , Zt2 , . . . , Zti))

= (−1)|S|I(X, Y ) +

|S|∑
i=1

∑
T⊆S
|T |=i

(−1)|S|−|T |I(X, Y |Zt1 , Zt2 , . . . , Zti).

For the second equality a chain rule for mutual information is used (Lemma 1.1.2).

Corollary 1.2.9.1. If X ⊥⊥ Y |W , where W is any subset of {Z1, Z2, . . . , Z|S|} (includ-

ing ∅) then II(X, Y, Z1, Z2, . . . , Z|S|) = 0.

Proof. The proof follows in straightforward manner from Lemma 1.2.9.

Theorem 1.2.10 (Möbius expansion of conditional mutual information). The conditional

mutual information satisfies the equation

I(X, Y |Z1, Z2, . . . , Z|S|) =

|S|∑
i=0

∑
T⊆S
|T |=i

II(X, Y, Zt1 , Zt2 , . . . , Zti). (1.15)

Proof. The proof follows from Corollary 1.2.6.1 and Lemma 1.2.9.
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Remark 1.2.11. The definition of k-way interaction information is also given in [16].

The formulation is lattice-theoretic ([32]) and it uses difference operator (for odd num-

ber of variables the sign in [16] is switched). All subsets of a set of random vari-

ables {Z1, Z2, . . . , Z|S|} form Boolean lattice with set union and intersection operations.

It also contains the maximum ({Z1, Z2, . . . , Z|S|}) and the minimum element (∅) and

the set-inclusion relation induces the partial order. Let T = {t1, . . . , tk}, |T | = k, be any

subset of S. We define the entropy on a subset of random variables as

h(T ) = H(Zt1 , Zt2 , . . . , Ztk) = −
∑

zt1 ,zt2 ,...,ztk

p(zt1 , zt2 , . . . , ztk) log p(zt1 , zt2 , . . . , ztk)

and h(∅) = H(∅) = 0. The difference operator for a function on a Boolean lattice is defined

as

∆f(T ) =

|T |∑
i=0

∑
W⊆T
|W |=i

(−1)|T |−|W |f(W ).

Using Möbius inversion formula (Theorem 1.2.10) and noting, that for a Boolean lattice

the principle of inclusion-exclusion holds, we have

f(T ) =

|T |∑
i=0

∑
W⊆T
|W |=i

∆f(W ).

The difference operator for entropy is given by

∆h(T ) =

|T |∑
i=0

∑
W⊆T
|W |=i

(−1)|T |−|W |h(W ), (1.16)

and if we multiply both sides by −1, we obtain the definition of interaction infor-

mation (or as called in [16] McGill’s (or Fano’s) multiple mutual information) as

−∆h(T ) = II(Zt1 , Zt2 , . . . , Ztk).

1.3. Feature selection criteria

In this section we introduce feature selection criteria, which can be used as substitutes

for CMI-based selection in choosing a subset of significant variables. First we introduce
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generalised feature selection criterion Iβ,γ, which uses the Möbius expansion of CMI (The-

orem 1.2.10) and assigns weights to interaction informations and conditional interaction

informations terms appearing in the formula

I(X, Y |Z) = I(X, Y )−
|S|∑
k=1

∑
T⊆S
|T |=k

(II(X,Zt1 , Zt2 , . . . , Ztk)− II(X,Zt1 , Zt2 , . . . , Ztk |Y )) ,

which is rearranged version of the equation (1.15) from Theorem 1.2.10. This allows us

to obtain feature selection criteria used in literature, in particular, deleting all expansion

terms of order higher than 2 leads to the criterion Jβ,γ with two parameters introduced

in [6]. Assigning specific values to parameters in Jβ,γ yields the criterion called JMI ([43]).

In the next section we will state lemmas about the asymptotic behaviour of empirical

versions of these three criteria.

1.3.1. The generalized feature selection criterion based on Möbius expansion

We start by defining the most general form of the criterion Iα,β and then we introduce

two parameter reduced version of it, namely Jβ,γ which appears in [6].

Definition 1.3.1 (Generalized feature selection criterion). The generalised feature se-

lection criterion Iβ,γ, where β and γ are vectors of parameters in R|S|, is defined in the

following way

Iβ,γ(X, Y |ZS) = I(X, Y )−
|S|∑
k=1

∑
T⊆S
|T |=k

(
β(k)II(X,Zt1 , Zt2 , . . . , Ztk)

− γ(k)II(X,Zt1 , Zt2 , . . . , Ztk |Y )
)
. (1.17)

For convenience we will use two additional parameters β(0) = 1 and γ(0) = 1 and write

mutual information in Definition 1.3.1 as

I(X, Y ) = β(0)H(X)− γ(0)H(X|Y ).

Frequently, many parameters among β(i) and γ(i) are equal to 0, as higher or-

der terms are deleted in order to make estimation of feature selection criterion feasi-
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ble. Moreover, the family of criteria Iβ,γ includes conditional mutual information CMI,

as Iβ,γ(X, Y |ZS) = I(X, Y |ZS) for β(i) = 1 and γ(i) = 1 for i = 1, 2, . . . , |S|.

Below we establish another representation of Iβ,γ in terms of entropies, which is par-

ticularly useful for convergence lemma and differentiation performed in the next section

(cf. Theorem 1.4.6 and its proof).

Theorem 1.3.1. We have the following representation of Iβ,γ

Iβ,γ(X, Y |ZS) =

|S|∑
k=1

∑
T⊆S
|T |=k

β̃
|S|
k H(Zt1 , Zt2 , . . . , Ztk)−

|S|∑
k=0

∑
T⊆S
|T |=k

β̃
|S|
k H(X,Zt1 , Zt2 , . . . , Ztk)

−
|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k H(Y, Zt1 , Zt2 , . . . , Ztk) +

|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k H(X, Y, Zt1 , Zt2 , . . . , Ztk), (1.18)

where

β̃
|S|
k =

|S|∑
j=k

(−1)j−k+1

(
|S| − k

j − k

)
β(j) and γ̃

|S|
k =

|S|∑
j=k

(−1)j−k+1

(
|S| − k

j − k

)
γ(j).

Proof. We write

Iβ,γ(X, Y |ZS) = β(0)H(X)−
|S|∑
k=1

∑
T⊆S
|T |=k

β(k)II(X,Zt1 , Zt2 , . . . , Ztk)

− γ(0)H(X|Y ) +

|S|∑
k=1

∑
T⊆S
|T |=k

γ(k)II(X,Zt1 , Zt2 , . . . , Ztk |Y )

and deal first with the two first summands. We have from Lemma 1.2.2

β(0)H(X)−
|S|∑
k=1

∑
T⊆S
|T |=k

β(k)II(X,Zt1 , Zt2 , . . . , Ztk) = β(0)H(X)

+

|S|∑
k=1

∑
T⊆S
|T |=k

β(k)

[
k∑

l=1

∑
R⊆T
|R|=l

(−1)k+1−lH(Zr1 , Zr2 , . . . , Zrl)

−
k∑

l=0

∑
R⊆T
|R|=l

(−1)k+1−lH(X,Zr1 , Zr2 , . . . , Zrl)

]
=: (∗),
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thus we obtain

(∗) =
|S|∑
l=1

∑
R⊆S
|R|=k

 |S|∑
j=l

(−1)j−l+1

(
|S| − l

j − l

)
β(j)


︸ ︷︷ ︸

β̃
|S|
l

H(Zt1 , Zt2 , . . . , Ztl)

−
|S|∑
l=0

∑
R⊆S
|R|=l

 |S|∑
j=l

(−1)j−l+1

(
|S| − l

j − l

)
β(j)


︸ ︷︷ ︸

β̃
|S|
l

H(X,Zt1 , Zt2 , . . . , Ztl)

=

|S|∑
l=1

∑
R⊆S
|R|=l

β̃
|S|
l H(Zt1 , Zt2 , . . . , Ztl)−

|S|∑
l=0

∑
R⊆S
|R|=l

β̃
|S|
l H(X,Zt1 , Zt2 , . . . , Ztl)

=

|S|∑
k=1

∑
T⊆S
|T |=k

β̃
|S|
k H(Zt1 , Zt2 , . . . , Ztk)−

|S|∑
k=0

∑
T⊆S
|T |=k

β̃
|S|
k H(X,Zt1 , Zt2 , . . . , Ztk).

Note that β(0)H(X) has been included as the first term of the sum corresponding to

k = 0 in the second term above. Similarly as above we obtain the expression for γ terms

using Lemma 1.2.7:

− γ(0)H(X|Y ) +

|S|∑
k=1

∑
T⊆S
|T |=k

γ(k)II(X,Zt1 , Zt2 , . . . , Ztk |Y )

=

|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k H(X,Zt1 , Zt2 , . . . , Ztk |Y )−

|S|∑
k=1

∑
T⊆S
|T |=k

γ̃
|S|
k H(Zt1 , Zt2 , . . . , Ztk |Y ) =: (△).

Now we use the chain rule for entropy and as terms including H(Y ) reduce for k ≥ 1,

after rearranging, (△) is equal to

(△) = γ̃
|S|
0 (H(Y )−H(X, Y ))

+

|S|∑
k=1

∑
T⊆S
|T |=k

γ̃
|S|
k H(X, Y, Zt1 , Zt2 , . . . , Ztk)−

|S|∑
k=1

∑
T⊆S
|T |=k

γ̃
|S|
k H(Y, Zt1 , Zt2 , . . . , Ztk)

=

|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k H(X, Y, Zt1 , Zt2 , . . . , Ztk)−

|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k H(Y, Zt1 , Zt2 , . . . , Ztk),
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where the last equality follows as we include both −γ̃
|S|
0 H(X, Y ) and γ̃

|S|
0 H(Y ) in the first

and second sum, respectively. As Iβ,γ = (∗) + (△), the theorem follows.

1.3.2. Second and third order criteria

We show that the family of second order criteria introduced in [6] are special cases

of (1.17). The criterion introduced in [6] is parametrized by two parameters β and γ in

the following way

Jβ,γ(X, Y |ZS) = I(X, Y )− β
∑
i∈S

I(X,Zi) + γ
∑
i∈S

I(X,Zi|Y ). (1.19)

We use the notation Jβ,γ to distinguish two-parameter criterion from generalised criterion

Iβ,γ introduced in (1.17). We use the same letters for parameters, but in Iβ,γ the param-

eters are vectors and we denote their i-th element by β(i) and γ(i), thus they are easily

distinguishable from β and γ related to Jβ,γ. We obtain Jβ,γ by replacing parameters of

order higher than two in Iβ,γ by 0, namely we have β(1) = β, γ(1) = γ and β(i) = γ(i) = 0

for i > 1. In terms of β̃ and γ̃ from Theorem 1.3.1 the Iβ,γ and Jβ,γ criteria are equivalent

for

β̃
|S|
0 = −β(0) + |S|β(1) = β|S| − 1

β̃
|S|
1 = −β(1) = −β

β̃
|S|
i = 0 for i > 1

and

γ̃
|S|
0 = −γ(0) + |S|γ(1) = γ|S| − 1

γ̃
|S|
1 = −γ(1) = −γ

γ̃
|S|
i = 0 for i > 1

. (1.20)

We will frequently use the criterion called JMI (Joint Mutual Information) introduced

in [43] and defined as

JMI(X, Y |ZS) = I(X, Y )− 1

|S|
∑
i∈S

(I(X,Zi)− I(X,Zi|Y )). (1.21)

From the equation above we see that JMI is a special case of Jβ,γ, as we obtain the

criterion by choosing β = γ = 1/|S|. JMI is an approximation of CMI under certain de-

pendence assumptions (cf. [42]). The criterion averages conditional mutual informations

of X and Y given individual variables Zi over i ∈ S. Indeed, JMI can be represented in

the following way

JMI(X, Y |ZS) =
1

|S|
∑
i∈S

I(X, Y |Zi). (1.22)
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which follows from using a chain rule twice for I(X, (Y, Zi)):

I(X,Zi) + I(X, Y |Zi) = I(X, Y ) + I(X,Zi|Y ).

Thus we also have that

JMI(X, Y |ZS) = 0 ⇔ X ⊥⊥ Y |Zi for all i ∈ S.

The third-order version of JMI is introduced in [36] and equals

∑
{i,j}⊆S

I((X,Zi, Zj), Y ). (1.23)

We note, that up to a constant c =
∑

{i,j}⊆S I((Zi, Zj), Y ) which does not depend on X

and scaling factor 2/(|S|(|S| − 1)), (1.23) equals to (cf. Theorem 1.2.10)

JMI3(X, Y |ZS) =
2

|S|(|S| − 1)

∑
{i,j}⊆S

I(X, Y |Zi, Zj)

= I(X, Y ) +
2

|S|
∑
{i}⊆S

II(X, Y, Zi) +
1(|S|
2

) ∑
{i,j}⊆S

II(X, Y, Zi, Zj). (1.24)

Thus JMI3(X, Y |Z) = Iβ,γ(X, Y |Z) for β(1) = γ(1) = 2/|S|, β(2) = γ(2) = 1/
(|S|

2

)
and

β(i) = γ(i) = 0 for i > 2.

Another popular criterion is called CIFE (Conditional Infomax Feature Extrac-

tion [26]) or SECMI (Short Expansion of Conditional Mutual Information [20]) which

is truncated Möbius expansion (1.15) of order two and thus equals

CIFE(X, Y |ZS) = I(X, Y ) +
∑
{i}⊆S

II(X, Y, Zi). (1.25)

If we use the first three components of the expansion we obtain a third order expansion

SECMI3(X, Y |ZS) = I(X, Y ) +
∑
{i}⊆S

II(X, Y, Zi) +
∑

{i,j}⊆S

II(X, Y, Zi, Zj). (1.26)

It is easy to generalise it to SECMI-k (then in terms of Iβ,γ we have β(i) = γ(i) = 1 for

i < k and β(i) = γ(i) = 0 for i ≥ k).
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Among other second order selection criteria are e.g. (we give the corresponding pa-

rameters in brackets) MIFS (Mutual Information Feature Selection [3], (β, γ) = (β, 0))

and mRMR (Minimal Redundancy Maximal Relevance [30], (β, γ) = (1/|S|, 0)).

In the next section we will establish the behaviour of a sample counterparts of con-

ditional mutual information and feature selection criteria. Comparison of properties of

theoretical measures JMI, CIFE and CMI under specific dependence structure was

studied in [23].

1.4. Asymptotic distributions of information-theoretic empirical

measures

Let (X1, Y1, Z1), (X2, Y2, Z2), . . . , (Xn, Yn, Zn) be independent random variables

(Zi might be multivariate) with common discrete distribution

P (Xi = x, Yi = y, Zi = z) = p(x, y, z) > 0.

We recall that pci denotes probability mass function corresponding to

X ⊥⊥ Y |Z equal pci(x, y, z) = p(x|z)p(y|z)p(z). We begin this section by

stating how unconstrained maximum likelihood estimator of a vector of prob-

abilities (p(x, y, z))x,y,z, namely a vector of fractions (p̂(x, y, z))x,y,z, where

p̂(x, y, z) = 1
n

∑n
i=1 I(Xi = x, Yi = y, Zi = z) = n(x, y, z)/n, behaves asymptotically.

Then using that result and the delta method ([1]) we will establish the behaviour

of the plug-in conditional mutual information estimator and of the plug-in estimator

of a generalised feature selection criterion based on Möbius expansion introduced in

the previous section. As a special case we will consider JMI criterion. We also note

that asymptotic behaviour of sample version of interaction information II(X, Y, Z) was

analysed in [19].

From now on d−→ denotes convergence in distribution, Σx′,y′,z′
x,y,z an element of the matrix Σ

with row index (x, y, z) and column index (x′, y′, z′), where (x, y, z), (x′, y′, z′) ∈ X×Y×Z

and (p(x, y, z))x,y,z denotes a vector of probabilities p for all the triples (x, y, z) such that

(x, y, z) ∈ X × Y × Z.
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Lemma 1.4.1. We have that

√
n (p̂(x, y, z)− p(x, y, z))x,y,z

d−→ N (0,Σ)

as n → ∞, where

Σx′,y′,z′

x,y,z = I(x = x′, y = y′, z = z′)p(x, y, z)− p(x, y, z)p(x′, y′, z′) (1.27)

and p̂(x, y, z) = 1
n

∑n
i=1 I(Xi = x, Yi = y, Zi = z).

A proof can be found in [1], Subsection 16.1.4.

1.4.1. Asymptotic behaviour of the empirical conditional mutual information

One of the aims of establishing asymptotic behaviour of a sample version of conditional

mutual information is to test conditional independence of two variables X and Y given

the third one Z, using a plug-in estimator of CMI, namely

ĈMI = CMI(p̂) =
∑
x,y,z

p̂(x, y, z) log
p̂(x, y, z)p̂(z)

p̂(x, z)p̂(y, z)
,

where

p̂(x, y, z) =
1

n

n∑
i=1

I(Xi = x, Yi = y, Zi = z)

and analogously for p̂(x, z), p̂(y, z) and p̂(z) (we replace the probabilities with correspond-

ing fractions). In literature, the test based on asymptotic approximation of ĈMI stated

in Lemma 1.4.2 is known as G2 or G-test and can be derived as the log-likelihood ratio

test [1].

Lemma 1.4.2. If X ⊥⊥ Y |Z we have that

2nCMI(p̂)
d−→ χ2

(|X |−1)(|Y|−1)|Z|,

where CMI(p̂) =
∑

x,y,z p̂(x, y, z) log
p̂(x,y,z)p̂(z)
p̂(x,z)p̂(y,z)

.

Below we present a straightforward proof of Lemma 1.4.2, the second part of which is

based on calculation of eigenvalues of a matrix M := HΣ, where H is a Hessian matrix of

CMI as a function of p, and Σ is defined in Lemma 1.4.1. We will use its form in Section 2
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to prove analogous convergence theorems for resampling scenarios. Different proof based

on showing that CMI(p̂) can be approximated by the chi-square statistics as n tends to

infinity can be found e.g. in [29].

Proof. First, we compute the gradient and Hessian matrix of conditional mutual informa-

tion considered as a function of (p(x, y, z))x,y,z

CMI(p) =
∑
x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
=
∑
x,y,z

p(x, y, z) log p(x, y, z)

−
∑
x,z

p(x, z) log p(x, z)−
∑
y,z

p(y, z) log p(y, z) +
∑
z

p(z) log p(z).

The derivative of a function f(x) = x log(x) equals f ′(x) = log(x) + 1 and the

derivative of f(x, z) =
∑

y p(x, y, z) = p(x, z) with respect to p(x′, y′, z′) equals
∂f

∂p(x′,y′,z′)
= I(x = x′, z = z′). Analogously, if f(y, z) =

∑
x p(x, y, z) = p(y, z), we

have ∂f
∂p(x′,y′,z′)

= I(y = y′, z = z′) and if f(z) =
∑

x,y p(x, y, z) = p(z), we have
∂f

∂p(x′,y′,z′)
= I(z = z′). Thus we obtain

(DCMI(p))(x, y, z) =
∂CMI(p)

∂p(x, y, z)
= log

p(x, y, z)p(z)

p(x, z)p(y, z)
, (1.28)

where (DCMI(p))(x, y, z) denotes the element of the vector DCMI(p) with an index corre-

sponding to (x, y, z). Similarly, the Hessian equals

(HCMI(p))
x′,y′,z′

x,y,z =
∂2CMI(p)

∂p(x, y, z)∂p(x′, y′, z′)
=

I(x = x′, y = y′, z = z′)

p(x, y, z)

− I(x = x′, z = z′)

p(x, z)
− I(y = y′, z = z′)

p(y, z)
+

I(z = z′)

p(z)
. (1.29)

The proof now follows now from the expansion

CMI(p̂) = CMI(p) + (p̂− p)′DCMI(p) +
1

2
(p̂− p)′HCMI(ξ)(p̂− p), (1.30)

where ξ = (ξx,y,z)x,y,z is a point between p̂ and p. As p̂ → p a.s. and HCMI is continuous

if p(x, y, z) > 0 for all (x, y, z), then HCMI(ξ) → HCMI(p) a.s. Hence we have

CMI(p̂) = CMI(p) + (p̂− p)′DCMI(p) +
1

2
(p̂− p)′HCMI(p)(p̂− p) + op(∥p̂− p∥2).
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Using the assumption X ⊥⊥ Y |Z, we have that p(x, y, z) = pci(x, y, z) =: p(x|z)p(y|z)p(z),

thus the gradient of CMI equals 0 as

DCMI(p) = log
p(x, y, z)p(z)

p(x, z)p(y, z)
= log

p(x, y|z)
p(x|z)p(y|z)

= 0.

Similarly, we have that CMI(pci) = 0, hence from (1.30) we obtain

2nCMI(p̂) =
√
n(p̂− p)′HCMI(p)

√
n(p̂− p) + op(n ∥p̂− p∥2).

Then, as op(n ∥p̂− p∥2) = op(1) in view of Lemma 1.4.1, we have that

2nCMI(p̂)
d−→ W ′HCMI(pci)W,

where W ∼ N (0,Σ) and Σ is defined in (1.27). Thus,

2nCMI(p̂)
d−→
∑
x,y,z

λx,y,zZ
2
x,y,z, (1.31)

where Z = (Zx,y,z)x,y,z ∼ N (0, I) and λx,y,z are eigenvalues of a matrix M = HCMI(pci)Σ.

This can be justified as follows: in view of spectral decomposition of Σ1/2HCMI(pci)Σ
1/2,

W ′HCMI(pci)W can be represented as

W ′HCMI(pci)W = Z̃ ′Σ1/2HCMI(pci)Σ
1/2Z̃ =

∑
x,y,z

λx,y,zZ̃
′vx,y,zv

′
x,y,zZ̃ =

∑
x,y,z

λx,y,zZ
2
x,y,z,

where Z̃ ∼ N (0, I), vx,y,z are normalised eigenvectors and λx,y,z are eigenvalues of the

matrix Σ1/2HCMIΣ
1/2. Moreover, Zx,y,z = v′x,y,zZ̃. As vx,y,z are orthonormal, Z ∼ N (0, I).

The matrices Σ1/2HCMI(pci)Σ
1/2 and HCMI(pci)Σ have the same eigenvalues, thus we

obtain (1.31). In Lemma 1.4.3 below we obtain an explicit formula of the matrix M . Then

from Lemma 1.4.5 we have that M = M2, thus λi = 0 or λi = 1 and from Lemma 1.4.4

it follows that
∑

i λi = (|X | − 1)(|Y| − 1)|Z|. Thus

2nCMI(p̂)
d−→ χ2

(|X |−1)(|Y|−1)|Z|.

Now in Lemma 1.4.3 we show the explicit formula for the matrix M defined in the
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proof of Lemma 1.4.2, and in Lemmas 1.4.4 and 1.4.5 the properties of M used to prove

Lemma 1.4.2.

Lemma 1.4.3. Matrix M = HΣ = HCMI(pci)Σ has the following form

Mx′′,y′′,z′′

x,y,z = I(z = z′′)
(
I(x = x′′, y = y′′)− I(x = x′′)p(y′′|z′′)

− I(y = y′′)p(x′′|z′′) + p(x′′|z′′)p(y′′|z′′)
)
. (1.32)

We note that M is a sparse matrix such that all its non-zero elements Mx′′,y′′,z′′
x,y,z satisfy

z = z′′. Moreover, it is not symmetric.

Proof. Multiplication of matrices H and Σ yields:

Mx′′,y′′,z′′

x,y,z =
∑

x′,y′,z′

Hx′,y′,z′

x,y,z Σx′′,y′′,z′′

x′,y′,z′ =
∑

x′,y′,z′

(
I(x = x′, y = y′, z = z′)

p(x, y, z)︸ ︷︷ ︸
a

− I(x = x′, z = z′)

p(x, z)︸ ︷︷ ︸
b

− I(y = y′, z = z′)

p(y, z)︸ ︷︷ ︸
c

+
I(z = z′)

p(z)︸ ︷︷ ︸
d

)(
I(x′ = x′′, y′ = y′′, z′ = z′′)p(x′|z′)p(y′, z′)︸ ︷︷ ︸

e

− p(x′|z′)p(y′, z′)p(x′′|z′′)p(y′′, z′′)︸ ︷︷ ︸
f

)
= I(x = x′′, y = y′′, z = z′′)︸ ︷︷ ︸

a·e

− I(x = x′′, z = z′′)p(y′′|z′′)︸ ︷︷ ︸
b·e

− I(x = x′′, z = z′′)p(x′′|z′′)︸ ︷︷ ︸
c·e

+ I(z = z′′)p(x′′|z′′)p(y′′|z′′)︸ ︷︷ ︸
d·e

− p(x′′|z′′)p(y′′, z′′)︸ ︷︷ ︸
a·f

+ p(x′′|z′′)p(y′′, z′′)︸ ︷︷ ︸
b·f

+ p(x′′|z′′)p(y′′, z′′)︸ ︷︷ ︸
c·f

− p(x′′|z′′)p(y′′, z′′)︸ ︷︷ ︸
d·f

= I(x = x′′, y = y′′, z = z′′)− I(x = x′′, z = z′′)p(y′′|z′′)

− I(y = y′′, z = z′′)p(x′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′).

Below we present detailed calculations for the terms c · f and d · e (the calculations for

other terms are analogous):

c · f =
∑

x′,y′,z′

I(y = y′, z = z′)
p(x′|z′)p(y′, z′)p(x′′|z′′)p(y′′, z′′)

p(y, z)

= p(x′′|z′′)p(y′′, z′′)
∑
x′

p(x′|z) = p(x′′|z′′)p(y′′, z′′),

b · e =
∑

x′,y′,z′

I(x = x′, z = z′)I(x′ = x′′, y′ = y′′, z′ = z′′)
p(x′|z′)p(y′, z′)

p(x, z)
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= I(x = x′′, z = z′′)p(y′′|z′′).

Lemma 1.4.4. The trace of M defined in Lemma 1.4.3 equals

tr(M) = (|X | − 1)(|Y| − 1)|Z|,

where |Z| =
∏

i |Zi|.

Proof.

∑
x,y,z

Mx,y,z
x,y,z =

∑
x,y,z

(1− p(y|z)− p(x|z) + p(x|z)p(y|z))

= |X | · |Y| · |Z| − |X | · |Z| − |Y| · |Z|+ |Z| = (|X | − 1)(|Y| − 1)|Z|

Lemma 1.4.5. We have that

M2 = M,

where M has the form (1.32).

Proof. We compute (M2)x
′′,y′′,z′′

x,y,z . The first term in the first bracket is multiplied by

the consecutive terms in the second bracket, then the second term in the first bracket

and so on:

∑
x′,y′,z′

Mx′,y′,z′

x,y,z Mx′′,y′′,z′′

x′,y′,z′ =
(
I(x = x′, y = y′, z = z′)− I(x = x′, z = z′)p(y′|z′)

− I(y = y′, z = z′)p(x′|z′) + I(z = z′)p(x′|z′)p(y′|z′)
)
·
(
I(x′ = x′′, y′ = y′′, z′ = z′′)

− I(x′ = x′′, z′ = z′′)p(y′′|z′′)− I(y′ = y′′, z′ = z′′)p(x′′|z′′) + I(z′ = z′′)p(x′′|z′′)p(y′′|z′′)
)

= (I(x = x′′, y = y′′, z = z′′)− I(x = x′′, z = z′′)p(y′′|z′′)− I(y = y′′, z = z′′)p(x′′|z′′)

+ I(z = z′′)p(x′′|z′′)p(y′′|z′′))− (I(x = x′′, z = z′′)p(y′′|z′′)− I(x = x′′, z = z′′)p(y′′|z′′)

− I(z = z′′)p(x′′|z′′)p(y′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′))− (I(y = y′′, z = z′′)p(x′′|z′′)

− I(z = z′′)p(x′′|z′′)p(y′′|z′′)− I(y = y′′, z = z′′)p(x′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′))

+ (I(z = z′′)p(x′′|z′′)p(y′′|z′′)− I(z = z′′)p(x′′|z′′)p(y′′|z′′)− I(z = z′′)p(x′′|z′′)p(y′′|z′′)

+ I(z = z′′)p(x′′|z′′)p(y′′|z′′)) = I(x = x′′, y = y′′, z = z′′)− I(x = x′′, z = z′′)p(y′′|z′′)

− I(y = y′′, z = z′′)p(x′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′) = Mx′′,y′′,z′′

x,y,z .
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1.4.2. Asymptotic behaviour of plug-in estimators of feature selection criteria

We start with stating the lemma on asymptotic distribution of a plug-in estimator of

the generalised feature selection measure defined as

Îβ,γ(X, Y |Z) = Iβ,γ(p̂).

The measure Iβ,γ(X, Y |Z) is defined in (1.17). In order to estimate that measure, for each

interaction information appearing in the formula (1.17) we replace unknown probabilities

with sample fractions according to the formula (1.7).

Theorem 1.4.6. Let σ2 = DIβ,γ (p)
′ΣDIβ,γ (p), where DIβ,γ (p) is a gradient of a function

Iβ,γ at p and HIβ,γ (p) is its Hessian and Σ is defined in Lemma 1.4.1. Then

i) if σ2 > 0, we have
√
n(Iβ,γ(p̂)− Iβ,γ(p))

d−→ N (0, σ2),

ii) if σ2 = 0, we have

2n(Iβ,γ(p̂)− Iβ,γ(p))
d−→

K∑
i=1

λi(M)Z2
i ,

where K = |X | · |Y| · |Z|, Zi are independent N (0, 1) variables, λi(M) for

i = 1, 2, . . . , K are eigenvalues of matrix M and M = HIβ,γΣ. The explicit formula

for M is given in Lemma 1.4.8.

The proof generalises the one given for Jβ,γ in [18].

Proof. As in the proof of Lemma 1.4.2, first we compute the gradient and Hessian

of Îβ,γ(X, Y |Z). We consider Iβ,γ(X, Y |Z) as a function of (p(x, y, z))x,y,z and we use

its representation from Theorem 1.3.1, as we will use the fact that we know the gradient

and the Hessian for entropy functional H, i.e.

DH ((p(vT ))vT )v :=

(
∂H

(
(p(vt1 , vt2 , . . . , vtk))vt1 ,vt2 ,...,vtk

)
∂p(v1, v2, . . . , vp)

)
v

= log(p(vt1 , vt2 , . . . , vtk)) + 1
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and

HH ((p(vT ))vT )
v′

v :=

(
∂2H

(
(p(vt1 , vt2 , . . . , vtk))vt1 ,vt2 ,...,vtk

)
∂p(v1, v2, . . . , vp)∂p(v′1, v

′
2, . . . , v

′
p)

)v′

v

=
I(vt1 = v′t1 , vt2 = v′t2 , . . . , vtk = v′tk)

p(vt1 , vt2 , . . . , vtk)

where p = (p(v))v, v = (v1, v2, . . . , vp) and T = {t1, t2, . . . , tk} ⊆ {1, 2, . . . , p}. We note

that although some variables of the vector v do not appear in explicitly in H ((p(vT ))vT ),

it is actually a function of (p(v))v as p(vt1 , vt2 , . . . , vtk) =
∑

vi:i∈S\T p(v1, v2, . . . , vp). Using

the equalities above for the generalised measure, in view of Theorem 1.3.1 we obtain

DIβ,γ (p)x,y,z =

|S|∑
k=1

∑
T⊆S
|T |=k

β̃
|S|
k (log(p(zt1 , . . . , ztk)) + 1)−

|S|∑
k=0

∑
T⊆S
|T |=k

β̃
|S|
k (log(p(zt1 , . . . , ztk , x)) + 1)

−
|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k (log(p(zt1 , . . . , ztk , y)) + 1) +

|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k (log(p(zt1 , . . . , ztk , x, y)) + 1)

=

|S|∑
k=1

∑
T⊆S
|T |=k

β̃
|S|
k log(p(zt1 , . . . , ztk))−

|S|∑
k=0

∑
T⊆S
|T |=k

β̃
|S|
k log(p(zt1 , . . . , ztk , x)− β̃

|S|
0

−
|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k log(p(zt1 , . . . , ztk , y) +

|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k log(p(zt1 , . . . , ztk , x, y))

(1.33)

and

HIβ,γ (p)
x′,y′,z′

x,y,z =

|S|∑
k=1

∑
T⊆S
|T |=k

β̃
|S|
k

I(zt1 = z′t1 , . . . , ztk = z′tk)

p(zt1 , . . . , ztk)

−
|S|∑
k=0

∑
T⊆S
|T |=k

β̃
|S|
k

I(zt1 = z′t1 , . . . , ztk = z′tk , x = x′)

p(zt1 , . . . , ztk , x)

−
|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k

I(zt1 = z′t1 , . . . , ztk = z′tk , y = y′)

p(zt1 , . . . , ztk , y)

+

|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k

I(zt1 = z′t1 , . . . , ztk = z′tk , x = x′, y = y′)

p(zt1 , . . . , ztk , x, y)
.

(1.34)
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If p(x, y, z1, z2, . . . , zp) > 0 for all (x, y, z), then each element of H(p̂) converges to the

corresponding element of H(p) almost surely, hence we have that

Iβ,γ(p̂) = Iβ,γ(p) + (p̂ − p)′DIβ,γ (p̂) +
1

2
(p̂ − p)′HIβ,γ (p)(p̂ − p) + op(∥p̂− p∥2). (1.35)

After rearranging terms and multiplying both sides by
√
n, we obtain

√
n ((Iβ,γ(p̂)− Iβ,γ(p)) =

√
n(p̂−p)′DIβ,γ (p)+

√
n

2
(p̂−p)′HIβ,γ (p)(p̂−p)+op(

√
n ∥p̂− p∥2)

(1.36)

and if σ2 > 0, then
√
n ((Iβ,γ(p̂)− Iβ,γ(p))

d−→ N (0, σ2)

as both the second and the third terms tend to 0. Moreover, we have that σ2 = 0 if and

only if Var(DIβ,γ (p)
′p̂) = 0 and that means that (DIβ,γ (p)p̂)x,y,z = C for all (x, y, z) a.s.

As probability of getting p̂(x, y, z) = 1 equals p(x, y, z)n > 0 for the sample size n for any

(x, y, z), we obtain

(DIβ,γ (p))x,y,z = C for all (x, y, z). (1.37)

Thus the second term in (1.35) equals 0, as (p̂− p)′DIβ,γ (p̂) = C − C = 0. Then

2n(Iβ,γ(p̂)− Iβ,γ(p)) = n(p̂− p)′HIβ,γ (p)(p̂− p) + op(n ∥p̂− p∥2)

and that converges to W ′HIβ,γ (p)W , where W ∼ N (0,Σ) as in Lemma 1.4.1. Similarly

as in the proof of Lemma 1.4.2, we represent W ′HIβ,γ (p)W as

W ′HIβ,γ (p)W = Z ′Σ1/2HIβ,γ (p)Σ
1/2Z =

∑
x,y,z

λx,y,zZ
2
x,y,z,

where Z ∼ N (0, I) and λx,y,z are eigenvalues of the matrix Σ1/2HIβ,γ (p)Σ
1/2. As the

matrices Σ1/2HIβ,γ (p)Σ
1/2 and M = HIβ,γ (p)Σ have the same eigenvalues, we obtain ii).
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Remark 1.4.7. If σ2
a is defined as σ2

a = a′Σa, where a is a vector a = (a(x, y, z))x,y,z and

Σ is defined in Lemma 1.4.1, then

σ2
a = Var(a(X, Y, Z)).

We obtain that in a straightforward manner:

σ2
a =

∑
x,y,z

∑
x′,y′,z′

a(x, y, z)a(x′, y′, z′) (I(x = x′, y = y′, z = z′)p(x, y, z)− p(x, y, z)p(x′, y′, z′))

=
∑
x,y,z

p(x, y, z)a2(x, y, z)−

(∑
x,y,z

p(x, y, z)a(x, y, z)

)2

= Ea2(X, Y, Z)− (Ea(X, Y, Z))2

= Var(a(X, Y, Z)).

Using that, in view of (1.33), we obtain that σ2 defined in Theorem 1.4.6 equals

Var(DIβ,γ (p)X,Y,Z) = Var(DIβ,γ (p)X,Y,Z + β̃
|S|
0 ):

σ2 = Var
( |S|∑

k=1

∑
T⊆S
|T |=k

β̃
|S|
k log(p(Zt1 , . . . , Ztk))−

|S|∑
k=0

∑
T⊆S
|T |=k

β̃
|S|
k log(p(Zt1 , . . . , Ztk , X)

−
|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k log(p(Zt1 , . . . , Ztk , Y ) +

|S|∑
k=0

∑
T⊆S
|T |=k

γ̃
|S|
k log(p(Zt1 , . . . , Ztk , X, Y ))

)
. (1.38)

Note the the expression for which variance is calculated under variance operator is similar

to the representation of Iβ,γ given in Theorem 1.3.1 (the difference being that for the

entropies in (1.18) averaging over probabilities is missing, in contrast to (1.38)).

Lemma 1.4.8. Matrix M = HIβ,γ (p)Σ defined in Theorem 1.4.6 equals

Mx′′,y′′,z′′

x,y,z = p(x′′, y′′, z′′)·[ |S|∑
k=0

∑
T⊆S
|T |=k

(
β̃
|S|
k

I(zt1 = z′′t1 , . . . , ztk = z′′tk)

p(zt1 , . . . , ztk)
− β̃

|S|
k

I(zt1 = z′′t1 , . . . , ztk = z′′tk , x = x′′)

p(zt1 , . . . , ztk , x)

)

−
|S|∑
k=0

∑
T⊆S
|T |=k

(
γ̃
|S|
k

I(zt1 = z′′t1 , . . . , ztk = z′′tk , y = y′′)

p(zt1 , . . . , ztk , y)
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+ γ̃
|S|
k

I(zt1 = z′′t1 , . . . , ztk = z′′tk , x = x′′, y = y′′)

p(zt1 , . . . , ztk , x, y)

)]
, (1.39)

where we define I(∅)/p(∅) = 1.

Proof. First we note that for given k and T ⊂ S such that |T | = k, for any (x, y, z) and

(x′′, y′′, z′′) we have for the first term of HIβ,γ (p) in 1.34

∑
x′,y′,z′

β̃
|S|
k

I(zt1 = z′t1 , . . . , ztk = z′tk)

p(zt1 , . . . , ztk)
p(x′, y′, z′)p(x′′, y′′, z′′) = p(x′′, y′′, z′′)β̃

|S|
k

and

∑
x′,y′,z′

β̃
|S|
k

I(zt1 = z′t1 , . . . , ztk = z′tk)

p(zt1 , . . . , ztk)
I(x′ = x′′, y′ = y′′, z′ = z′′)p(x′, y′, z′)

= p(x′′, y′′, z′′)β̃
|S|
k

I(zt1 = z′′t1 , . . . , ztk = z′′tk)

p(zt1 , . . . , ztk)
.

For the three remaining terms of HIβ,γ (p) the formulas are analogous. We notice that

∑
x′,y′,z′

(HIβ,γ (p))
x′,y′,z′

x,y,z p(x′, y′, z′)p(x′′, y′′, z′′) = β̃
|S|
0 ,

thus defining I(∅)/p(∅) = 1 we obtain the formula (1.39).

Remark 1.4.9. We note that Theorem 1.4.6 in particular describes the behaviour of

the measures introduced in Section 1.3.2 i.e. Jβ,γ, JMI, JMI3, CIFE and SECMI3,

and others. The asymptotic behaviour of the empirical generalised measure and ĴMI was

analyzed in [18], and ĈIFE and ̂SECMI3 in [20].

Detailed characterization of distribution of Jβ,γ(p̂)

In this section we present in Lemma 1.4.10 the results from [18] with a slight correction

of Theorem 2 in [18].

In the proof of Theorem 1.4.6 we showed that the condition

σ2 = DJβ,γ (p)
′ΣDJβ,γ (p) = 0 is equivalent to

(DIβ,γ (p))x,y,z = C for all (x, y, z). (1.40)
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In this section we will further analyze that case for a binary random variable Y and for

certain values of β and γ we will determine the dependence structure of (X, Y, Z).

We note that the gradient DJβ,γ of Jβ,γ equals

log

(
p(x, y)

p(x)p(y)

)
− β

|S|∑
i=1

log

(
p(x, zi)

p(x)p(zi)
− 1

)
+ γ

|S|∑
i=1

log

(
p(x, y, zi)p(y)

p(x, y)p(y, zi)

)
− 1.

This can be obtained from the formula for the gradient computed for DIβ,γ in the proof of

Theorem 1.4.6 using the fact that the parameters β̃
|S|
k and γ̃

|S|
k for Jβ,γ equal 0 for k ≥ 2

and the formula for k = 0, 1 is given in (1.20).

To characterize the case when σ2 = 0 we define two scenarios:

— Scenario 1 (S1): X ⊥⊥ Y |Zi for any i ∈ S and X ⊥⊥ Y ,

— Scenario 2 (S2): ∃W ⊂ S such that W ̸= ∅ and for i ∈ W Zi ⊥⊥ Y |X, X ̸⊥⊥ Y |Zi and

for i ∈ W c we have X ⊥⊥ Y |Zi,

where we define W as

W =
{
i ∈ S : ∃x,y,zi

p(x, y, zi)p(zi)

p(x, zi)p(y, zi)
̸= 1
}
. (1.41)

Lemma 1.4.10. Assume that β = γ ̸= 0 and σ2 = DJβ,γ (p)
′ΣDJβ,γ (p) = 0. Then

(i) if |S| > 1 and β−1 ∈ {1, 2, . . . , |S| − 1} then one of the above scenarios holds with

W defined in (1.41),

(ii) if β−1 = |S| then X ⊥⊥ Y |Zi for all i ∈ S. If β−1 /∈ {1, 2, . . . , |S|} then Scenario 1

is valid.

Proof. As σ2 = 0, we have that (DIβ,γ (p))x,y,z = C for all (x, y, z):

log

(
p(x, y)

p(x)p(y)

)
−β

|S|∑
i=1

(
log

(
p(x, zi)

p(x)p(zi)

)
− 1

)
+γ

|S|∑
i=1

log

(
p(x, y, zi)p(y)

p(x, y)p(y, zi)

)
−1 = C.

(1.42)

Fix j ∈ S, then

β

(
log

(
p(x, zj)

p(x)p(zj)

)
− 1

)
− γ log

(
p(x, y, zj)

p(x, y)p(y, zj)

)
= −C − 1

+ log

(
p(x, y)

p(x)p(y)

)
− β

∑
i ̸=j

(
log

(
p(x, zi)

p(x)p(zi)

)
− 1

)
+ γ

∑
i ̸=j

log

(
p(x, y, zi)p(y)

p(x, y)p(y, zi)

)
.
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The left hand side does not depend on zj, as the right hand side does not, thus we have

for all (x, y, zj)

β

(
log

(
p(x, zj)

p(x)p(zj)

)
− 1

)
− γ log

(
p(x, y, zj)p(y)

p(x, y)p(y, zj)

)
= axy.

Hence

β log

(
p(x, zj)

p(zj)

)
− γ log

(
p(x, y, zj)

p(y, zj)

)
= bxy,

where bxy = axy + β + β log(p(x)) + γ log (p(y)/p(x, y)). For β = γ ̸= 0 we obtain

log

(
p(x, zj)p(y, zj)

p(x, y, zj)p(zj)

)
=

bxy
β

= cxy. (1.43)

If j ∈ W then in view of Lemma A.1.1

cxy = log

(
p(x)p(y)

p(x, y)

)
, (1.44)

otherwise, if j ∈ W c, then cxy = 0. Thus (1.42) can be written as

log

(
p(x, y)

p(x)p(y)

)
− β

|S|∑
i=1

log

(
p(x, zi)

p(x)p(zi)
− 1

)
+ β

|S|∑
i=1

log

(
p(x, y, zi)p(y)

p(x, y)p(y, zi)

)
− 1

= log

(
p(x, y)

p(x)p(y)

)
+ β

|S|∑
i=1

log

(
p(x, y, zi)p(zi)

p(x, zi)p(y, zi)

)
+ β

|S|∑
i=1

log

(
p(x)p(y)

p(x, y)

)
+ β|S| − 1

= (1 + β|W | − β|S|) log
(

p(x, y)

p(x)p(y)

)
+ β|S| − 1

= (1− β|W c|) log
(

p(x, y)

p(x)p(y)

)
+ β|S| − 1.

We observe that as the gradient does not depend on (x, y), at least one of the two cases

should occur: X ⊥⊥ Y or 1 + β|W | − β|S| = 0. Now we proceed to prove (i) and (ii).

(ii) If β−1 = |S| then either W = ∅ as |W | = |S| − β−1 = 0 or X ⊥⊥ Y . In both

cases we have that cxy = 0 and thus we obtain also that X ⊥⊥ Y |Zi for all i ∈ S

(compare (1.43)). Note that although we can prove that if X ⊥⊥ Y then X ⊥⊥ Y |Zi as

cxy = 0 for all x and y, the opposite does not hold. In the case when |W | = 0 we do

not obtain that X ⊥⊥ Y as we cannot infer that p(x, y)/p(x)p(y) = 1. This corrects

the mistake in [18] p. 696. If β−1 /∈ {1, . . . , |S| − 1}, then 1 + β|W | − β|S| ̸= 0 as
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in that case |W | /∈ N, |W | > |S| or |W | ≤ 0, a contradiction. Hence X ⊥⊥ Y and it

follows that cxy = 0 and X ⊥⊥ Y |Zi thus Scenario 1 is valid.

(i) We consider now the case when 1 + β|W | − β|S| = 0. Thus |W | = |S| − β−1 and as

|W | ∈ {0, 1, . . . , |S|}, we obtain β−1 ∈ {1, . . . , |S|}. We already considered the case of

β−1 = |S|. In other cases and as |W | > 0 from Lemma A.1.1 we obtain (i).

Special case: ĴMI

In the following we explicitly state the asymptotic distribution of JMI(p̂). JMI(p̂)

is a plug-in estimator of JMI defined in (1.21), namely

ĴMI = JMI(p̂) =
1

|S|

|S|∑
i=1

Î(X, Y |Zi) =
1

|S|

|S|∑
i=1

∑
x,y,zi

p̂(x, y, zi) log
p̂(x, y|zi)

p̂(x|zi)p̂(y|zi)
.

In Theorem 1.4.11 we distinguish two cases - the first one, in which for all i ∈ S we

have X ⊥⊥ Y |Zi and the second, which is the complement of the first case. The two cases

can be also described in a different way. First, we define H0,i in the following way

H0,i : X ⊥⊥ Y |Zi, (1.45)

for i = 1, . . . , |S|. We want to construct a test which controls type I error under so called

global null H0 = ∩|S|
i=1H0,i when all null hypotheses are true. Thus the first case occurs,

when the global null H0 is true, and the second, when the alternative hypothesis holds.

The following result has been proved in [24].

Theorem 1.4.11. (i) Assume that the global null H0 holds. Then

2nJMI(p̂)
d−→

K∑
i=1

λi(M)Z2
i , (1.46)

where Zi are independent N (0, 1) random variables and λi(M), i = 1, . . . , K are eigenval-

ues of matrix M with the elements

Mx′,y′,z′

x,y,z =
1

|S|
p(x′, y′, z′)

|S|∑
i=1

[
I(zi = z′i)

p(zi)
− I(x = x′, zi = z′i)

p(x, zi)

− I(y = y′, zi = z′i)

p(y, zi)
+

I(x = x′, y = y′, zi = z′i)

p(x, y, zi)

]
, (1.47)
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where z = (z1, . . . , z|S|) and z′ = (z′1, . . . , z
′
|S|) and K = |X | · |Y| · |Z|. Moreover, the trace

of M equals |S|−1(|X | − 1)(|Y| − 1)
∑

i |Zi|.

(ii) Assume that the alternative H1 = ∪|S|
i=1H

c
0,i to the global null is valid and Y is binary.

Then

σ2 = Var

(
1

|S|
log

|S|∏
i=1

p(X, Y, Zi)p(Zi)

p(X,Zi)p(Y, Zi)

)
> 0

and

n1/2(JMI(p̂)− JMI(p))
d−→ N (0, σ2). (1.48)

Proof. From Theorem 1.4.6 follows i) and the formula for M can be derived from (1.39)

(β̃|S|
1 = γ̃

|S|
1 = 1/|S| and β̃

|S|
i = γ̃

|S|
i = 0 for i ̸= 1). ii) follows from Lemma 1.4.10.

Note that for |S| = 1 the form of matrix M in (1.47) coincides with that in (1.32) as

in that case JMI(p̂) = CMI(p̂).

The result in Theorem 1.4.11 shows that there is an exact dichotomy of asymptotic

behaviour which makes the construction of the test for testing the global null H0 possible:

the asymptotic distribution of ĴMI is either that of quadratic form in normal variables

as in (1.46) or normal (cf. (1.48)) depending on whether H0 is satisfied or not.
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Chapter 2

Resampling schemes and asymptotic

distributions of information-theoretic measures

The main goal of this section is to introduce various resampling scenarios mimicking

the situation, in which X is conditionally independent of Y given Z. The aim is to obtain

asymptotic distributions of the vectors of estimated probabilities based on resampled

samples and to show asymptotic behaviour of plug-in estimators of CMI and JMI,

in which instead of using the usual vector of fractions p̂, the estimators p̂∗ based on

resampled samples are used.

The topic of bootstrap and related resampling methods is much broader than the

problems discussed in this thesis. For more information we refer to [10].

2.1. Resampling schemes

In this section we introduce resampling scenarios and we obtain asymptotic distri-

butions of vectors of estimated probabilities (p̂∗(x, y, z))x,y,z based on resampled sample

conditionally given the sample.

2.1.1. CI bootstrap scenario

Let (X1, Y1, Z1), (X2, Y2, Z2), . . . , (Xn, Yn, Zn) be independent random variables with

common discrete distribution P (Xi = x, Yi = y, Zi = z) = p(x, y, z) > 0, where the

last condition holds for all (x, y, z). The unconstrained maximum likelihood estima-

tor of (p(x, y, z))x,y,z is a vector of fractions (p̂(x, y, z))x,y,z = (n(x, y, z)/n)x,y,z, where

n(x, y, z) =
∑n

i=1 I(Xi = x, Yi = y, Zi = z). This is an equivalent to estimating a cumu-

lative distribution function F by its empirical counterpart F̂n, which assigns mass 1/n

to each of the sampled points. The most common approach in bootstrap resampling

is to sample from empirical distribution F̂n and thus each point (x, y, z) is chosen with
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a probability equal to p̂(x, y, z). In order to investigate conditional independence problems

we replace p̂(x, y, z) by

p̂ci(x, y, z) = p̂(x|z)p̂(y|z)p̂(z) = n(x, z)

n(z)

n(y, z)

n(z)

n(z)

n
,

which is the maximum likelihood estimator of p(x, y, z) in a model with assumed

conditional independence of X and Y given Z. Note that we used the notation

pci(x, y, z) = p(x|z)p(y|z)p(z) previously. We define a CI bootstrap sample in the follow-

ing way: let (X∗
1 , Y

∗
1 , Z

∗
1), (X

∗
2 , Y

∗
2 , Z

∗
2), . . . , (X

∗
n, Y

∗
n , Z

∗
n) be random variables conditionally

independent given original sample, with common distribution (p̂ci(x, y, z))x,y,z. By p̂∗ we

denote an estimator of probabilities based on the bootstrap sample, namely

p̂∗(x, y, z) =
n∗(x, y, z)

n
=

1

n

n∑
i=1

I(X∗
i = x, Y ∗

i = y, Z∗
i = z).

We use a superscript ∗ to indicate that the probabilities or the expected values are cal-

culated given the sample (X1, Y1, Z1), (X2, Y2, Z2), . . . , (Xn, Yn, Zn), e.g.

P ∗(X∗
1 = x) = P (X∗

1 = x|(X1, Y1, Z1), (X2, Y2, Z2), . . . , (Xn, Yn, Zn)). (2.1)

To avoid burdensome notation, while conditioning on the sequence

(X1, Y1, Z1), (X2, Y2, Z2), . . . , (Xn, Yn, Zn), we will write

P (·|(X1, Y1, Z1), (X2, Y2, Z2), . . . , (Xn, Yn, Zn))

meaning that

P (·|(X1, Y1, Z1) = (x1, y1, z1), (X2, Y2, Z2) = (x2, y2, z2), . . . , (Xn, Yn, Zn) = (xn, yn, zn)),

where (xi, yi, zi) denotes generic but fixed value of (Xi, Yi, Zi).

In Lemma 2.1.1 we prove that the vector p̂∗ has asymptotically normal dis-

tribution almost surely given (Xi, Yi, Zi)
∞
i=1 and we state an explicit formula for

its covariance matrix Σ. Note that the limiting law in Lemma 2.1.1 be-

low coincides with the law of sample fractions for p(x, y, z) = pci(x, y, z) as

Σx′,y′,z′
x,y,z = I(x = x′, y = y′, z = z′)pci(x, y, z) − pci(x, y, z)pci(x

′, y′, z′). In particular, Σ is
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equal to asymptotic covariance matrix of a vector
√
n(p̂(x, y, z) − p(x, y, z))x,y,z in case

when X ⊥⊥ Y |Z (cf. Lemma 1.4.1).

We recall that Σx′,y′,z′
x,y,z denotes an element of the matrix Σ with row index (x, y, z) and

column index (x′, y′, z′), where (x, y, z), (x′, y′, z′) ∈ X ×Y×Z. Σ will be generic notation

of a covariance matrix, which will change in the results to follow.

Lemma 2.1.1. For almost all sequences (X1, Y1, Z1), (X2, Y2, Z2), . . . and conditionally

on (Xi, Yi, Zi)
∞
i=1, we have that

√
n (p̂∗(x, y, z)− p̂(x|z)p̂(y|z)p̂(z))x,y,z

d−→ N (0,Σ),

where

Σx′,y′,z′

x,y,z = I(x = x′, y = y′, z = z′)p(x|z)p(y|z)p(z)−p(x|z)p(y|z)p(z)p(x′|z′)p(y′|z′)p(z′)

and p̂∗(x, y, z) = 1
n

∑n
i=1 I(X∗

i = x, Y ∗
i = y, Z∗

i = z), where (X∗
i , Y

∗
i , Z

∗
i )

n
i=1 is a CI boot-

strap sample.

The technique of the proof presented here follows from [39] and it is based on the

Berry-Esseen theorem (cf. Theorem A.2.1).

Without loss of generality, to simplify the notation we assume that X = {1, 2, . . . , |X |},

Y = {1, 2, . . . , |Y|} and Z = {1, 2, . . . , |Z|}. We define a function k(·), which assigns

a triple (x, y, z) ∈ X × Y × Z to each index i = 1, 2, . . . , K, where K = |X | · |Y| · |Z| in

the following way

k(i) = (x, y, z),

and

i = x+ |X |(y − 1) + |X ||Y|(z − 1).

Thus, in the notation using the function k, we write e.g. a vector of all probabilities

(p(x, y, z))x,y,z as (p(k(i)))Ki=1.

Proof. We recall that (see (2.1))

p̂∗(x, y, z) =
n∗(x, y, z)

n
=

1

n

n∑
i=1

I(X∗
i = x, Y ∗

i = y, Z∗
i = z)
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and

p̂ci(x, y, z) := p̂(x|z)p̂(y|z)p̂(z) = n(x, z)

n(z)

n(y, z)

n(z)

n(z)

n
.

Thus, since p̂∗ follows the multinomial distribution with an observation (x, y, z) having

a probability equal to p̂ci(x, y, z), conditionally on the original sample we have that

E∗p̂∗(x, y, z) = p̂(x|z)p̂(y|z)p̂(z)

and

(Cov∗ ((p̂∗(x, y, z))x,y,z))
x′,y′,z′

x,y,z =

 1
n
p̂ci(x, y, z)(1− p̂ci(x, y, z)) if (x, y, z) = (x′, y′, z′)

− 1
n
p̂ci(x, y, z)p̂ci(x

′, y′, z′) if (x, y, z) ̸= (x′, y′, z′)
.

We define

Σ̂x′,y′,z′

x,y,z = n(Cov∗ ((p̂∗(x, y, z))x,y,z))
x′,y′,z′

x,y,z .

Then we define Qi and W in Theorem A.2.1 (Appendix) in the following way

Q∗
j :=

1√
n
Σ̂

−1/2
−K

(
I((X∗

j , Y
∗
j , Z

∗
j ) = k(i))− p̂ci(k(i))

)K−1

i=1
,

W ∗ =
n∑

j=1

Q∗
j =

√
nΣ̂

−1/2
−K (p̂∗(k(i))− p̂ci(k(i)))

K−1
i=1 ,

where Σ̂−K = Cov∗
(
(p̂∗(k(i)))K−1

i=1

)
. If p(x, y, z) > 0 for all (x, y, z), the matrix Σ̂−K

is invertible, cf. e.g. [35]. One element of the vector p̂∗ is omitted to ensure that the

covariance matrix is a full rank matrix. As we have
∑

x,y,z p̂
∗(x, y, z) = 1, the full size

matrix Σ̂ is singular. Then we apply Theorem A.2.1

|P ∗(W ∗ ∈ A)− P (Z ∈ A)|

≤ Kd

n∑
j=1

E∗
∥∥∥∥ 1√

n
Σ̂

−1/2
−K

(
I((X∗

j , Y
∗
j , Z

∗
j ) = k(i))− p̂ci(k(i))

)K−1

i=1

∥∥∥∥3

and d = K − 1. We notice that as (conditionally on (Xi, Yi, Zi)
∞
i=1)

p̂ci → pci and Σ̂−K → Σ−K a.s.,
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where Σ−K denotes the matrix Σ without the last row and the last column, and for all

j = 1, 2, . . . , K − 1

−1 ≤ I(X∗
j = x, Y ∗

j = y, Z∗
j = z)− p̂ci(x, y, z) ≤ 1,

we have that E∗
∥∥∥Σ̂−1/2

−K

(
I((X∗

j , Y
∗
j , Z

∗
j ) = k(i))− p̂ci(k(i))

)K−1

i=1

∥∥∥3 is bounded for almost

all sequences. Thus in view of Theorem A.2.1, conditionally, W ∗ → N (0, I) and as Σ̂−1/2
−K

converges to Σ
−1/2
−K a.s., from Slutsky’s theorem we have that

√
n (p̂∗(k(i))− p̂ci(k(i)))

K−1
i=1

d−→ N (0,Σ−K).

Now, by the continuous mapping theorem, using a function

f
(
v(k(i))Ki=1

)
=

(
v(k(i))K−1

i=1 ,−
K−1∑
i=1

v(k(i))

)
,

where v(k(i)) = p̂∗(x, y, z) − p̂(x|z)p̂(y|z)p̂(z) we obtain the

conclusion, as 0 =
∑K

i=1(p̂
∗(k(i)) − p̂ci(k(i)), and thus

p̂∗(k(K))− p̂ci(k(K)) = −
∑K−1

i=1 (p̂∗(k(i))− p̂ci(k(i)).

2.1.2. Conditional randomisation scenario (CR)

Now, we consider another resampling scenario, which was used for example in [8] and

is called CRT (conditional randomisation test) there. We focus here on sampling and as

we omit testing for the time being, we refer to that method as conditional randomisa-

tion using an abbreviation CR. Importantly, we assume that conditional mass function

P (X = x|Z = z) is known.

Let (X1, Y1, Z1), (X2, Y2, Z2), . . . , (Xn, Yn, Zn) be independent random variables and

(X∗
1 , Y1, Z1), (X

∗
2 , Y2, Z2), . . . , (X

∗
n, Yn, Zn) be the CR sample with X∗

i ∼ p(x|zi). As pre-

viously, p∗ denotes estimator of probabilities based on a new sample, namely

p̂∗(x, y, z) =
n∗(x, y, z)

n
=

1

n

n∑
i=1

I(X∗
i = x, Yi = y, Zi = z).

Thus we use the pairs (Yi, Zi) from the original sample and we independently draw new

observations X∗
i only. Moreover, we assume that X∗

i is independent of (Xi, Yi) given Zi,
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hence

P (X∗
i = x′|Xi = x, Yi = y, Zi = z) = P (X∗

i = x′|Zi = z) = p(x′|z)

and X∗
i are conditionally independent given the original sample. We have

Lemma 2.1.2. For almost all sequences (X1, Y1, Z1), (X2, Y2, Z2), . . . and conditionally

on (Xi, Yi, Zi)
∞
i=1, we have that

√
n (p̂∗(x, y, z)− p(x|z)p̂(y|z)p̂(z))x,y,z

d−→ N (0,Σ)

where

Σx′,y′,z′

x,y,z = I(y = y′, z = z′) (I(x = x′)p(x|z)p(y|z)p(z)− p(x|z)p(x′|z′)p(y|z)p(z))

and p̂∗(x, y, z) = 1
n

∑n
i=1 I(X∗

i = x, Yi = y, Zi = z), where (X∗
i , Yi, Zi)

n
i=1 is a sample

obtained using conditional randomisation scenario.

Proof. First, we calculate the expected value and covariance matrix of the vector of esti-

mated probabilities (p̂∗(x, y, z))x,y,z:

E∗p̂∗(x, y, z) =
1

n

n∑
i=1

E∗I(X∗
i = x, Yi = y, Zi = z) =

1

n

n∑
i=1

I(Yi = y, Zi = z)E∗I(X∗
i = x)

=
1

n

n∑
i=1

I(Yi = y, Zi = z)P (X∗
i = x|(X1, Y1, Z1) . . . , (Xn, Yn, Zn))

=
1

n

n∑
i=1

I(Yi = y, Zi = z)P (X∗
i = x|(Xi, Yi, Zi)) =

1

n

n∑
i=1

I(Yi = y, Zi = z)P (X∗
i = x|Zi)

=
1

n

n∑
i=1

I(Yi = y, Zi = z)p(x|Zi) = p(x|z)p̂(y, z)

and

E∗p̂∗(x, y, z)p̂∗(x′, y′, z′) =
1

n2

n∑
i=1

n∑
j=1

E∗I(X∗
i = x, Yi = y, Zi = z)I(X∗

j = x′, Yj = y′, Zj = z′)

=
1

n2

∑
i ̸=j

p(x|z)p(x′|z′)I(Yi = y, Zi = z)I(Yj = y′, Zj = z′)

+ I(x = x′, y = y′, z = z′)
1

n2

∑
i

E∗I(X∗
i = x, Yi = y, Zi = z)
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= p(x|z)p(x′|z′)
( 1

n2

∑
i,j

I(Yi = y, Zi = z)I(Yj = y′, Zj = z′)

− 1

n2

∑
i

I(Yi = y, Zi = z)I(Yi = y′, Zi = z′)
)
+

1

n
I(x = x′, y = y′, z = z′)p(x|z)p̂(y, z)

= p(x|z)p(x′|z′)p̂(y, z)p̂(y′, z′)− 1

n
I(y = y′, z = z′)p(x|z)p(x′|z′)p̂(y, z)

+
1

n
I(x = x′, y = y′, z = z′)p(x|z)p̂(y, z),

hence

(Cov∗ ((p̂∗(x, y, z))x,y,z))
x′,y′,z′

x,y,z = − 1

n
I(y = y′, z = z′)p(x|z)p(x′|z′)p̂(y, z)

+
1

n
I(x = x′, y = y′, z = z′)p(x|z)p̂(y, z).

As in the proof of Lemma 2.1.1, we define Q∗
j and W ∗ and thus by Berry-Essen theorem

(Theorem A.2.1) we obtain

|P ∗(W ∗ ∈ A)− P (Z ∈ A)|

≤ Kd

n∑
j=1

E∗
∥∥∥∥ 1√

n
Σ̂

−1/2
−K

(
I((X∗

j , Yj, Zj) = k(i))− p̂tci(k(i))
)K−1

i=1

∥∥∥∥3 ,
where we use the notation k(i) introduced before the proof of the Lemma 2.1.1,

Σ̂−K = Cov∗
(
(p̂∗(k(i)))K−1

i=1

)
and p̂tci(x, y, z) = p(x|z)p̂(y, z) (t in tci stands for ’true’,

not estimated distribution p(x|z) in the formula, ci for conditional independence). We

have that conditionally on the sample

p̂tci → pci and Σ̂−K → Σ−K a.s.,

thus similarly to the proof of Lemma 2.1.1 we obtain the lemma.

2.1.3. Bootstrap X scenario

We use the same scenario as in previous section, but now we avoid the as-

sumption that the distribution p(x|z) is known. Thus in the bootstrap X sample

(X∗
1 , Y1, Z1), (X

∗
2 , Y2, Z2), . . . , (X

∗
n, Yn, Zn) we use the pairs (Yi, Zi) from the original sam-

ple and X∗
i drawn from the distribution p̂(x|zi). We state the lemma about the asymptotic

conditional distribution of the vector (p̂∗(x, y, z))x,y,z.
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Lemma 2.1.3. For almost all sequences (X1, Y1, Z1), (X2, Y2, Z2), . . . and conditionally

on (Xi, Yi, Zi)
∞
i=1, we have that

√
n (p̂∗(x, y, z)− p̂(x|z)p̂(y|z)p̂(z))x,y,z

d−→ N (0,Σ)

where Σ is defined in Lemma 2.1.2 and p̂∗(x, y, z) = 1
n

∑n
i=1 I(X∗

i = x, Yi = y, Zi = z),

where (X∗
i , Yi, Zi)

n
i=1 is a bootstrap X sample.

Proof. The proof is analogous to the proof of Lemma 2.1.2. The expected value and the

covariance matrix of (p̂∗(x, y, z))x,y,z is computed in the same way as for the CR scheme,

only p(x|z) should be replaced with p̂(x|z), which is deterministic given (Xi, Yi, Zi)
n
i=1.

2.1.4. Conditional permutation scenario

We also consider a resampling scenario based on permutations on strata corre-

sponding to the conditioning variable Z = z. Such a scheme was used e.g. in [41]

to perform a test of conditional independence. We obtain permuted sample

(Xπ(1), Y1, Z1), (Xπ(2), Y2, Z2), . . . , (Xπ(n), Yn, Zn) in the following way: for each value z

of Z we permute all observations Xi for which Zi = z and we keep the pairs (Yi, Zi)

unchanged. Thus the number of permissible permutations equals
∏

z′∈Z n(z′)! as in each

group {i : Zi = z} the number of permutation equals n(z)! and we apply permutations for

all distinct values of Z. By Π we denote a set of all permissible conditional permutations

given the sample and by π we denote an element of the set Π.

For this method of resampling we cannot apply Berry-Esseen theorem as we did

in Lemmas 2.1.1 - 2.1.3, because the observations I(Xπ(i) = x, Yi = y, Zi = z) and

I(Xπ(j) = x, Yj = y, Zj = z) for i ̸= j are no longer conditionally independent and thus

W ∗ is not a sum of conditionally independent random variables Q∗
i (cf. the proof of

Lemma 2.1.1).

However, we calculate the expectation and the covariance matrix of the vector of

probabilities in order to obtain parameters of the asymptotic distribution.

First, we derive the expected value of p̂∗(x, y, z), where

p̂∗(x, y, z) =
1

n

n∑
i=1

I(Xπ(i) = x, Yi = y, Zi = z)
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and π ∈ Π is a random permissible permutation. We use p̂∗ to denote an estimator

of probabilities based on sample obtained by permutations, and thus we will also use

the notation (X∗
i , Yi, Zi)

n
i=1 := (Xπ(i), Yi, Zi)

n
i=1. Recall that E∗ and Cov∗ are conditional

expectation and conditional covariance respectively and the sum
∑

π over π denotes the

sum over all permissible permutations
∑

π∈Π.

E∗p̂∗(x, y, z) =
1∏

z′′ n(z
′′)!

∑
π

(
1

n

n∑
i=1

I(Xπ(i) = x, Yi = y, Zi = z)

)

=
1∏

z′′ n(z
′′)!

1

n

n∑
i=1

I(Yi = y, Zi = z)

(∑
π

I(Xπ(i) = x)

)
(2.2)

=
1∏

z′′ n(z
′′)!

1

n

n∑
i=1

I(Yi = y, Zi = z)n(x, z)(n(z)− 1)!
∏
z′ ̸=z

n(z′)! = p̂(x|z)p̂(y, z).

Then, we compute the expected value of p̂∗(x, y, z)p̂∗(x′, y′, z′)

E∗p̂∗(x, y, z)p̂∗(x′, y′, z′)

=
1∏

z′′ n(z
′′)!

∑
π

( 1

n2

n∑
i=1

n∑
j=1

I(Xπ(i) = x, Yi = y, Zi = z)I(Xπ(j) = x′, Yj = y′, Zj = z′)
)

=
1∏

z′′ n(z
′′)!

1

n2

n∑
i=1

n∑
j=1

I(Yi = y, Zi = z)I(Yj = y′, Zj = z′)
∑
π

I(Xπ(i) = x)I(Xπ(j) = x′)

=
1∏

z′′ n(z
′′)!

1

n2

∑
i ̸=j

I(Yi = y, Zi = z)I(Yj = y′, Zj = z′)
∑
π

I(Xπ(i) = x)I(Xπ(j) = x′)

+
1∏

z′′ n(z
′′)!

1

n2
I(x = x′, y = y′, z = z′)

∑
i

I(Yi = y, Zi = z)
∑
π

I(Xπ(i) = x)

(⋆)
=

(
p̂(x|z)p̂(x′|z′)

(
1 +

I(z = z′)

n(z)− 1
− I(x = x′, z = z′)

(n(z)− 1)p̂(x|z)

)
·
∑
i ̸=j

I(Yi = y, Zi = z)I(Yj = y′, Zj = z′)

)
+

1

n
I(x = x′, y = y′, z = z′)p̂(x|z)p̂(y, z),

where (⋆) follows from (i ̸= j and Zi = z, Zj = z′)

∑
π

I(Xπ(i) = x)I(Xπ(j) = x′)

=



n(x, z)(n(x, z)− 1)(n(z)− 2)!
∏

z′′ ̸=z

n(z′′)! if x = x′, z = z′

n(x, z)n(x′, z)(n(z)− 2)!
∏

z′′ ̸=z

n(z′′)! if x ̸= x′, z = z′

n(x, z)n(x′, z′)(n(z)− 1)!(n(z′)− 1)!
∏

z′′ ̸=z,z′
n(z′′)! if z ̸= z′
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and as p̂(x|z) = n(x, z)/n, we have

∑
π I(Xπ(i) = x)I(Xπ(j) = x′)∏

z′′ n(z
′′)!

=


p̂2(x|z) n(z)

n(z)−1
− p̂(x|z) 1

n(z)−1
if x = x′, z = z′

p̂(x|z)p̂(x′|z′) n(z)
n(z)−1

if x ̸= x′, z = z′

p̂(x|z)p̂(x′|z′) if z ̸= z′

.

We note that the sum
∑

π I(Xπ(i) = x)I(Xπ(j) = x′) does not depend on i and j. Next,

writing the sum below as the difference of two sums, we have

1

n2

∑
i ̸=j

I(Yi = y, Zi = z)I(Yj = y′, Zj = z′) =
1

n2

∑
i,j

I(Yi = y, Zi = z)I(Yj = y′, Zj = z′)

− 1

n2

∑
i

I(Yi = y, Zi = z)I(Yi = y′, Zi = z′) = p̂(y, z)p̂(y′, z′)− 1

n
I(y = y′, z = z′)p̂(y, z)

and hence

E∗p̂∗(x, y, z)p̂∗(x′, y′, z′)

= p̂(y, z)p̂(y′, z′)p̂(x|z)p̂(x′|z′)
(
1 +

I(z = z′)

n(z)− 1
− I(x = x′, z = z′)

(n(z)− 1)p̂(x|z)

)
− 1

n
p̂(y, z)p̂(x|z)p̂(x′|z′)

(
I(y = y′, z = z′) +

I(y = y′, z = z′)

n(z)− 1

− I(x = x′, y = y′, z = z′)

(n(z)− 1)p̂(x|z)

)
+

1

n
I(x = x′, y = y′, z = z′)p̂(x|z)p̂(y, z)

= p̂(y, z)p̂(y′, z′)p̂(x|z)p̂(x′|z′) + w(z)

n
I(z = z′)p̂(y, z)p̂(y′, z′)p̂(x|z)p̂(x′|z′)/p̂(z)

− w(z)

n
I(x = x′, z = z′)p̂(y, z)p̂(y′, z′)p̂(x|z)/p̂(z)

− w(z)

n
I(y = y′, z = z′)p̂(y, z)p̂(x|z)p̂(x′|z′)

+
w(z)

n
I(x = x′, y = y′, z = z′)p̂(y, z)p̂(x|z),

where w(z) = np̂(z)
np̂(z)−1

= n(z)
n(z)−1

. Hence, we obtain

(Cov∗((p̂∗(x, y, z))x,y,z))
x′,y′,z′

x,y,z =
w(z)

n
I(z = z′)

(
p̂(x|z)p̂(x′|z)p̂(y, z)p̂(y′, z)/p̂(z)

− I(x = x′)p̂(x|z)p̂(y, z)p̂(y′, z)/p̂(z)− I(y = y′)p̂(x|z)p̂(x′|z)p̂(y, z)

+ I(x = x′, y = y′)p̂(x|z)p̂(y, z)
)
. (2.3)

Lemma 2.1.4. Let p̂∗(x, y, z) = 1
n

∑n
i=1 I(X∗

i = x, Yi = y, Zi = z), where
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(X∗
i , Yi, Zi)

n
i=1 = (Xπ(i), Yi, Zi)

n
i=1, where π ∈ Π denotes a random permutation, is a sample

obtained using conditional permutation. We have that

i) for almost all sequences (Xi, Yi, Zi)
∞
i=1

E∗p̂∗(x, y, z) → p(x|z)p(y|z)p(z),

ii) for almost all sequences (Xi, Yi, Zi)
∞
i=1

n(Cov∗((p̂∗(x, y, z))x,y,z)) → Σ,

where

Σx′,y′,z′

x,y,z = I(z = z′)
(
p(x|z)p(y|z)p(x′|z)p(y′|z)p(z)− I(x = x′)p(x|z)p(y|z)p(y′|z)p(z)

−I(y = y′)p(x|z)p(x′|z)p(y|z)p(z) + I(x = x′, y = y′)p(x|z)p(y|z)p(z)
)
,

(2.4)

iii) for any (x0, y0, z0) ∈ X × Y × Z conditionally on (Xi, Yi, Zi)
∞
i=1 we have

√
n(p̂∗(x0, y0, z0)− p̂ci(x0, y0, z0))

d−→ N (0, σ2
x0,y0,z0

),

where

σ2
x0,y0,z0

= Σx0,y0,z0
x0,y0,z0

= p(z0)p(x0|z0)(1− p(x0|z0))p(y0|z0)(1− p(y0|z0)).

iv) joint distribution of the vector (np̂∗(x, y, z))x,y,z is given by

P ∗(np̂∗(x, y, z) = k(x, y, z)) =
∏
z

(∏
x n(x, z)!

∏
y n(y, z)!

n(z)!
∏

x,y k(x, y, z)!

)
, (2.5)

where (k(x, y, z))x,y,z are sequences such that
∑

x k(x, y, z) = n(y, z) and∑
y k(x, y, z) = n(x, z), otherwise P ∗(np̂∗(x, y, z) = k(x, y, z)) = 0.

Proof. The proof of i) and ii) follows from (2.2) and (2.3) and from the fact that w(z) → 1

a.s. as n → ∞.
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For part iii), we prove first that np̂∗(x0, y0, z0) follows hypergeometric distribution, namely

P ∗(np̂∗(x0, y0, z0) = k) =

(
n(y0,z0)

k

)(
n(z0)−n(y0,z0)
n(x0,z0)−k

)(
n(z0)

n(x0,z0)

) (2.6)

and k is an integer satisfying

max{0, n(x0, z0) + n(y0, z0)− n(z0)} ≤ k ≤ min{n(x0, z0), n(y0, z0)}.

We note that np̂∗(x0, y0, z0) = n∗(x0, y0, z0) and we have that n∗(z0) = n(z0)

as well as n∗(x0, z0) = n(x0, z0) and n∗(y0, z0) = n(y0, z0), but not necessarily

n∗(x0, y0, z0) = n(x0, y0, z0). Therefore, knowing n∗(z0), n∗(x0, z0) and n∗(y0, z0), we want

to calculate a fraction of permutations, for which n∗(x0, y0, z0) = k, which means that on

the layer Z = z0 we want to have exactly k pairs (X∗
i , Yi), which are equal to (x0, y0).

We have n(x0, z0) and n(y0, z0) observations on the layer Z = z0, for which Xi = x0 and

Yi = y0 respectively, thus, to obtain exactly k pairs such that (X∗
i , Yi) = (x0, y0), we

choose k out of n(y0, z0) observations, which will also satisfy X∗
i = x0 and n(x0, z0) − k

out of n−n(y0, z0) to ensure, that all other observations such that (Yi, Zi) = (y0, z0) have

X∗
i ̸= x0. Now, we multiply it by the number of possible permutations in such a scenario,

namely we separately permute observations with X∗
i = x0 and X∗

i ̸= x0, and we obtain

(
n(y0, z0)

k

)(
n(z0)− n(y0, z0)

n(x0, z0)− k

)
n(x0, z0)!(n(z0)− n(x0, z0)))!.

On the layer Z = z0 we have n(z0)! permutations in total, thus we obtain (2.6). The rest of

the proof follows from Theorem 2.1 in [21] (Theorem A.2.2), where using their notation we

let Mr = n(y0, z0), Nr = n(z0), n = n(x0, z0) and r = n, thus pr = p̂(y0|z0), fr = p̂(x0|z0),

σ2
r = np̂(z0)p̂(x0|z0)(1− p̂(x0|z0))p̂(y0|z0)(1− p̂(y0|z0)) and nrpr = np̂(z0)p̂(x0|z0)p̂(y0|z0).

We obtain that

sup
x∈R

∣∣∣∣∣P ∗

(
np̂∗(x0, y0, z0)− np̂(z0)p̂(x0|z0)p̂(y0|z0)√

np̂(z0)p̂(x0|z0)(1− p̂(x0|z0))p̂(y0|z0)(1− p̂(y0|z0))

)
− P (W ≤ x)

∣∣∣∣∣→ 0

as n → ∞ and W ∼ N (0, 1) as σ2
r → ∞. Hence, in view of Slutsky’s theorem we have

√
n(p̂∗(x0, y0, z0)− p̂ci(x0, y0, z0))

d−→ N (0, σ2
x0,y0,z0

),
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as nσ2
x0,y0,z0

/σr → 1 a.s.

To prove iv) lets first focus on one layer of Z, namely Z = z. We have on that layer n(z)

observations and n(x, z), n(y, z) observations such that Xi = x and Yi = y, respectively.

For each layer of Y we know exactly how many times each value x of X has to appear

and that equals k(x, y, z) for the layer Y = y, Z = z. We want to calculate how many

permutations of Xi satisfy that condition. First, we will assign a layer of Y to each

observation such that X = x. The number of such assignments is

(
n(x, z)

k(y1, x, z)

)
·
(
n(x, z)− k(y1, x, z)

k(y2, x, z)

)
·
(
n(x, z)−

∑2
i=1 k(yi, x, z)

k(y3, x, z)

)
· . . . ·

(
n(x, z)−

∑r−2
i=1 k(yi, x, z)

k(yr−1, x, z)

)
·
(
n(x, z)−

∑r−1
i=1 k(yi, x, z)

k(yr, x, z)

)
, (2.7)

where |Y| = r and Y = {y1, y2, . . . , yr}. Namely, we choose which Xi such that Xi = x

will be in the layer Y = y1, then from the remaining X we choose those that will be in

the layer Y = y2 and so on. Finally, we have n(x, z)−
∑r−1

i=1 k(yi, x, z) = k(yr, x, z) of X

left and we assign them to the last layer of Y . The term (2.7) can be expressed as

n(x, z)!∏
y k(x, y, z)!

and as we repeat that for all x ∈ X , we obtain

∏
x n(x, z)!∏

x,y k(x, y, z)!
.

We now have to take into account the number of permutations of Y on each layer

Y = y, Z = z which equals n(y, z)!, as we omitted that above. Repeating this for every

layer Z = z we finally obtain

∏
z

(∏
x n(x, z)!

∏
y n(y, z)!∏

x,y k(x, y, z)!

)
.

This follows from the fact, that np̂∗(x, y, z1) and np̂∗(x′, y′, z2) are conditionally indepen-

dent given the original sample for z1 ̸= z2. The number of unconstrained permutations

on the layers of Z equals
∏

z n(z)!, hence we get (2.5).

We note that iv) was proven more rigorously for unconditional case in [15].
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Lemma 2.1.5. Let (p̂∗(x, y, z))x,y,z be a vector of probabilities estimated based on sample

obtained through conditional permutation. For almost all (Xi, Yi, Zi)
∞
i=1 and conditionally

on (Xi, Yi, Zi)
∞
i=1 we have that

√
n (p̂∗(x, y, z)− p̂(x|z)p̂(y|z)p̂(z))x,y,z

d−→ N (0,Σ), (2.8)

where Σ is defined in (2.4).

Note that the above lemma is consistent with results from Lemma 2.1.4, but it does

not follow from them directly. In iii) we prove convergence just for one fixed triple

(x0, y0, z0), whereas in Lemma 2.1.5 we assert that the convergence holds for the whole

vector of probabilities p̂∗ and the asymptotic covariance matrix is equal to the one given

in ii). Also note that in view of (2.5) subvectors

(
p̂∗(·, ·, z1), p̂∗(·, ·, z2), . . . , p̂∗(·, ·, z|S|)

)
are independent given (Xi, Yi, Zi), thus in order to prove (2.8) it is sufficient to prove

analogous result for unconditional permutation scenario on one fixed layer of Z. Namely,

having √
n(z0)(p̂

∗(x, y|z0)− p̂(x|z0)p̂(y|z0))x,y
d−→ N (0,Σz0) (2.9)

conditionally on the sample, we obtain that also the following convergence holds

√
np̂∗(z0)(p̂

∗(x, y|z0)− p̂(x|z0)p̂(y|z0))x,y

=

√
n(z0)

n
·
√

n(z0)(p̂
∗(x, y|z0)− p̂(x|z0)p̂(y|z0))x,y

d−→
√

p(z0)N (0,Σz0)

for fixed z0. The vector of probabilities can be written as

√
n(p̂∗(x, y, z)− p̂(x|z)p̂(y|z)p̂(z))x,y,z =

√
n

(
p̂∗(z1)(p̂

∗(x, y|z1)− p̂(x|z1)p̂(y|z1))x,y, . . . ,

p̂∗(z|S|)(p̂
∗(x, y|z|S|)− p̂(x|z|S|)p̂(y|z|S|))x,y

)
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and as its components p̂∗(zi)(p̂∗(x, y|zi)− p̂(x|zi)p̂(y|zi))x,y are independent given the sam-

ple, we obtain Lemma 2.1.5. Showing convergence (2.9) for permutation scenario is thus

crucial for showing the convergence of vector p̂∗. The proof of that based on asymptotic

normality of standardised generalised multivariate hypergeometric distribution is given

in [22].

2.1.5. Comparison of covariance matrices

We compare now asymptotic covariance matrices of the resampling scenarios presented

before, namely CI bootstrap sampling, CR/bootstrap X and permutation. We denote

their covariance matrices by Σ(1), Σ(2), Σ(3), respectively (see Lemma 2.1.1, 2.1.3 and

2.1.4)).

Remark 2.1.6. Note that Σ(3) for permutation scenario defined in (2.4) can be written

as

Σx′,y′,z′

x,y,z = I(z = z′) · p(x|z)
(
I(x = x′)− p(x′|z)

)
· p(y|z)

(
I(y = y′)− p(y′|z)

)
and Σ(2) for CR and Bootstrap X equals

Σx′,y′,z′

x,y,z = I(z = z′) · p(x|z)
(
I(x = x′)− p(x′|z)

)
· p(y|z)I(y = y′).

Sum of two terms of elements of the matrix Σ(3) coincides with cor-

responding elements of the asymptotic covariance matrix Σ(2), namely

I(x = x′, y = y′, z = z′)p(x|z)p(y|z)p(z)− I(y = y′, z = z′)p(x|z)p(x′|z)p(y|z)p(z).

Lemma 2.1.7. The covariance matrix for CI bootstrap scenario dominates the covariance

matrix for CR/bootstrap X scenarios, whereas the covariance matrix for CR/bootstrap X

scenarios dominates the covariance matrix for permutation scenario

Σ(1) ≥ Σ(2) ≥ Σ(3),

i.e. matrices Σ(1) − Σ(2) and Σ(2) − Σ(3) are positive semi-definite.
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Proof. We start by proving Σ(1) ≥ Σ(2). We define

(R)x
′,y′,z′

x,y,z = (Σ(1) − Σ(2))
x′,y′,z′

x,y,z = I(y = y′, z = z′)p(x|z)p(x′|z)p(y, z)

− p(x|z)p(x′|z′)p(y, z)p(y′, z′)

and

(R̃)y
′,z′

y,z = ry
′,z′

y,z = I(y = y′, z = z′)p(y, z)− p(y, z)p(y′, z′).

The matrix R̃ is positive semi-definite as it is a covariance matrix of multinomial distri-

bution on Y × Z with probabilities given by the vector (p(y, z))y,z. We have that

(R)x
′,y′,z′

x,y,z = ry
′,z′

y,z p(x|z)p(x′|z′).

For any non-zero vector a = (a(x, y, z))x,y,z we have that

a′Ra =
∑
x,y,z

∑
x′,y′,z′

ax,y,zr
y′,z′

y,z p(x|z)p(x′|z′)ax′,y′,z′

=
∑
y,z

∑
y′,z′

(∑
x

ax,y,zp(x|z)

)
ry

′,z′

y,z

(∑
x′

ax′,y′,z′p(x
′|z′)

)
≥ 0,

thus R is a positive semi-definite matrix.

Now we prove Σ(2) ≥ Σ(3). Lets define (cf. Remark 2.1.6)

(R)x
′,y′,z′

x,y,z = (Σ(2) − Σ(3))
x′,y′,z′

x,y,z = I(z = z′)
[
I(x = x′)p(x|z)p(y, z)p(y′, z)/p(z)

− p(x|z)p(x′|z)p(y, z)p(y′, z)/p(z)
]
.

We notice that for any z the matrix R̃(z) defined in the following way

(R̃(z))x
′

x = rx
′

x (z) = I(x = x′)p(x|z)− p(x|z)p(x′|z)

is positive semi-definite. Now we define R̄(z)

(
R̄(z)

)x′,y′

x,y
= rx

′,y′

x,y (z) = rx
′

x (z)p(y, z)p(y
′, z)
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and we show, that R̄(z) ≥ 0. Namely, analogously to previous reasoning, for any non-zero

vector a = (a(x, y))x,y we have that

a′R̄(z)a =
∑
x,y

∑
x′,y′

ax,yr
x′,y′

x,y (z)ax′,y′ =
∑
x,y

∑
x′,y′

ax,yr
x′

x (z)p(y, z)p(y
′, z)ax′,y′

=
∑
x,x′

(∑
y

ax,yp(y, z)

)
rx

′

x (z)

(∑
y′

ax′,y′p(y
′, z)

)
≥ 0,

where the last inequality follows as R̃(z) ≥ 0. We have that

(R)x
′,y′,z′

x,y,z = rx
′,y′,z′

x,y,z = rx
′,y′

x,y I(z = z′)/p(z),

thus for any non-zero vector a = (a(x, y, z))x,y,z we have that

a′Ra =
∑
x,y,z

∑
x′,y′,z′

ax,y,zr
x′,y′,z′

x,y,z ax′,y′,z′ =
∑
x,y,z

∑
x′,y′,z′

ax,y,zr
x′,y′

x,y (z)I(z = z′)/p(z)ax′,y′,z′

=
∑
z

(∑
x,y

∑
x′,y′

ax,y,zr
x′,y′

x,y (z)ax′,y′,z

)
/p(z) ≥ 0.

Intuitively, the ordering of matrices in Lemma 2.1.7 is due to the fact that permuta-

tion scenario introduces the smallest amount of external variability (conditional empirical

distribution of X given Z = z remains unchanged in the permuted sample), whereas

CI bootstrap introduces the largest amount.

2.2. Asymptotic behaviour of ĈMI
∗

In this section we obtain an asymptotic distribution of conditional mutual information

computed at estimated probabilities for the resampling scenarios presented previously,

namely

ĈMI
∗
:= CMI(p̂∗) =

∑
x,y,z

p̂∗(x, y, z) log
p̂∗(x, y|z)

p̂∗(x|z)p̂∗(y|z)
,

then in Sections 2.2.2 and 2.2.3 we show that we can use quantiles of ĈMI
∗
for conditional

independence testing.
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2.2.1. Distribution of ĈMI
∗

Below we state asymptotic distributions of ĈMI
∗

for bootstrap CI, CR/bootstrap X

and permutation scenario.

CI bootstrap

We start by showing that the asymptotic distributions of 2nĈMI
∗

for CI bootstrap

is the same as for 2nĈMI.

Lemma 2.2.1. For almost all sequences (X1, Y1, Z1), (X2, Y2, Z2), . . . and conditionally

on (Xi, Yi, Zi)
∞
i=1, we have that

2nCMI(p̂∗)
d−→ χ2

(|X |−1)(|Y|−1)|Z|

where p̂∗ denotes estimated probabilities based on CI bootstrap sample.

Proof. First, we recall that the gradient and Hessian matrix of conditional mutual infor-

mation considered as a function of (p(x, y, z))x,y,z equal

(DCMI(p))(x, y, z) =
∂CMI(p)

∂p(x, y, z)
= log

p(x, y, z)p(z)

p(x, z)p(y, z)
, (2.10)

and

(HCMI(p))
x′,y′,z′

x,y,z =
I(x = x′, y = y′, z = z′)

p(x, y, z)
− I(x = x′, z = z′)

p(x, z)

− I(y = y′, z = z′)

p(y, z)
+

I(z = z′)

p(z)
, (2.11)

see the proof of Lemma 1.4.2. The proof now follows from the expansion

CMI(p̂∗) = CMI(p̂ci) + (p̂∗ − p̂ci)
′DCMI(p̂ci) +

1

2
(p̂∗ − p̂ci)

′HCMI(ξ)(p̂
∗ − p̂ci),

where ξ = (ξx,y,z)x,y,z and ξx,y,z is a point between p̂∗(x, y, z) and p̂ci(x, y, z). We have

that

CMI(p̂∗) = CMI(p̂ci) + (p̂∗ − p̂ci)
′DCMI(p̂ci) +

1

2
(p̂∗ − p̂ci)

′HCMI(pci)(p̂
∗ − p̂ci)

+
1

2
(p̂∗ − p̂ci)

′(HCMI(ξ)−HCMI(pci))(p̂
∗ − p̂ci).

66



2.2. ASYMPTOTIC BEHAVIOUR OF ĈMI
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For almost all sequences |p̂∗(x, y, z) − p̂ci(x, y, z)| → 0 conditionally on the sample and

|p̂ci(x, y, z)− pci(x, y, z)| → 0 a.s., thus for almost all sequences and conditionally on the

sample ξx,y,z → pci(x, y, z) as

|ξx,y,z − pci(x, y, z)| ≤ |ξx,y,z − p̂ci(x, y, z)|+ |p̂ci(x, y, z)− pci(x, y, z)|

≤ |p̂∗(x, y, z)− p̂ci(x, y, z)|+ |p̂ci(x, y, z)− pci(x, y, z)|.

For all triples (x, y, z) we have p(x, y, z) > 0 (and consequently p(x, z) > 0, p(y, z) > 0,

p(z) > 0) and using continuity at pci(x, y, z) of the matrix HCMI , each element of HCMI(ξ)

converges to the element of HCMI(pci). Hence,

CMI(p̂∗) = CMI(p̂ci) + (p̂∗ − p̂ci)
′DCMI(p̂ci)

+
1

2
(p̂∗ − p̂ci)

′HCMI(pci)(p̂
∗ − p̂ci) + op∗(∥p̂∗ − p̂ci∥2).

The gradient of conditional mutual information DCMI at p̂ci, where

p̂ci(x, y, z) = p̂(x|z)p̂(y, z), equals

(DCMI(p̂ci))(x, y, z) = log
p̂ci(x, y, z)p̂ci(z)

p̂ci(x, z)p̂ci(y, z)
= log

p̂ci(x, y, z)p̂(z)

p̂(x, z)p̂(y, z)

= log
p̂(x|z)p̂(y, z)p̂(z)
p̂(x, z)p̂(y, z)

= 0,

as

p̂ci(x, z) =
∑
y

p̂ci(x, y, z) =
∑
y

p̂(x|z)p̂(y, z) = p̂(x, z)

and analogously p̂ci(y, z) = p̂(y, z) and p̂ci(z) = p̂(z). We also have that CMI(p̂ci) = 0,

thus

2nCMI(p̂∗) =
√
n(p̂∗ − p̂ci)

′HCMI(pci)
√
n(p̂∗ − p̂ci) + op∗(n ∥p̂∗ − p̂ci∥2).

Then, as op∗(
√
n ∥p̂∗ − p̂ci∥) = op∗(1), we obtain that

2nCMI(p̂∗) → W ′HCMI(pci)W,
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where W ∼ N (0,Σ) and Σ is defined in Lemma 2.1.1. Thus,

2nCMI(p̂∗)
d−→
∑
x,y,z

λx,y,zZ
2
x,y,z, (2.12)

where Z = (Zx,y,z)x,y,z ∼ N (0, I) and in view of spectral decomposition λx,y,z are eigen-

values of a matrix M = HCMI(pci)Σ (justification is analogous to that in the proof of

Lemma 1.4.2). Using the fact that the matrix M is the same as in Lemma 1.4.3, we

obtain

2nCMI(p̂∗)
d−→ χ2

(|X |−1)(|Y|−1)|Z|.

CR/Bootstrap X

The result below states that the asymptotic distribution of conditional mutual informa-

tion at estimated probabilities for CR and bootstrap X is the chi-square distribution with

the same number of degrees of freedom as for CI bootstrap (the analogous result is also

shown for permutation scenario). Thus we show that different resampling scenarios lead

to the same asymptotic distribution of ĈMI
∗
. This is interesting as CR scenario requires

additional information not used in the remaining scenarios. Moreover, although the matri-

ces Σ(i) corresponding to different resampling scenarios are non-identical (cf. Lemma 2.1.7

in which we showed that covariance matrix corresponding to bootstrap CI scenario dom-

inates covariance matrix of CR/bootstrap X scenarios as well as permutation scenario),

they also lead to the same asymptotic result.

Lemma 2.2.2. If p̂∗ denotes estimated probabilities based on CR or bootstrap X, namely

p̂∗(x, y, z) =
1

n

n∑
i=1

I(X∗
i = x, Yi = y, Zi = z),

where (X∗
i , Yi, Zi)

n
i=1 is a CR or a bootstrap X sample, then for almost all sequences

(X1, Y1, Z1), (X2, Y2, Z2), . . . and conditionally on (Xi, Yi, Zi)
∞
i=1, we have that

2nCMI(p̂∗)
d−→ χ2

(|X |−1)(|Y|−1)|Z|.

Proof. As in the proof of Lemma 2.2.1, we have that

CMI(p̂∗) = CMI(p̂ci) + (p̂∗ − p̂ci))
′DCMI(p̂ci)
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+
1

2
(p̂∗ − p̂ci)

′HCMI(pci)(p̂
∗ − p̂ci) + op∗(∥p̂∗ − p̂ci∥2),

where the formula for DCMI and HCMI is given in (2.10) and (2.11). The gradient of

conditional mutual information DCMI at p̂ci, where p̂ci = p̂(x|z)p̂(y, z), equals 0 (cf. the

proof of Lemma 2.2.1). Similarly,

(DCMI(p̂tci))(x, y, z) = log
p̂tci(x, y, z)p̂tci(z)

p̂tci(x, z)p̂tci(y, z)
= log

p̂tci(x, y, z)p̂(z)

p(x|z)p̂(z)p̂(y, z)

= log
p(x|z)p̂(y, z)p̂(z)
p(x|z)p̂(z)p̂(y, z)

= 0,

where p̂tci = p(x|z)p̂(y, z) as

p̂tci(x, z) =
∑
y

p̂tci(x, y, z) =
∑
y

p(x|z)p̂(y, z) = p(x|z)p̂(z),

p̂tci(z) =
∑
x

p(x|z)p̂(z) = p̂(z)

and p̂tci(y, z) = p̂(y, z). Thus in both cases the second order expansion is needed. We

note that CMI(p̂ci) = CMI(p̂tci) = 0. Hence, reasoning similarly as in the proof of

Lemma 2.2.1, we have

2nCMI(p̂∗) = n(p̂∗ − p̂ci)
′HCMI(pci)(p̂

∗ − p̂ci) + op∗(n ∥p̂∗ − p̂ci∥2).

As op∗(n ∥p̂∗ − p̂ci∥2) → 0, we obtain that

2nCMI(p̂∗)
d−→ W ′HCMI(pci)W,

where W ∼ N (0,Σ) and Σ is defined in Lemma 2.1.2. It follows that

2nCMI(p̂∗)
d−→
∑
x,y,z

λx,y,zZ
2
x,y,z,

where Z = (Zx,y,z)x,y,z ∼ N (0, I) and λx,y,z are eigenvalues of a matrix M = HCMI(pci)Σ

(justification is analogous to that in the proof of Lemma 1.4.2). From Lemma 2.2.3 below

69



CHAPTER 2. RESAMPLING SCHEMES AND ASYMPTOTIC DISTRIBUTIONS OF MEASURES

we see that the form of the matrix M is the same as in the proof of Lemma 1.4.2, hence

2nCMI(p̂∗)
d−→ χ2

(|X |−1)(|Y|−1)|Z|.

Now in the lemma below we give an explicit formula for the matrix M used in the

proof of Lemma 2.2.2. We recall that the covariance matrix Σ of asymptotic normal

distribution of p̂∗, where p̂∗ is based on bootstrap X or CR sample, equals

Σx′,y′,z′

x,y,z = −I(y = y′, z = z′)p(x|z)p(x′|z′)p(y, z) + I(x = x′, y = y′, z = z′)p(x|z)p(y, z)

and the Hessian matrix of conditional mutual information equals

Hx′,y′,z′

x,y,z =
I(x = x′, y = y′, z = z′)

p(x, y, z)
− I(x = x′, z = z′)

p(x, z)
− I(y = y′, z = z′)

p(y, z)
+

I(z = z′)

p(z)
.

The Hessian in Lemma 2.2.2 is computed at point pci and we use that fact in the

proof of Lemma 2.2.3, as we are interested in M defined at that point, namely

M := HΣ = HCMI(pci)Σ.

Lemma 2.2.3. Matrix M = HΣ = HCMI(pci)Σ, where Σ is an asymptotic covariance

matrix for CR/bootstrap X scenarios, has the following form

Mx′′,y′′,z′′

x,y,z = I(x = x′′, y = y′′, z = z′′)− I(x = x′′, z = z′′)p(y′′|z′′)

− I(y = y′′, z = z′′)p(x′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′) (2.13)

and coincides with M given in (1.32).

Proof. Multiplication of matrices H and Σ yields:

Mx′′,y′′,z′′

x,y,z =
∑

x′,y′,z′

Hx′,y′,z′

x,y,z Σx′′,y′′,z′′

x′,y′,z′ =
∑

x′,y′,z′

(
I(x = x′, y = y′, z = z′)

p(x, y, z)︸ ︷︷ ︸
a

− I(x = x′, z = z′)

p(x, z)︸ ︷︷ ︸
b

− I(y = y′, z = z′)

p(y, z)︸ ︷︷ ︸
c

+
I(z = z′)

p(z)︸ ︷︷ ︸
d

)(
− I(y′ = y′′, z′ = z′′)p(x′|z′)p(x′′|z′′)p(y′, z′)︸ ︷︷ ︸

e

+ I(x′ = x′′, y′ = y′′, z′ = z′′)p(x′|z′)p(y′, z′)︸ ︷︷ ︸
f

)
= − I(y = y′′, z = z′′)p(x′′|z′′)︸ ︷︷ ︸

a·e
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+ I(z = z′′)p(x′′|z′′)p(y′′|z′′)︸ ︷︷ ︸
b·e

+ I(y = y′′, z = z′′)p(x′′|z′′)︸ ︷︷ ︸
c·e

− I(z = z′′)p(x′′|z′′)p(y′′|z′′)︸ ︷︷ ︸
d·e

+ I(x = x′′, y = y′′, z = z′′)︸ ︷︷ ︸
a·f

− I(x = x′′, z = z′′)p(y′′|z′′)︸ ︷︷ ︸
b·f

− I(x = x′′, z = z′′)p(x′′|z′′)︸ ︷︷ ︸
c·f

+ I(z = z′′)p(x′′|z′′)p(y′′|z′′)︸ ︷︷ ︸
d·f

= I(x = x′′, y = y′′, z = z′′)− I(x = x′′, z = z′′)p(y′′|z′′)

− I(y = y′′, z = z′′)p(x′′|z′′) + I(z = z′′)p(x′′|z′′)p(y′′|z′′).

Below we present detailed calculations for the terms c · e and d · f (the calculations for

other terms are analogous):

c · e =
∑

x′,y′,z′

I(y = y′, z = z′)I(y′ = y′′, z′ = z′′)
p(x′|z′)p(x′′|z′′)p(y′, z′)

p(y, z)

= I(y = y′′, z = z′′)
∑
x′

p(x′|z)p(x′′|z′′)p(y, z)
p(y, z)

= I(y = y′′, z = z′′)p(x′′|z′′)
∑
x′

p(x′|z)

= I(y = y′′, z = z′′)p(x′′|z′′),

d · f =
∑

x′,y′,z′

I(z = z′)I(x′ = x′′, y′ = y′′, z′ = z′′)
p(x′|z′)p(y′, z′)

p(z)

= I(z = z′′)
p(x′′|z′′)p(y′′, z′′)

p(z)
= I(z = z′′)p(x′′|z′′)p(y′′|z′′).

Permutation

The lemma analogous to Lemmas 2.2.1 and 2.2.2 also holds for conditional permutation

scenario:

Lemma 2.2.4. If p̂∗ denotes estimated probabilities based on conditional permutations,

namely

p̂∗(x, y, z) =
1

n

n∑
i=1

I(X∗
i = x, Yi = y, Zi = z),

where (X∗
i , Yi, Zi)

n
i=1 is a sample obtained by permuting X on Z layers, then for almost all

sequences (X1, Y1, Z1), (X2, Y2, Z2), . . . and conditionally on (Xi, Yi, Zi)
∞
i=1, we have that

2nCMI(p̂∗)
d−→ χ2

(|X |−1)(|Y|−1)|Z|.

Proof. The proof is analogous to the proof of Lemma 2.2.2. In this case matrix

M = HCMI(pci)Σ, where Σ is asymptotic covariance of vector of probabilities for per-
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mutation scenario (cf. Lemma 2.1.4 for the formula), is equal to the matrix M defined in

the proof of Lemma 2.2.2. This is shown below in Lemma 2.2.5.

Lemma 2.2.5. Matrix M = HΣ = HCMI(pci)Σ, where Σ is an asymptotic covariance

matrix for permutation scenario, is equal to (2.13).

Proof. We have that

Mx′′,y′′,z′′

x,y,z =
∑

x′,y′,z′

Hx′,y′,z′

x,y,z Σx′′,y′′,z′′

x′,y′,z′ =
∑

x′,y′,z′

(
I(x = x′, y = y′, z = z′)

p(x, y, z)︸ ︷︷ ︸
a

− I(x = x′, z = z′)

p(x, z)︸ ︷︷ ︸
b

− I(y = y′, z = z′)

p(y, z)︸ ︷︷ ︸
c

+
I(z = z′)

p(z)︸ ︷︷ ︸
d

)(
I(z′ = z′′)p(x′|z′)p(x′′|z′)p(y′, z′)p(y′′, z′)/p(z)︸ ︷︷ ︸

g

− I(x′ = x′′, z′ = z′′)p(x′|z′)p(y′′, z′′)p(y′, z′)/p(z′)︸ ︷︷ ︸
h

− I(y′ = y′′, z′ = z′′)p(x′|z′)p(x′′|z′′)p(y′, z′)︸ ︷︷ ︸
e

+ I(x′ = x′′, y′ = y′′, z′ = z′′)p(x′|z′)p(y′, z′)︸ ︷︷ ︸
f

)

and we notice, that (a− b− c + d)(−e + f) was computed in the proof of Lemma 1.4.3,

the term (a− b− c+ d)h = 0 similarly to (a− b− c+ d)e, thus we just need to compute

(a − b − c + d)g. As ag = bg = cg = dg = I(z = z′′)p(x′′|z)p(y′′, z)/p(z), we obtain the

same matrix M as in Lemma 1.4.3.

In this section we have shown that regardless of the resampling scenario, the asymp-

totic distribution of 2nĈMI
∗

is the same as of 2nĈMI. In the next section this result

is used to justify the use of quantiles of distribution of ĈMI
∗

and comparing them with

those of ĈMI in testing conditional independence.

2.2.2. Validity of asymptotic convergence

First, assume that for almost all sequences (X1, Y1, Z1), (X2, Y2, Z2), . . . and condition-

ally on (Xi, Yi, Zi)
∞
i=1, we have that

F ∗
n(t) = P ∗(Tn(X

∗
n,Y

∗
n,Z

∗
n) ≤ t) → F (t) (2.14)

for all continuity points of F and that (unconditionally)

Fn(t) = P (Tn(Xn,Yn,Zn) ≤ t) → F (t), (2.15)
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where (X∗
n,Y

∗
n,Z

∗
n) = (X∗

i , Y
∗
i , Z

∗
i )

n
i=1 and (Xn,Yn,Zn) = (Xi, Yi, Zi)

n
i=1, respectively.

We define the quantile function in the following way

F−1(1− α) = inf{t : F (t) ≥ 1− α},

where F is a cumulative distribution function. The following Lemma is based on Theo-

rem 1.2.1 in [31].

Lemma 2.2.6. If the convergences (2.14) and (2.15) are satisfied, α ∈ (0, 1) and F is

strictly increasing at F−1(1− α), then

i) (F ∗
n)

−1(1− α) → F−1(1− α) a.s.

If additionally F is continuous at F−1(1− α), then

ii) P (Tn(Xn,Yn,Zn) ≤ (F ∗
n)

−1(1− α)) → 1− α.

Proof. We start with the proof of part i). Denote F−1(1−α) by t. Fix ε > 0 and let F be

continuous at t− ε0 = F−1(1− α)− ε0 and t+ ε0 = F−1(1− α) + ε0 for some ε0 ∈ (0, ε].

From assumptions

F (t− ε0) < F (t) = 1− α < F (t+ ε0),

thus

F ∗
n(t− ε0) → F (t− ε0) < 1− α

and

F ∗
n(t+ ε0) → F (t+ ε0) > 1− α,

thus for sufficiently large n

F ∗
n(t− ε0) ≤ 1− α and F ∗

n(t+ ε0) ≥ 1− α

and hence |(F ∗
n)

−1(1− α)− F−1(1− α)| ≤ ε. As ε is arbitrary, the first part is proved.

The second part ii) follows from i). We have that

P (Tn(Xn,Yn,Zn) ≤ (F ∗
n)

−1(1− α))

= P (Tn(Xn,Yn,Zn)− (F ∗
n)

−1(1− α) + F−1(1− α) ≤ F−1(1− α)) → 1− α
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as

P (Tn(Xn,Yn,Zn)− (F ∗
n)

−1(1− α) + F−1(1− α) ≤ t) → F (t)

from Slutsky’s theorem.

Remark 2.2.7. Similarly, a two-sided bootstrap confidence interval takes the form

P (L ≤ Tn(Xn,Yn,Zn) ≤ R) → 1− α,

where L = (F ∗
n)

−1(αL), R = (F ∗
n)

−1(1− αR) and αL + αR = α.

Lets set Tn(X
∗
n,Y

∗
n,Z

∗
n) = 2nCMI(p̂∗). From Lemmas 1.4.2 and 2.2.1 or 2.2.2 we

have that 2nCMI(p̂) and 2nCMI(p̂∗), where p̂∗ is based on bootstrap, CR/bootstrap X

or permutation sample, tend to χ2
d, where d = (|X | − 1)(|Y| − 1)|Z| (the first statistic

converges in distribution if X ⊥⊥ Y |Z, for the second distributional convergence is condi-

tional given (Xi, Yi, Zi)
n
i=1 for almost all sequences of observations). Thus, from Lemma

2.2.6 we obtain that

P (2nCMI(p̂) ≤ (F ∗
n)

−1(1− α)) → 1− α,

where (F ∗
n)

−1(1−α) is a random variable, which for a given sequence of observations is a

quantile of 2nCMI(p̂∗) at 1−α. This justifies asymptotic validity of the conditional inde-

pendence test based on CMI statistics with a critical value constructed using resampled

data. We reject the null hypothesis H0 : X ⊥⊥ Y |Z if the test statistic 2nCMI(p̂) is greater

than (F ∗
n)

−1(1−α) and if the null holds, the probability of rejecting H0 asymptotically is

equal to α. The constructed above test asymptotically behaves as the test with the same

test statistics and the critical value equal to the proper quantile of the χ2
d distribution.

Note that the quantile (F ∗
n)

−1(1 − α) can be arbitrarily well approximated by choosing

sufficiently many resampling samples and using empirical distribution corresponding to

F ∗
n(·).

2.2.3. Non-asymptotic approach

Below we discuss non-asymptotic approach which yields an exact level of confidence

for tests based on it. This approach is valid for CR and permutation scenario as for these

methods the conditional distribution of X∗ is the same as of X given Z under hypothesis
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of independence. For bootstrap CI and bootstrap X the distribution of resampled variable

X∗ is approximated by p̂(x|z) and thus it differs from p(x|z).

Theorem 2.2.8. Let (Xi, Yi, Zi)
n
i=1 be a sample and (X∗

i , Y
∗
i , Z

∗
i )

n
i=1 be a resampled sample

obtained using CR scenario. If the null hypothesis H0 : X ⊥⊥ Y |Z holds, then

P (Tn(Xn,Yn,Zn) > (F ∗
n)

−1(1− α)) ≤ α.

Here we provide a proof given in [8].

Proof. Using CR scenario we resample X in a way which provides X∗
n such that

X∗
n|Yn = yn,Zn = zn ∼ Xn|Zn = zn

and thus as the null holds we have

X∗
n|Yn = yn,Zn = zn ∼ Xn|Yn = yn,Zn = zn.

Using that we obtain that given (Yn,Zn)

Tn(X
∗
n,Y

∗
n,Z

∗
n) ∼ Tn(Xn,Yn,Zn)

and thus with F ∗
n defined in (2.14)

P (Tn(Xn,Yn,Zn) > (F ∗
n)

−1(1− α)|(Yn,Zn)) = (yn, zn)) ≤ α

as

P (Tn(Xn,Yn,Zn) ≤ (Fn)
−1(1− α)) = (yn, zn)) ≥ 1− α.

The inequality above holds also for unconditioned probability

P (Tn(Xn,Yn,Zn) > (F ∗
n)

−1(1− α)) ≤ α.

As the above theorem is given for a theoretical quantile (F ∗
n)

−1(1 − α), below we

provide a similar inequality considering the finite number of resampled samples equal
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to B. We omit the proof of the following theorem, as it is analogous (but easier) to the

proof of Theorem 2.2.10 for permutations.

Theorem 2.2.9. Let (Xn,Yn,Zn) = (Xi, Yi, Zi)
n
i=1 be a sample and

(X∗
n,b,Y

∗
n,b,Z

∗
n,b) = (X∗

i , Y
∗
i , Z

∗
i )

n
i=1 for b = 1, 2, . . . , B be resampled samples obtained

using CR scenario. If the null hypothesis H0 : X ⊥⊥ Y |Z holds, then

P

(
1 +

∑B
b=1 I(T ≤ T ∗

b )

1 +B
≤ α

)
≤ α,

where T = T (Xn,Yn,Zn) and T ∗
b = T (X∗

n,b,Y
∗
n,b,Z

∗
n,b).

Definition 2.2.1. The random variables T1, T2, . . . , Ts are exchangeable if their joint

distribution is invariant under permutations of the components.

Theorem 2.2.10. Let (Xn,Yn,Zn) = (Xi, Yi, Zi)
n
i=1 be a sample and

(X∗
n,b,Y

∗
n,b,Z

∗
n,b) = (X∗

i , Y
∗
i , Z

∗
i )

n
i=1 for b = 1, 2, . . . , B be resampled samples obtained

using conditional permutation scenario. If the null hypothesis H0 : X ⊥⊥ Y |Z holds, then

P

(
1 +

∑B
b=1 I(T ≤ T ∗

b )

1 +B
≤ α

)
≤ α,

where T = T (Xn,Yn,Zn) and T ∗
b = T (X∗

n,b,Y
∗
n,b,Z

∗
n,b).

Proof. We prove that Xn and X∗
n are exchangeable given Zn = zn. The proof that

Xn,X
∗
n,1,X

∗
n,2, . . . ,X

∗
n,B are exchangeable is a straightforward extension as well as the fact

that (Xn,Yn,Zn), (X
∗
n,1,Yn,Zn), (X

∗
n,2,Yn,Zn), . . . , (X

∗
n,B,Yn,Zn) are exchangeable.

We denote by π a function describing conditional permutation given Zn applied to Xn

resulting in X∗
n. That transformation consists of permutations on the layers Zn = z de-

noted by πz for z ∈ Z and we use a notation iz ∈ {i : Zi = z} to denote the indices of subse-

quent observations on the layer Zn = z. Consider P (Xn = xn,X
∗
n = x∗

n|Zn = zn,Π = π).

Note that this probability equals P (Xn = xn|Zn = zn,Π = π) if x∗
n is an image of xn

under transformation π and 0 otherwise. Note that if x∗
n is an image of xn then for all

z ∈ Z and for all iz ∈ {i : Zi = z}

x∗
iz = xπz(iz).
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In case when π(xn) = x∗
n we have

P (Xn = xn,X
∗
n = x∗

n|Zn = zn,Π = π) = P (Xn = xn|Zn = zn,Π = π) (2.16)

and

P (Xn = xn|Zn = zn,Π = π) =
∏
z

∏
iz

P (Xiz = xiz |Ziz = z,Π = π)

=
∏
z

∏
iz

P (Xπz(iz) = xiz |Ziz = z,Π = π) = P (Xn = x∗
n|Zn = zn,Π = π).

We also have that

P (Xn = x∗
n,X

∗
n = xn|Zn = zn,Π = π) = P (Xn = x∗

n|Zn = zn,Π = π),

where the above equation follows from analogous reasoning as in (2.16) applied to π−1.

When π(xn) ̸= x∗
n, then

P (Xn = xn,X
∗
n = x∗

n|Zn = zn,Π = π) = P (Xn = x∗
n,X

∗
n = xn|Zn = zn,Π = π) = 0.

Thus

P (Xn = xn,X
∗
n = x∗

n|Zn = zn,Π = π) = P (Xn = x∗
n,X

∗
n = xn|Zn = zn,Π = π).

and as the above equation holds for all π ∈ Π, we obtain

P (Xn = xn,X
∗
n = x∗

n|Zn = zn) = P (Xn = x∗
n,X

∗
n = xn|Zn = zn).

As we have proven the exchangeability of the sample and resampled samples given

Zn, the test statistics based on them are also exchangeable given Zn. That property also

holds marginally without conditioning.

For exchangeable random variables T, T ∗
1 , T

∗
2 , . . . , T

∗
B we have that for

i ∈ {1, . . . , B,B + 1}

P

(
1 +

B∑
b=1

I(T ≤ T ∗
b ) = i

)
=

1

1 +B
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as any order of T, T ∗
1 , T

∗
2 , . . . , T

∗
B is equally probable. Thus

P

(
1 +

B∑
b=1

I(T ≤ T ∗
b ) ≤ i

)
=

i

1 +B

and from that we obtain

P

(
1 +

∑B
b=1 I(T ≤ T ∗

b )

1 +B
≤ i

1 +B

)
=

i

1 +B
.

For any α ∈
[

i
B+1

, i+1
B+1

)
and α ≤ 1 we obtain

P

(
1 +

∑B
b=1 I(T ≤ T ∗

b )

1 +B
≤ α

)
≤ α. (2.17)

In the considered case of conditional independence the exchangeability

of T, T ∗
1 , T

∗
2 , . . . , T

∗
B holds given Zn=zn, thus the last inequality (2.17) holds given

Zn = zn. But as (2.17) holds conditionally, it also holds marginally.

Remark 2.2.11. Note that for observations which indices satisfy iz ∈ {i : Zi = z},

vectors (Xiz , Yiz)iz and (X∗
iz , Yiz)iz have the same distribution for any permutation of X

on Z = z as the variables X and Y are independent on Z = z for all z ∈ Z. Thus, the

problem considered on a fixed layer of Z is analogous to unconditional permutations and

unconditional independence of X and Y ([25], see Example 15.2.3 there). Permutations

of X are independent on each layer of Z, thus Theorem 2.2.10 applies the result from [25]

to all the layer of Z.

2.3. Asymptotic behaviour of ĴMI
∗

Analogously to ĈMI
∗
, we investigate now asymptotic behaviour of ĴMI

∗
. We show

that it differs substantially from that of ĈMI
∗
.

We recall that JMI for probability vector p equals (cf. (1.22))

JMI(p) =
1

|S|

|S|∑
i=1

∑
x,y,zi

p(x, y, zi) log
p(x, y|zi)

p(x|zi)p(y|zi)
,
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where zi are coordinates of z, thus plug-in estimator based on resampled sample equals

ĴMI
∗
:= JMI(p̂∗),

where p̂∗ is a probability vector based on a resampled sample.

Lemma 2.3.1. Let p̂∗ be a probability vector based on a CI bootstrap sample. For almost

all sequences (X1, Y1, Z1), (X2, Y2, Z2), . . . and conditionally on (Xi, Yi, Zi)
∞
i=1 we have

√
n (JMI(p̂∗)− JMI(p̂ci))

d−→ N (0, σ2),

if σ2 > 0, where σ2 = Varpci(DJMI(pci)(X, Y, Z)).

Proof. First, using the formula for gradient of conditional mutual information DCMI given

in (2.10), we obtain that the gradient DJMI of JMI equals

DJMI(p)(x, y, z) =
1

|S|

|S|∑
i=1

log
p(x, y|zi)

p(x|zi)p(y|zi)

and the Hessian matrix HJMI equals

(HJMI(p))
x′,y′,z′

x,y,z =
1

|S|

|S|∑
i=1

(I(x = x′, y = y′, zi = z′i)

p(x, y, zi)
− I(x = x′, zi = z′i)

p(x, zi)

− I(y = y′, zi = z′i)

p(y, zi)
+

I(zi = z′i)

p(zi)

)
.

We use the expansion of JMI at p̂ci

JMI(p̂∗) = JMI(p̂ci) + (p̂∗ − p̂ci)
′DJMI(p̂ci) +

1

2
(p̂∗ − p̂ci)

′HJMI(ξ)(p̂
∗ − p̂ci),

where ξ = (ξx,y,z)x,y,z and ξx,y,z is a point between p̂∗(x, y, z) and p̂ci(x, y, z). As for almost

all sequences p̂∗(x, y, z) − p̂ci(x, y, z) → 0 in probability conditionally on the sample and

p̂ci(x, y, z) → pci(x, y, z) a.s., we have HJMI(ξ) → HJMI(pci) in probability, and we obtain,

analogously as before

JMI(p̂∗) = JMI(p̂ci) + (p̂∗ − p̂ci)
′DJMI(p̂ci)

+
1

2
(p̂∗ − p̂ci)

′HJMI(pci)(p̂
∗ − p̂ci) + op∗(∥p̂∗ − p̂ci∥2). (2.18)
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We note that
√
n(p̂∗− p̂ci)

′HJMI(pci)(p̂
∗− p̂ci) → 0 in probability from Slutsky’s theorem,

thus we have that conditionally

√
n(JMI(p̂∗)− JMI(p̂ci))

d−→ N (0, σ2),

if σ2 > 0, where σ2 = Var(DJMI(pci)(X, Y, Z)) and (X, Y, Z) ∼ pci. This claim can be

justified as follows: from Lemma 2.1.1 we have that for almost all sequences of observations

(Xi, Yi, Zi)
∞
i=1 and conditionally on (Xi, Yi, Zi)

n
i=1

√
n(p̂∗ − p̂ci) → N (0,Σ), where

Σx′,y′,z′

x,y,z = I(x = x′, y = y′, z = z′)pci(x, y, z)− pci(x, y, z)pci(x
′, y′, z′).

Moreover, DJMI(p̂ci) → DJMI(pci), hence

σ2 = DJMI(pci)
′ΣDJMI(pci) = Varpci(DJMI(pci)(X, Y, Z)).

Remark 2.3.2. If the CI bootstrap sampling scenario of p̂∗ in Lemma 2.2.1 is replaced

by CR/bootstrap X, then the asymptotic variance also changes and equals

σ2 = DJMI(pci)
′ΣDJMI(pci),

where Σ is the asymptotic covariance matrix in Lemma 2.1.2. Moreover,

σ2 = E(E(DJMI(pci)(X, Y, Z)|X, Y, Z))2 − E(E(DJMI(pci)(X, Y, Z)|Y, Z))2

= E(DJMI(pci)(X, Y, Z))2 − E(E(DJMI(pci)(X, Y, Z)|Y, Z))2.

The formula above follows from the fact that

σ2 =
∑
x,y,z

∑
x′,y′,z′

(DJMI(pci))x,y,z(DJMI(pci))x′,y′,z′I(z = z′)

(
I(x = x′, y = y′)p(x|z)p(y, z)

− I(y = y′)p(x|z)p(x′|z′)p(y, z)
)

and e.g. second term equals

∑
x,y,z

∑
x′,y′,z′

I(y = y′, z = z′)p(x|z)p(x′|z′)p(y, z)(DJMI(pci))x,y,z(DJMI(pci))x′,y′,z′
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X Z1 Y Z2

Figure 2.1: Graphical representation of a dependence structure used in Example 2.3.3.
An arrow represents dependence. The variables X, Z1 and Y form a Markov chain and
Z2 is independent of (X,Z1, Y ).

=
∑
y,z

p(y, z)
∑
x,x′

p(x|z)(DJMI(pci))x,y,zp(x
′|z)(DJMI(pci))x′,y,z

=
∑
y,z

p(y, z)

(∑
x

p(x|y, z)(DJMI(pci))x,y,z

)2

.

Similarly for the situation, in which p̂∗ is obtained by permutations (see Lemma 2.1.5) we

have

σ2 = E(E(DJMI(pci)(X, Y, Z)|X, Y, Z))2 − E(E(DJMI(pci)(X, Y, Z)|X,Z))2

− E(E(DJMI(pci)(X, Y, Z)|Y, Z))2 + E(E(DJMI(pci)(X, Y, Z)|Z))2.

Note that in view of Lemma 2.1.7 the asymptotic variances of JMI(p̂∗) in the three

resampling scenarios are also ordered.

Below we give an example of a distribution such that asymptotic variances σ2 for

ĴMI
∗

differ according to the method of subsampling.

Example 2.3.3. Similarly as in Lemma 2.1.7, we will denote by σ2
(1), σ2

(2), σ2
(3)

asymptotic variances obtained through using bootstrap CI, CR/bootstrap X and per-

mutation method, respectively. Let consider a distribution with a dependence struc-

ture as in Figure 2.1. Thus the following independencies holds: X ⊥⊥ Y |Z1,

X ⊥⊥ Y |(Z1, Z2), (X, Y, Z1) ⊥⊥ Z2 and the joint distribution can be written as

p(x, y, z1, z2) = pci(x, y, z1, z2) = p(x)p(z1|x)p(y|z1)p(z2). Hence the gradient of JMI

equals

DJMI(pci)(x, y, z) =
1

2

2∑
i=1

log
p(x, y|zi)

p(x|zi)p(y|zi)
=

1

2
log

p(x, y|z2)
p(x|z2)p(y|z2)

=
1

2
log

p(x, y)

p(x)p(y)
,

where the second equality holds as X ⊥⊥ Y given Z1 and the third as (X, Y ) ⊥⊥ Z2.

For simplicity of calculations we assume that all variables are binary and their marginal
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distributions are Bern(1/2), and p(x, y, z1, z2) > 0 for all possible values of (x, y, z1, z2).

Thus

DJMI(pci)(x, y, z) =
1

2
log(4p(x, y)).

Next we compute the variance σ2
(1) = DJMI(pci)

′Σ(1)DJMI(pci):

σ2
(1) =

1

4

∑
x,y,z

∑
x′,y′,z′

log(4p(x, y)) log(4p(x′, y′))
(
I(x = x′, y = y′, z = z′)p(x|z)p(y|z)p(z)

− p(x|z)p(y|z)p(z)p(x′|z′)p(y′|z′)p(z′)
)
=

1

4

∑
x,y

p(x, y) log2(4p(x, y))

− 1

4

(∑
x,y

p(x, y) log(4p(x, y))

)2

and σ2
(2) = DJMI(pci)

′Σ(2)DJMI(pci):

σ2
(2) =

1

4

∑
x,y,z

∑
x′,y′,z′

log(4p(x, y)) log(4p(x′, y′))
(
I(x = x′, y = y′, z = z′)p(x|z)p(y|z)p(z)

− I(y = y′, z = z′)p(x|z)p(y|z)p(z)p(x′|z′)p(y′|z′)p(z′)
)
=

1

4

∑
x,y

p(x, y) log2(4p(x, y))

− 1

4

∑
y,z1

p(y, z1)

(∑
x

p(x|z1) log(4p(x, y))

)2

.

From Jensen’s inequality we obtain

∑
y,z1

p(y, z1)

(∑
x

p(x|z1) log(4p(x, y))

)2

≥

(∑
y,z1

p(y, z1)
∑
x

p(x|z1) log(4p(x, y))

)2

=

(∑
x,y,z1

p(x, y, z1) log(4p(x, y))

)2

=

(∑
x,y

p(x, y) log(4p(x, y))

)2

and equality hols if and only if
∑

x p(x|z1) log(4p(x, y)) does not depend on y or z1. Thus

σ2
(2) ≤ σ2

(1) and equality holds if and only if (using p(z1) = 1/2)

∑
x

p(x, z1) log p(x, y) ≡ C.
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Figure 2.2: Comparison of asymptotic variances of ĴMI
∗

for the distribution described
in Example 2.3.3. The parameter α controls the strength of dependence (if α = 1/4 then
the variables are independent).

Writing the above equation for z1 = 0 and z1 = 1 and subtracting the resulting equations

we have

0 =
∑
x

(P (X = x, Z1 = 0)− P (X = x, Z1 = 1)) log p(x, y). (2.19)

Using P (X = 0) = P (X = 1) = 1/2 and P (Z1 = 0) = P (Z1 = 1) = 1/2, we have that

joint distribution of (X,Z1) equals

(X,Z1) p(·, 0) p(·, 1)

p(0, ·) α 1/2− α

p(1, ·) 1/2− α α

for a certain α > 0. Then from (2.19) we obtain

0 =
∑
x

(
2α− 1

2

)
(−1)x log p(x, y) =

(
2α− 1

2

)∑
x

(−1)x log p(x, y),

hence α = 1/4 and X ⊥⊥ Z1 or P (X = 0, Y = y) = P (X = 1, Y = y) for y = 0, 1. Thus
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if X and Z1, and X and Y (which follows from the second condition) are not independent

in the considered model, then σ2
(1) > σ2

(2) and as σ2
(2) ≥ σ2

(3), we also have σ2
(1) > σ2

(3).

In Figure 2.2 we show how the values of σ2
(1), σ

2
(2) and σ2

(3) vary with respect to α. In

that example we additionally assume that (X,Z1) and (Z1, Y ) have the same distribution.

When α = 1/4, all variables are independent and in that case σ2
(1) = σ2

(2) = σ2
(3) = 0. For

α ∈ (1/4, 1/2) the dependence between variables is positive and for that scenario we see

that σ2
(1) > σ2

(2) > σ2
(3). For α = 0.5, Z1 and Y depend on X and Z1 respectively in a

deterministic way, thus some p(x, y, z1, z2) = 0 and thus this case is not covered by the

calculations above.

Remark 2.3.4. In Lemma 2.3.1 if σ2 = 0, we consider a second-order term in the

expansion (2.18)

2n(JMI(p̂∗)− JMI(p̂ci)) = 2n(p̂∗ − p̂ci)
′DJMI(p̂ci)

+
√
n(p̂∗ − p̂ci)

′HJMI(pci)
√
n(p̂∗ − p̂ci) + op∗(n ∥p̂∗ − p̂ci∥2).

In that case, in contrast to CMI in Lemma 2.2.1, where CMI(p̂ci) = 0 and

DCMI(p̂ci) = 0, we show numerically in Example 2.3.5 that it does not necessarily hold

that JMI(p̂ci) = 0 or 2n(p̂∗ − p̂ci)
′DJMI(p̂ci) → 0.

Example 2.3.5. We use simulations involving two models to show that indeed as stated

in Remark 2.3.4 the convergence

2n(p̂∗ − p̂ci)
′DJMI(p̂ci) → 0

in probability does not hold in general. We recall that from the expansion (2.18) for the

case when σ2 = Var(DJMI(pci)(X, Y, Z)) = 0 we have that

2n(JMI(p̂∗)− JMI(p̂ci)) ≈ 2n(p̂∗ − p̂ci)
′DJMI(p̂ci) + n(p̂∗ − p̂ci)

′HJMI(pci)(p̂
∗ − p̂ci),

(2.20)

where ≈ means that both sides differ by op∗(1). By L(p̂ci) and R(p̂ci) we will denote the

left-hand side and the right-hand side of the approximate equation above and by T1(p̂ci)

and T2(p̂ci) we will denote two consecutive terms of R(p̂ci).
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Figure 2.3: Boxplots of the statistic T1(p̂ci)/(2
√
n) =

√
n(p̂∗ − p̂ci)

′DJMI(p̂ci) based on
B = 100 subsamples for N = 25 samples (x-axis) for increasing sample sizes n and for
the models I.I.D. and Markov chain.
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Figure 2.4: Boxplots of the statistic T1(p̂ci)/2 = n(p̂∗ − p̂ci)
′DJMI(p̂ci) based on B = 100

subsamples for N = 25 samples (x-axis) for increasing sample sizes n and for the models
I.I.D. and Markov chain.
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Figure 2.5: Comparison of distributions of L(p̂ci), R(p̂ci), T1(p̂ci) and T2(p̂ci) (cf. equation
(2.20) and the notation introduced below the equation) based on B = 100 subsamples for
one sample from I.I.D. and Markov chain models for increasing sample sizes n. The top
plots are cut at the level y = 0.045.

The first considered model consists of five i.i.d. random variables X, Y and Zi

for i = 1, 2, 3 with Bernoulli distribution with probability of success equal to 0.5

(model I.I.D.). It can be proved (we omit the proof) that in this model we have

T1(p̂ci) → 0. In the second model the variables form a Markov chain X = Z0, Z1, Z2, Z3,

Y = Z4, hence they satisfy the Markov property (model Markov chain). We have that

Z0 ∼ Bern(0.5) and then for i = 1, 2, 3, 4

P (Zi = 1|Zi−1 = 1) = 1− P (Zi = 0|Zi−1 = 1) = 0.8,

P (Zi = 1|Zi−1 = 0) = 1− P (Zi = 0|Zi−1 = 0) = 0.2.

We provide numerical evidence that the term T1(p̂ci) behaves differently in these two mod-

els. The simulations are carried out as follows: for a given sample size n and a model

with a vector of probabilities (p(x, y, z))x,y,z we sample N = 25 times (Xi, Yi, Zi)
n
i=1 and ob-

tain p̂. Then for each p̂ we use CI bootstrap to get B = 100 subsamples (X∗
i , Y

∗
i , Z

∗
i )

n
i=1 and

consequently p̂∗. In Figure 2.3 the behaviour of T1(p̂ci)/(2
√
n) =

√
n(p̂∗ − p̂ci)

′DJMI(p̂ci)

is compared for the two models for n = 250, 1000, 10000. We see that in the both models
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T1(p̂ci)/(2
√
n) seems to converge to 0 as n → ∞ (and thus

√
n(JMI(p̂∗)−JMI(p̂ci)) also

converges to 0), thus we need the second order expansion to obtain limiting non-degenerate

distribution. In Figure 2.4 we check whether the term T1(p̂ci)/2 = n(p̂∗ − p̂ci)
′DJMI(p̂ci)

vanishes as n grows. We see that although for the I.I.D. model it seems to be the case, for

the Markov chain model we do not observe such a behaviour. Note that in Figure 2.4 the

range of values of T1(p̂ci)/2 differs for the considered models and is about 50 times smaller

for I.I.D. In Figure 2.5 we compare distributions of L(p̂ci), R(p̂ci), T1(p̂ci) and T2(p̂ci) for

one sample from each model. The approximation of L by R is satisfactory even for small

sample sizes e.g. n = 250 as the light gray filling (L) and the solid line (R) match. In the

top three panels we see that as n grows, the distribution of T2 (dashed line) becomes more

similar to the distributions of L and R and the distribution of T1 (dark gray filling) tends

to P (T1 = 0) = 1. In the bottom three panels the behaviour of T1 differs, as it seems to

have non-degenerate distribution at the limit and thus distribution at T2 differs from that

of L or R as R = T1 + T2.
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Chapter 3

Simulations

3.1. Conditional independence testing

In order to depict the asymptotic behaviour of the criteria presented in previous chap-

ters and to show their application in testing hypotheses of conditional independence, we

will run simulations described below.

3.1.1. Models M1 and M2: description

The first type of a model we investigate is generative tree model shown in the left

and the right panel of Figure 3.1. The models will be called M1 and M2, respectively.

To ease the notation, the number of covariates Z = ZS = (Z1, Z2, . . . , Z|S|) will be de-

noted by s = |S|. We will describe the models in detail by giving the formula for joint

distribution of (X, Y, Z1, Z2, . . . , Zs).

Y

Z1

X

Z2 Zs· · ·

Y

Z1

X

Z2 Zs· · ·

Figure 3.1: Generative tree models under consideration. The models in the left and right
panel are called M1 and M2, respectively.

Joint probability mass function p(x, y, z1, z2, . . . , zs) in the model M1 can be written

as follows:

p(x, y, z1, z2, . . . , zs) = p(y)p(z1, z2, . . . , zs|y)p(x|z1),

thus it is sufficient to define p.m.f. of Y and conditional p.m.f. of Z given Y and X given

Z1. First, Y is a Bernoulli random variable with probability of success P (Y = 1) = 0.5.
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Conditional distribution of  Z~i  and  Zi

0 γi−1 2 γi−1

fZ~i | Y=0

fZ~i | Y=1

P(Zi = 0 | Y = 0)
P(Zi = 0 | Y = 1)

Figure 3.2: The conditional distribution of Z̃i|Y = 0 and Z̃i|Y = 1, and the conditional
probability of Zi = 0 given Y .

We define auxiliary continuous variable Z̃ such that Z̃|Y = y follows multivariate nor-

mal distribution Ns(yγs,Σ), where γs = (1, γ, . . . , γs−1) and γ ∈ (0, 1], and covari-

ance matrix Σ has an autoregression structure with elements equal to σi,j = ρ|i−j|,

ρ ∈ [0, 1), i, j ∈ {1, 2, . . . , s} (if ρ = 0 then Σ is the identity matrix). In particular

Z̃i|Y = y ∼ N (yγi−1, 1) for i ∈ {1, 2, . . . , s}. Model (X, Y, Z̃1, Z̃1, . . . , Z̃s) was considered

in [23].

In order to obtain discrete variables Z from continuous Z̃ we define the distribution

of Z given Y = y in the following way

P (Z1 = z1, Z2 = z2, . . . , Zs = zs | Y = y)

= P

(
(−1)z1Z̃1 ≤

(−1)z1

2
, (−1)z2Z̃2 ≤

(−1)z2γ

2
, . . . ,

(−1)zsZ̃s ≤
(−1)zsγs−1

2

∣∣∣∣Y = y
)
,

where variables Z1, Z2, . . . , Zs take values in {0, 1}. Thus Zi takes value 0 or 1 depending

on whether corresponding Z̃i is smaller or larger then the mean of Z̃i equal to γi−1/2.

Namely, for i ∈ {1, 2, . . . , s} we have

P (Zi = 0) = P (Zi = 0|Y = 0)P (Y = 0) + P (Zi = 0|Y = 1)P (Y = 1)

= P

(
Z̃i ≤

γi−1

2

∣∣∣Y = 0

)
P (Y = 0) + P

(
Z̃i ≤

γi−1

2

∣∣∣Y = 1

)
P (Y = 1)

= P

(
Z̃i ≤

γi−1

2

)
=

1

2
.

This is illustrated in Figure 3.2. Note that for smaller values of γ, the densities of
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Z̃i|Y = 0 and Z̃i|Y = 1 become closer to each other and thus the influence of Y on the

distribution of Z̃i is weaker. Analogously, the distribution of X̃ given Z1 follows normal

distribution X̃|Z1 = z1 ∼ N (z1, 1) and X is determined by X̃ in the following way

P (X = 0|Z1 = z1) = P

(
X̃ ≤ 1

2

∣∣∣Z1 = z1

)

=

 ΦN (0,1)(
1
2
) if z1 = 0

ΦN (0,1)(−1
2
) if z1 = 1

≈

 0.69 if z1 = 0

0.31 if z1 = 1

and P (X = 1|Z1 = z1) = 1 − P (X = 0|Z1 = z1). Note, that the dependence structure

of M1 implies that X ⊥⊥ Y |Z, but not X ⊥⊥ Y . Moreover, when γ < 1, then for larger i

the variable Zi is less influenced by Y , whereas for γ = 1 the dependence between Y and

Zi is the same regardless of i for i ∈ {1, 2, . . . , s}. In general Zi are dependent given Y ,

except for ρ = 0, as in that case Σ is diagonal. The difference between M2 and M1 is that

the term p(x|z1) is replaced by p(x). There, X ⊥⊥ (Y, Z), thus p(x|z1) = p(x) and joint

distribution equals p(y)p(z1, z2, . . . , zs|y)p(x), where P (X = 0) = P (X = 1) = 0.5.

We would like to underline the link between the models we consider and graphical

models (see e.g. [7] Chapter 13 Graphical modeling, [33]). Separability in the presented

graphs is equivalent to separability with respect to its skeleton (the undirected graph

formed by removing directions of all the edges of the directed graph), thus we treat these

models as undirected graphs. A distribution satisfies global Markov condition with respect

to graph G (in which the nodes correspond to considered variables) if for any triple of

disjoint sets of nodes such that the two first are separated by the third, one has conditional

independence of two first sets of corresponding variables given the third set. For ρ = 0

this property holds for the distribution we described for graphs presented in Figure 3.1.

If besides the global Markov property the other implication holds as well, we say that the

distribution is faithful to the graph G, which means that all conditional independencies

can be read from the graphical separation. The faithfulness implies that if we enlarge the

conditioning set for conditionally independent variables, the conditional independence is

preserved for all triples of disjoint subsets of variables, thus e.g.

X ⊥⊥ Y |ZS1 ⇒ X ⊥⊥ Y |ZS2 for all S1 ⊆ S2 ⊆ S. (3.1)

In simulations we consider distributions both faithful to some graph and such which are
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Table 3.1: Numerically obtained values of asymptotic variance σ2 = DCrit(pci)
′ΣDCrit(pci)

with respect to resampling scenarios and criteria in models M1 and M2 for chosen param-
eters. DCrit(pci) is determined by the criterion and Σ is determined by the resampling
scenario.

Model Crit Boot. CI CR/Boot. X Perm.

Model M1 (γ = 1, ρ = 0, s = 3)

JMI2 0.01040 0.00906 0.00613
JMI3 0.00501 0.00435 0.00345
SECMI2 0.01804 0.01553 0
SECMI3 0.00269 0.00222 0

Model M2 (γ = 1, ρ = 0, s = 3)

JMI2 0 0 0
JMI3 0 0 0
SECMI2 0 0 0
SECMI3 0 0 0

Model M1 (γ = 1, ρ = 0.7, s = 3)

JMI2 0.00294 0.00258 0.00245
JMI3 0.00044 0.00039 0.00037
SECMI2 0.02297 0.01904 0.00860
SECMI3 0.00336 0.00270 0.00090

not (in Section 3.1.6 we give an example, for which (3.1) does not hold). In Figure 3.1

the models for ρ = 0 and γ > 0 are shown and in that case the joint probability distribu-

tions described above are faithful. For ρ ̸= 0 variables Zi are dependent given Y (which

is not indicated in Figure 3.1, as arrows between Zi are absent).

3.1.2. Asymptotic convergence: numerical analysis

We compute σ2 for each criterion and each resampling method numerically using

the formula (see Section 2.3)

σ2 = DCrit(pci)
′ΣDCrit(pci),

where Σ is an asymptotic covariance matrix for one of the resampling scenarios and DCrit

is a gradient of one of the criteria: JMI2, JMI3, SECMI2 (CIFE) and SECMI3. We

use here notation JMI2 and SECMI2 instead of JMI and SECMI to make the order

of the expansion explicit. By Crit = Crit(X, Y, ZS) we denote one of the listed criteria

and by Ĉrit, Ĉrit
∗

and Ĉritci we denote plug-in estimators of Crit based on p̂, p̂∗ and p̂ci,

respectively. The formula for σ2 in case of JMI2 and bootstrap CI or CR/bootstrap X

scenarios is given in the proof of Lemma 2.3.1 and Remark 2.3.2. In Table 3.1 we list

numerically obtained values of σ2 rounded to five decimal places for three distributions
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Figure 3.3: The comparison of the quantiles of
√
n(Ĉrit− Crit) and

√
n(Ĉrit

∗
− Ĉritci)

in model M1 (γ = 1, ρ = 0, s = 3). The gray ribbon denotes 90% interval of quantiles of√
n(Ĉrit

∗
− Ĉritci) and the gray dots denote the quantiles of its asymptotic distribution.

The red crosses denote quantiles of the asymptotic distribution of
√
n(Ĉrit−Crit). A solid

line correspods to x = y.

satisfying conditional independence of X and Y given Z, determined for models under

consideration. In the first model for considered parameters (M1: γ = 1, ρ = 0, s = 3

and M1: γ = 1, ρ = 0.7, s = 3) random variables
√
n(Ĉrit − Crit) converge to normal

distribution for all criteria, whereas in the second (M2: γ = 1, ρ = 0, s = 3) they converge

to 0 and 2n(Ĉrit−Crit) converges to quadratic form of a vector of normal variables, with

accordance to the values of σ2 shown in Table 3.1. Note that since asymptotic distribu-

tions of the criterion based on original samples and resampled samples for bootstrap CI

coincide, the former asymptotic distribution is determined by the value of σ2 given in
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Figure 3.4: The comparison of the quantiles of 2n(Ĉrit − Crit) and 2n(Ĉrit
∗
− Ĉritci)

in model M2 (γ = 1, ρ = 0, s = 3). The gray ribbon denotes 90% interval of quantiles of
2n(Ĉrit

∗
− Ĉritci). A solid line correspods to x = y.

Boot. CI column (equal or not equal to 0). In almost all cases the asymptotic distribu-

tion of
√
n(Ĉrit

∗
− Ĉritci) computed based on resampling scenarios is consistent with the

asymptotic distribution of criteria estimated based on sample, as both variances equal 0 or

are greater than 0 simultaneously. The exception is the result for permutation scenario for

SECMI2 and SECMI3 in the model for the first set of parameters presented in Figure

3.3, in which the distribution of the criteria based on sample is normal, whereas for per-

muted samples apparently is not normal. Thus, importantly, asymptotic law of criterion

based on resampled samples may depend on resampling scheme applied. In Figures 3.3 and

3.5 we show quantile-quantile plots comparing the distributions of
√
n(Ĉrit

∗
−Ĉritci) and

94



3.1. CONDITIONAL INDEPENDENCE TESTING

0.
05

0.
1

0.
02

5

●
●

●
●

●●●●●●
●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●●●●●● ● ●
●

●
●

●

0.
05

0.
1

0.
02

5

●
●

●
●

●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●●●●● ● ●
●

●
●

●

0.
05

0.
1

0.
02

5

●
●

●
●

●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●●●●● ● ●
●

●
●

●

0.
05

0.
1

0.
02

5

●
●

●
●

●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●●●●●●●●●● ●

●
●

●
●

Bootstrap CI CR Bootstrap X Permutation
JM

I2

0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1

−0.1

0.0

0.1

0.2

n
(C

rit
 *

−
C

rit
ci
)

0.
05

0.
1

0.
02

5

●
●

●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●●●●● ● ● ●
●

●
●

0.
05

0.
1

0.
02

5

●
●

●●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●●●●●●●●● ● ● ● ●
●

●

0.
05

0.
1

0.
02

5

●
●

●●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●●●●●●●●● ● ● ● ●
●

●

0.
05

0.
1

0.
02

5

●
●

●●●●
●●●

●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●●●●●●●●● ● ● ● ●
●

●

Bootstrap CI CR Bootstrap X Permutation

JM
I3

0.00 0.03 0.06 0.09 0.00 0.03 0.06 0.09 0.00 0.03 0.06 0.09 0.00 0.03 0.06 0.09

−0.05

0.00

0.05

0.10

n
(C

rit
 *

−
C

rit
ci
)

0.
05

0.
1

0.
02

5

●
●

●
●

●●●●●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●●●
●

●
●

●

0.
05

0.
1

0.
02

5●
●

●
● ●●●●●●●●●●

●●●
●●●

●●●
●●●●

●●●
●●●

●●●
●●●

●●●●●●●●●
●

●
●

0.
05

0.
1

0.
02

5●
●

●
● ●●●●●●●●●●

●●●
●●●

●●●
●●●●

●●●
●●●

●●●
●●●

●●●●●●●●●
●

●
●

0.
05

0.
1

0.
02

5

●
●

● ● ●●●●●●●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●●●●●●● ●

●
●

Bootstrap CI CR Bootstrap X Permutation

S
E

C
M

I2

−0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4
−0.50

−0.25

0.00

0.25

0.50

n
(C

rit
 *

−
C

rit
ci
)

0.
05

0.
1

0.
02

5

●
●

●
●●●●●●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●●●●●●●● ●
●

●
●

0.
05

0.
1

0.
02

5

●
●

●
●●●●●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●●●●●●● ●
●

●
●

0.
05

0.
1

0.
02

5

●
●

●
●●●●●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●●●●●●● ●
●

●
●

0.
05

0.
1

0.
02

5● ● ● ●●●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●●● ● ● ● ● ●

Bootstrap CI CR Bootstrap X Permutation

S
E

C
M

I3

0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2

−0.1

0.0

0.1

0.2

n(Crit − Crit)

n
(C

rit
 *

−
C

rit
ci
)

Figure 3.5: The comparison of the quantiles of
√
n(Ĉrit−Crit) and

√
n(Ĉrit

∗
−Ĉritci) in

model M1 (γ = 1, ρ = 0.7, s = 3) . The gray ribbon denotes 90% interval of quantiles of√
n(Ĉrit

∗
− Ĉritci) and the gray dots denote the quantiles of its asymptotic distribution.

The red crosses denote quantiles of the asymptotic distribution of
√
n(Ĉrit−Crit). A solid

line correspods to x = y.

√
n(Ĉrit−Crit) (in Figure 3.4 we compare 2n(Ĉrit

∗
− Ĉritci) and 2n(Ĉrit−Crit)). The

quantiles of
√
n(Ĉrit−Crit) are estimated based on 10000 samples consisting of n = 5000

observations and plotted on x-axis. In order to show the variability of estimation based

on each sample obtained through resampling, the following experiment was run N = 100

times: we draw a sample of n = 5000 observations from the given distribution, then we

draw B = 50 resampled samples from the original data and based on that we estimate

its quantiles. The 5th and 95th percentiles of the estimated distribution of quantiles for

resampling form a ’ribbon’ plotted against the quantiles of sample distribution. Addi-
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tionally, wherever possible, the quantiles of the theoretic asymptotic distribution of both
√
n(Ĉrit

∗
− Ĉritci) (gray points) and

√
n(Ĉrit−Crit) (red crosses) are shown. In Figure

3.4 instead of multiplying centered criterion by
√
n, we multiply Ĉrit by 2n to obtain

non-degenerate distribution. Vertical lines indicate 0.1, 0.05 and 0.025 quantiles. Figures

3.3-3.5 show that the accuracy of asymptotic approximation differs between criteria e.g. in

Figure 3.5 for SECMI2 the quantiles of asymptotic distribution of the sample and based

on resampling have similar values, whereas for the other criteria the approximation is not

accurate. On the other hand, the resampling scenarios behave in a similar way, although

the effect of smaller or vanishing asymptotic variance for permutation scenario can be

observed (in presented examples the effect of a smaller variance for CR and bootstrap X

scenarios is minimal). We note also that variability of quantiles of resampling distributions

increases with the order of the criteria.

3.1.3. Comparison of testing procedures

In this section we describe testing procedures based on conditional mutual informa-

tion and criteria and using asymptotic and exact approaches introduced in the previous

chapters.

Tests based on ĈMI

The first test we consider is a standard asymptotic test of conditional indepen-

dence based on conditional mutual information and on Theorem 1.4.2, which gives

the asymptotic distribution of ĈMI under the null hypothesis. In this approach

the test statistic ĈMI is compared with the quantiles of the χ2
d distribution, where

d = (|X | − 1)(|Y| − 1)|ZS|. We will call that test asymptotic. In the second test

(estimated df) we estimate the number of degrees of freedom d, d ∈ R+ (equal to the

expectation in case of χ2 distribution) based on samples of ĈMI
∗

in the following way:

d = 1
B

∑B
b=1 ĈMI

∗
b , where ĈMI

∗
b denotes ĈMI computed on bth resampled sample out

of B = 50. This test for permutations was described e.g. in [41]. In the third test (exact)

we compare the value of ĈMI with the quantiles of ĈMI
∗

i.e. the p-value is computed

in the following way

p-value =
1 +

∑B
b=1 I(ĈMI

∗
b > ĈMI)

B + 1
.
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This approach is justified in Section 2.2.2, as for all presented resampling methods ĈMI
∗

converges to the same distribution as ĈMI. Also, for CR another justification is given

in [8] and for permutation scheme the justification is given in Section 2.2.3.

Tests based on criteria

We will use also other criteria as test statistics. By ’criteria’ we refer to JMI2,

JMI3, SECMI2 and SECMI3 (the term criteria will not include CMI in the following).

As their asymptotic behaviour under the null hypothesis is dichotomous (the asymptotic

distribution is either normal or a distribution of the quadratic form in normal variables,

cf. Theorem 1.4.6), one of the considered testing procedures based on the criteria switches

between two parametric distributions in order to account for this dichotomy (test switch).

The switch is based on numerically obtained theoretical values of σ2 = D′
CritΣDCrit,

where DCrit is a gradient of Crit computed at p and Σ is a covariance matrix defined

in Theorem 1.4.6. Thus the test is not applicable in practice, as we do not know the

joint distribution. We include this test in our analysis for comparative purposes only.

If σ2 > 0, then we compare Ĉrit with a quantile of N (µ̂, σ̂2), where µ̂ = 1
B

∑B
b=1 Ĉrit

∗
b

and σ̂2 = 1
B−1

∑B
b=1(Ĉrit

∗
b − µ̂)2 and Ĉrit

∗
b denotes Crit computed for bth resampled

sample. In case when σ2 = 0, Ĉrit has distribution of a quadratic form and we use a

quantile of a distribution αχ2
d + β, where the parameters α ∈ R, β ∈ R and d ∈ R+

are estimated based on Ĉrit
∗

values using the method of moments as in [44]. In case

of the second test called approximation we consider simplified procedure. In that case

regardless of the true asymptotic distribution we estimate the resampled distribution by

fitting distribution αχ2
d+β. It is justified by noting that, as we use tests for finite samples

and for small to moderate number of observations, an asymptotic approximation might

be not accurate. We choose the distribution of the quadratic form, because the finite

sample distribution is skewed and thus fitted normal distribution might not approximate

large quantiles properly. The last test is also called exact as for CMI, because the test is

basically the same with CMI replaced by the criteria. Namely, the p-value is computed

in the following way

p-value =
1 +

∑B
b=1 I(Ĉrit

∗
b > Ĉrit)

B + 1
.

Note that in test exact if the significance level and the number of resampled samples

are fixed, then we can compute the empirical quantile of Ĉrit
∗
b and use it to construct
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rejection region, e.q. for α = 0.05 and B = 50 we reject the null if

1 +
∑50

b=1 I(Ĉrit
∗
b > Ĉrit)

51
< 0.05.

By transforming the equation we obtain

50∑
b=1

I(Ĉrit
∗
b > Ĉrit) < 1.55,

and hence we reject the null if

50∑
b=1

I(Ĉrit
∗
b ≤ Ĉrit) > 48.45.

Thus if Ĉrit ≥ Ĉrit
∗
(49) then the null is rejected, where Ĉrit

∗
(k) denotes kth order statistic.

In order to compare it with previous tests we note that to estimate the number of degrees

of freedom in estimated df for CMI, or three parameters of αχ2
d+β in approximation,

all values of Ĉrit
∗
b are used and the quantile is computed based on parametric distribution,

not just on one extreme order statistic. Therefore, the test based on semi-parametric ap-

proach might be more stable than the test exact, especially for small number of resampled

samples B.

We note that test exact is justified for any criterion considered in case of CR and permu-

tation scenario by results of Section 2.2.3. For bootstrap X and CI bootstrap scenarios

this test has heuristic justification only and its properties will be checked numerically.

The same concerns approximation test. We discuss this problem in the next section

when distributions of pvalues of the tests based on Ĉrit
∗
− Ĉritci and Ĉrit − Crit are

compared.

The experiments in Sections 3.1.4, 3.1.5 and 3.1.6 were run N = 200 times, thus for

each given joint distribution p(x, y, zS), we sampled 200 samples and each sample was

resampled B = 50 times. Thus each test, for which the size or power is estimated, was

run 200 times. The number of resampled samples is purposefully chosen to be B = 50

to compare efficacy of test exact with proposed procedures in such a case. In view of

[17] it seems appropriate when the significance level α equals 0.05. The authors analyse

the number of permutations needed to properly estimate p-values for testing procedures
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Figure 3.6: Attained significance level compared with the assumed one (α = 0.05) in
testing H0 : X ⊥⊥ Y |(Z1, Z2, . . . , Zs) in model M1 for γ = 1, ρ = 0, n = 500 versus s.

similar to the tests estimated df and approximation (they use generalized Pareto distri-

bution as a benchmark), and exact. Their conclusion is that for the procedure analogous

to estimated df and approximation usually requires fewer than 1/Pperm of resamples,

whereas for procedure analogous to test exact usually more than 1/Pperm permutations

is needed, where Pperm denotes p-value. Our aim is to obtain tests controlling type I

errors, not precise estimation of p-values, thus chosen number of resamples B = 50 seems

reasonable, as 1/α = 20 for α = 0.05.

3.1.4. Significance level

We estimated first test sizes for a predefined significance level α = 0.05 and checked if

they do not exceed α significantly in models M1 and M2. The analysed null hypothesis is
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Figure 3.7: The histograms show the distribution of p-values for tests based on ĈMI for
the model in Figure 3.6 (γ = 1, ρ = 0). The bars are 0.05 wide and their height denotes
the fraction of p-values in a given interval. Each sample consists of n = 500 observations
and histograms are based on N = 200 values.

H0 : X ⊥⊥ Y |Z1, Z2, . . . , Zs (3.2)

and both for M1 and M2 the above property is satisfied. In Figures 3.6 and 3.13 below

we present the results for all testing procedures and resampling scenarios for chosen set

of parameters. Figures 3.7-3.12 focus on problems revealed by Figure 3.6.

Figure 3.6 shows the dependence of estimated test sizes on the number of condi-

tioning variables. In general, for the tests based on criteria and ĈMI (except for test

asymptotic) for both CR and permutation scenario they do not exceed 0.1 and fluc-

tuate around the level α = 0.05. The most conservative approach based on criteria in

the setting of Figure 3.6 is the test using quantiles of Ĉrit
∗

(test exact), whereas the

most liberal is the procedure based on switch between the normal and the distribution of

quadratic form (test switch). Although the test based on modified chi-square distribution

(approximate) is asymptotically justified only in the situations, in which σ2 = 0, it seems

to have the appropriate size. The tests based on ĈMI (except test asymptotic) work also

for bootstrap CI and bootstrap X scenarios, but only for small s, and as s increases, the

asymptotic approximation becomes inaccurate. The reason of that is that there is smaller

average number of observations per cell and thus the approximation of the distribution
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Figure 3.8: The histograms show the distribution of p-values for tests based on ĈMI for
the model in Figure 3.6 (γ = 1, ρ = 0). The bars are 0.05 wide and their height denotes
the fraction of p-values in a given interval. Each sample consists of n = 5000 observations
and histograms are based on N = 200 values.

p(x|zS)p(y|zS)p(zS) based on fractions is less accurate. For example, when s = 8 the

number of distinct values of (x, y, zS) equals 210 and thus when n = 500 and for uniform

p(x, y, zS) we have 500/210 ≈ 0.5 observation per cell on average. When n = 5000, the av-

erage number of observations per cell equals 4.9. Compared to bootstrap CI, in bootstrap

X we estimate only p̂(x|zS), thus we only use (x, zS) and not (x, y, zS). Hence the number

of distinct values decreases twice and for this reason the number of observations per cell

in the example above equals approximately 1 and 9.8, respectively. Similar significance

levels are attained for the same set of parameters as in Figure 3.6 for model M2 (the plot

showing estimated test sizes with respect to s for M2 is omitted, but other results for this

model are shown in Figure 3.13).

In Figure 3.7 we show the histograms of p-values for ĈMI for all three testing pro-

cedures in model M1 (γ = 1, ρ = 0) for changing number of conditioning variables s.

For small s the distributions seem to be close to uniform, whereas for larger conditioning

sets all the p-values are in [0, 0.05] (tests exact and estimated df) or [0.95, 1] (test

asymptotic). For test asymptotic as the number of conditioning variables increases, the

fraction of rejections at first grows but then falls to 0. That effect can be seen in Fig-

ures 3.6 and 3.22 showing estimated test sizes, and in Figure 3.7 showing the distribution

101



CHAPTER 3. SIMULATIONS

s=3 s=4 s=5 s=6 s=7 s=8

N
on−

centered
C

entered

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.000

0.025

0.050

0.075

0.100

p−values

Model M1 (γ = 1, ρ = 0, n = 500) − H0

Distribution of p−values for the exact test based on SECMI2 and bootstrap CI

Figure 3.9: The histograms show the distribution of p-values for test exact and SECMI2
criterion for the model in Figure 3.6 (γ = 1, ρ = 0, n = 500) in bootstrap CI scenario for
centered and not centered test statistics. The bars are 0.05 wide and their height denotes
the fraction of p-values in a given interval.

of p-values. Discussing this issue, in [41] the authors assert that for small sample sizes

some triples (x, y, z) are not represented in data and thus probability of obtaining them

in resampling equals 0. In that cases the degrees of freedom should be adjusted. The

erratic behaviour in terms of the estimated test sizes and the power for tests based on

ĈMI might be also caused be the problems with precise estimation of the corresponding

criterion. When the number of observations per cell is small, many components of the

sum in the formula for ĈMI equal 0 as p̂(x, y, z1, z2, . . . , zs) = 0. The estimation of

the criteria requires less observations, as e.g. to compute ĴMI2 or ̂SECMI2 we use

p̂(x, y, zi) instead of joint distribution for the whole vector of zS. Thus instead of having

500/210 ≈ 0.5 observation per cell on average as in previous example for binary variables

and s = 8, we have 500/23 = 62.5 observations on average. In Figures 3.9 and 3.10 the

distribution of p-values for ̂SECMI2 and test exact are shown for the same parameters

as in Figure 3.7. In these plots the distribution for large s is not contained in the interval

[0, 0.05] and for centered statistics their distribution is closer to the uniform (for more

details see the discussion on Figures 3.9-3.11 below). This is due to a better approxi-

mation of the criteria than for CMI. We also note that when we increase the number

of observations, the distribution of p-values for ĈMI is closer to uniform. In Figure 3.8

the number of observations n = 5000, thus is ten times larger than in Figure 3.7 and the

presented histograms are indeed visually closer to the uniform.

In Figure 3.6 the sizes of tests based on criteria for bootstrap CI and bootstrap X fall

to 0. The histograms of p-values for SECMI2 in bootstrap CI and bootstrap X scenarios,
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Figure 3.10: The histograms show the distribution of p-values for test exact and
SECMI2 criterion for the model in Figure 3.6 (γ = 1, ρ = 0, n = 500) in bootstrap
X scenario for centered and not centered test statistics. The bars are 0.05 wide and their
height denotes the fraction of p-values in a given interval.
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Figure 3.11: The histograms show the distribution of p-values for test exact and
SECMI2 criterion in for the model in Figure 3.6 (γ = 1, ρ = 0 and s = 4) in bootstrap
CI scenario for centered and not centered test statistics versus n. The bars are 0.05 wide
and their height denotes the fraction of p-values in a given interval.
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Figure 3.12: The histograms show the distribution of p-values for test exact and
SECMI2 criterion for the model in Figure 3.6 (γ = 1, ρ = 0 and s = 4) in bootstrap
X scenario for centered and not centered test statistics versus n. The bars are 0.05 wide
and their height denotes the fraction of p-values in a given interval.
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Figure 3.13: Attained significance level compared with the assumed one (α = 0.05) in
testing H0 : X ⊥⊥ Y |(Z1, Z2, . . . , Zs) in model M2 for γ = 1, s = 3 and n = 500 versus ρ.

for which this effect is the most noticeable are shown in Figures 3.9 - 3.12 in the top panels.

The histograms of p-values under the null hypothesis should approximate the density of

the uniform distribution, but the p-values are more concentrated around the center of

the interval. One of the reason for that effect was mentioned above: as s grows the ratio

n/s became smaller and thus expected number of observations per cell is insufficient to

apply asymptotic approximation as for ĈMI. But in this case, the main reason for that

is that the asymptotic distributions hold for centered criteria. Thus comparing quantiles

of Ĉrit
∗
− Ĉritci and Ĉrit−Crit is justified, whereas comparing quantiles of Ĉrit

∗
with

Ĉrit is based on heuristic reasoning. In Figures 3.9 - 3.12 we show p-values computed

for the exact test in which we use centered (Ĉrit
∗
− Ĉritci and Ĉrit − Crit), and not

centered (Ĉrit
∗

and Ĉrit) test statistics. In case of bootstrap CI asymptotic distribution
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of Ĉrit
∗
− Ĉritci in case of σ2 > 0 is the same as Ĉrit − Crit, but it is not the case for

bootstrap X, as for that scenario σ2 for the criterion computed on a resampled sample is

smaller than σ2 for the criterion based on a sample. This explains that even for centered

statistic the distribution is not uniform in Figure 3.10.

We stress that the approach based on centered statistics is not applicable in practise.

Although we can approximate the distribution of Ĉrit−Crit using Ĉrit
∗
− Ĉritci as both

Ĉrit
∗

and Ĉritci can be computed based on a resampled sample, we do not know the

value of Crit under H0 in general. In case of CMI the situation is easier, as assuming

conditional independence of X and Y given Z, we have I(X, Y |Z) = 0. For criteria

similar conclusions do not hold under X ⊥⊥ Y |ZS, e.g. for JMI we have the equivalence

JMI = 0 ⇐⇒ X ⊥⊥ Y |Zi for all i ∈ S. Note, however, that for faithful distribution we

have an implication (see (3.1))

X ⊥⊥ Y |Zi ⇒ X ⊥⊥ Y |ZS,

hence in that case JMI = 0 implies X ⊥⊥ Y |ZS.

Y (Y )

Z
(Z1)

1 Z
(Zs)

s Z
(X)

s+1
· · ·

(a) Model used in testing H0,1

Y (Y )

Z
(Z1)

1 Z
(Zs)

s Z
(X)

10
· · ·

(b) Model used in testing H0,3

Y (Y )

Z1

X(X)

Z
(Z1)

2 Z
(Zs)

s+1
· · ·

(c) Model used in testing H0,2

Figure 3.14: The models used to estimate the power of the procedures. The models are
generated as model M1 described in Section 3.1.1. The variables considered in the null
hypotheses H0,1 - H0,3 in terms of (3.2) are in gray color.

In Figure 3.13 the number of conditioning variables equals 3 and attained level of

significance does not exceed 0.05 significantly for a grid of values of the parameter ρ. The

results presented in Figure 3.13 for model M1 instead of M2 are analogous. The same
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is harder to reject.

conclusion can be drawn for models in which γ changes, whereas ρ is fixed and s is fixed

and small enough.

3.1.5. Power

In this section we show the results on power for testing various null hypotheses in

models M1 and M2, when they do not hold. We consider three hypotheses H0,1, H0,2 and

H0,3 (we analyse H0,2 only in model M1 as in model M2 we have X ⊥⊥ (Y, Z1, Z2, . . . , Zs)):

H0,1 :Zs+1 ⊥⊥ Y |Z1, Z2, . . . , Zs,

H0,2 : X ⊥⊥ Y |Z2, Z3, . . . , Zs+1,

H0,3 : Z10 ⊥⊥ Y |Z1, Z2, . . . , Zs, s < 10.

Obviously, null hypotheses above are special cases of the general CI hypothesis (3.2) for

specific choices of X and conditioning set. In Figure 3.14 the choices of the variables

for the above hypotheses are shown in terms of (3.2) in brackets and in gray color. The

values of conditional mutual information for corresponding parameters settings and mod-

els from the null hypotheses i.e. I(Zs+1, Y |Z1, Z2, . . . , Zs), I(X, Y |Z2, Z3, . . . , Zs+1) and

I(Z10, Y |Z1, Z2, . . . , Zs) are shown in Figure 3.15. Rejection of the null hypothesis should

be easier, the larger the values of conditional mutual information are.

When s and ρ are fixed and we change the value of γ, the dependence between Zi

and Y for i > 1 is weaker for smaller γ. In the boundary case, if γ = 0 and ρ = 0, Y

and Zi for i > 1 are independent. We recall that for ρ = 0 variables Zi for i = 1, 2, . . . , s
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Figure 3.16: The power with respect to s for the testing procedures in testing H0,1 in
model M1 for γ = 0.9, ρ = 0 and n = 500.

are independent given Y . When the number of conditioning variables grows and the

rest of parameters is unchanged, the problem becomes more difficult as we obtain more

information from the conditioning set and thus the information about Y included in X

decreases. In Figure 3.16, showing the power of procedures for testing H0,1, the marginal

dependence between Y and Zs also changes. Thus in that example as s grows, the null

becomes harder to reject for two reasons: the conditioning set grows and the marginal

dependence between Y and Zs decreases as s grows. For that reason we also consider

the hypothesis H0,2 and H0,3 in which only the number of conditioning variables changes.

When γ and s are fixed and ρ varies, it is the most easy to reject the null when variables

Z1, Z2, . . . , Zs are independent given Y . Indeed, in that case no extra information is

provided about Z1 through conditioning by Z2, Z3, . . . , Zs. As the value of ρ increases, the
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Figure 3.18: The power with respect to s for df estimation test based on CMI and
approximation based on the criteria in testing H0,2 in model M1 for γ = 0.9, ρ = 0 and
n = 500.

more we know about Z1 looking at Z2, Z3, . . . , Zs and thus given Z2, Z3, . . . , Zs, variable

Z1 itself contains less information about Y .

The results for testing H0,1 are presented in Figures 3.16-3.17 and 3.20-3.21. In each

figure the dependence of power of testing procedures on s (two first figures), γ and ρ is

shown. In Figures 3.18 and 3.19 the dependence on s is shown for testing H0,2 and H0,3,

respectively. The parameter γ in Figures 3.16-3.17 and 3.18 has the same value γ = 0.9,

whereas in Figure 3.19 we consider γ = 0.95. For γ = 0.9 the distributions of Z̃10|Y = 0

and Z̃10|Y = 1 are N (0, 1) and N ((0.9)9, 1) ((0.9)9 ≈ 0.39) respectively, thus the depen-

dence between Z10 and Y is weak. In that case the differences between procedures are

not pronounced. For γ = 0.95 distributions are N (0, 1) and N ((0.95)9, 1), respectively

((0.95)9 ≈ 0.63), thus the problem becomes easier which makes the comparison of methods

possible.

In Figure 3.16 the behaviour of all procedures is compared. In the remaining plots we
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Figure 3.20: The power with respect to γ for estimated df test based on CMI and
approximation based on the criteria in testing H0,1 in model M1 for s = 4, ρ = 0 and
n = 500.

compare only estimated df test for CMI and approximation test for the criteria as the

semi-parametric procedures works better than the test exact and they are applicable in

practice (we recall that test switch is not). In case of CMI the asymptotic distribution

of 2nĈMI is χ2
d and thus in the semi-parametric approach in which we use chi-square

distribution as a benchmark, just the estimation of the number of degrees of freedom is

needed, whereas for the criteria the situation is more complicated as we need to center

the test statistic in order to obtain convergence to the distribution of the quadratic form

in normal variables and thus we use more flexible distribution proposed in [44]. Note

that in Figure 3.16 the markings of the test procedures are the same as in plots showing

significance level, but they differ from the markings in plots, where only estimated df

test and approximation for four criteria are shown (both in colors and in shapes).

The results for the power of testing procedures shows similar pattern to those of the

results for significance level. The power of approximation procedure is usually between
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Figure 3.21: The power with respect to ρ for df estimation test based on CMI and
approximation based on the criteria in testing H0,1 in model M1 for γ = 1, s = 4 and
n = 500.

the power of switch, which is the largest, and exact (cf. Figure 3.16). We also notice

that as for large s the nominal significance level for CMI and bootstrap CI/bootstrap X

is significantly exceeded (see Figure 3.13), the power of these procedures also grows, and

the test is not reliable in that cases. For s ≥ 7 the test asymptotic cannot reject the

null hypothesis due to the problems with estimating joint probability p̂(x, y, zs) discussed

before, which can be also observed in Figure 3.13, where the attained significance level

equals 0, although the assumed significance level equals α = 0.05.

Figures 3.18 and 3.19 show how the estimated power changes when the conditioning

set grows in testing H0,2 and H0,3 respectively. The results are similar to the one obtained

in testing H0,1 (cf. Figure 3.16 and 3.17), but there the true value of CMI decreases

slower with increasing s than in testing H0,1 (see left panel of Figure 3.15). In both

settings for CR and permutation scenario, JMI2 and JMI3 work the best followed by

SECMI2 and SECMI3. The power of CMI, although it starts approximately from the

same point as the power of SECMI3 for s = 3, decreases faster and thus the test based

on CMI is the weakest.

The conclusion from the results presented in Figures 3.20 and 3.21 is that in these

cases the criteria JMI2 and JMI3 outperform other procedures. Test based on CMI

usually works worse than all the criteria with an exception of that case in Figure 3.21,

where SECMI2 has the lowest power.

3.1.6. Analysis of high-order interaction model

In the previous examples the second order criteria JMI2 and SECMI2 had an advan-

tage as one can detect conditional dependencies conditioning just on one variable e.g. in
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Figure 3.22: Attained significance level with respect to s compared with the assumed one
(α = 0.05) in testing H0,4 in XOR3 model for β = 0.7 and n = 500.

model used in H0,1 we have I(Zs+1, Y |Zi) > 0 for all i ∈ {1, 2, . . . , s}. Therefore here we

investigate how the criteria behave in the scenario in which only high-order interactions

appear. The model is based on three-dimensional XOR of two conditioning variables and

X. The distribution of Y is as follows:

P (Y = 1|X + Z1 + Z2 =2 1) = P (Y = 0|X + Z1 + Z2 =2 0) = β,

where 0.5 < β < 1 and =2 denotes addition modulo 2. For β = 1 we obtain deterministic

XOR based on three variables. We also introduce variables Z3, Z4, . . . , Zs independent of

(X, Y, Z1, Z2) . All variables X,Z1, Z2, . . . , Zs are binary with the probability of success

equal to 0.5 and are independent. We will call this model XOR3.
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Figure 3.23: Power with respect to s of the testing procedures in testing H0 in XOR3
model for β = 0.7 and n = 500.

We consider two hypotheses in XOR3 model:

H0,4 : X ⊥⊥ Y |Z2, Z3, . . . , Zs+1 (3.3)

and

H0 : X ⊥⊥ Y |Z1, Z2, . . . , Zs. (3.4)

The first null holds as without fixing Z1, X does not provide any information about Y

since the result of X +Z2 modulo 2 does not determine the result of X +Z1+Z2 modulo

2 in any way. On the other hand, the second hypothesis H0 should be rejected as the

triple (X,Z1, Z2) affects the distribution of Y and thus X and Y are not independent

given (Z2, Z3).
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In Figure 3.22 the attained level of significance for (3.3) is compared with the assumed

one (α = 0.05). All tests using CR and permutation scenario do not significantly exceed

the assumed level. The behaviour of the test asymptotic is similar as in Figure 3.13 -

as the conditioning set grows, at first the fraction of rejections increases and then it falls

to zero. The problems described in the previous section (see Figure 3.13) for procedures

based criteria, and exact and estimated df for CMI also occur in this case.

The power of testing H0 in case of (3.4) for β = 0.7 is shown in Figure 3.23. The

plots show that in the situations, in which it is impossible to detect the dependence based

on conditioning by one variable, the criteria JMI2 and SECMI2 do not work at all,

whereas their third-order counterparts and CMI detect the dependence in most of cases.

The test based on SECMI3 outperforms other procedures, i.e. for s = 7, 8 test based on

CMI rejects null less often than the one using SECMI3.

Note that also Figure 3.21 corresponds to occurrence of higher order interaction as

when ρ > 0 the variables (Z1, Z2, . . . , Zs) are dependent. In that case SECMI3 also

outperforms SECMI2 in CR and permutation scenarios. JMI2 and JMI3 yield similar

results.

3.2. Global null for individual hypotheses of conditional

independence

We recall that the global null defined in Section 1.4.2 is a hypothesis H0 : ∩s
i=1H0,i,

where individual hypotheses assert that the conditional independence

H0,i : X ⊥⊥ Y |Zi, (3.5)

holds for i = 1, . . . , s. To test H0 we use ĴMI and its asymptotic distribution under

the null hypothesis which is given in Theorem 1.4.11, and compare it with behaviour of

generic tests introduced below.

3.2.1. Test based on ĴMI

For a given sample drawn from p(x, y, z) we calculate ĴMI and plug-in estimator

M̂ of a matrix M defined in Theorem 1.4.11. We use now the fact that the asymp-

totic distribution W of ĴMI under H0 given in (1.46) is determined by the eigenvalues
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λi(M) and we approximate them by Ŵ plugging in λi(M̂) for λi(M), where λi(M̂) are

numerically calculated. Then the rejection region for a given significance level α is given

by {ĴMI ≥ qŴ ,1−α}, where qŴ ,1−α is quantile of the order 1 − α of Ŵ . A function

eigen from R package base has been used to calculate the eigenvalues and package

CompQuadForm ([11]) is used for quantiles of Ŵ .

Note that this approach is also possible for CI testing discussed previously, but have

not been attempted due to time constraints.
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Figure 3.24: Left: Box-plots of the empirical values λi(M̂), i = 1, . . . , 128 for model M1
(n = 500, s = 5, γ = 1, ρ = 0). Eigenvalues λi(M) approximately equal to 0 (multiplicity
118), 0.029 (multiplicity 4), 0.2 (multiplicity 5) and 0.883 (multiplicity 1) are marked by
the horizontal lines. Right: values of theoretical CDF, the empirical CDF of ĴMI and
the average of CDFs corresponding to λi(M̂) for the values of JMI greater than 0.95th
quantile of ĴMI.

3.2.2. Generic methods

We use three generic methods which are designed to control type I error while per-

forming multiple tests, namely Bonferroni correction, Simes method and Fisher test (see

e.g. [12], [38] and [14]).

i) Bonferroni correction (Bonferroni). The null hypothesis H0 is rejected when

mini pi ≤ α/s, where s is the number of tests performed. Probability of type I error

is bounded by α and p1, p2, . . . , ps are p-values of individual tests. The correction is

known to work well when the test statistics used to test individual hypotheses are

independent, but in a general case is conservative leading to the low power when

H0 fails. Bonferroni’s method controls the Type I error rate for both independent
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and dependent p-values. Individual tests applied here are ĈMI-based tests based on

chi-square benchmark distribution (test asymptotic from the previous section).

ii) Simes method (Simes). P-values of individual test p1, p2, . . . , ps are calculated and

ordered: p(1) ≤ p(2) ≤ · · · ≤ p(s). H0 is rejected when for certain i ≤ s we have

p(i) ≤ iα/s, or equivalently if mini p(i)/i ≤ α/s. Individual tests considered are the

same as for Bonferroni correction method. The Simes correction was proven to satisfy

the following inequality

PH0(min
i

p(i)/i ≤ α/s) ≤ α (3.6)

for independent p-values having uniform distribution and then it was generalised

to cases in which test statistics are dependent. Namely, in [34] it is shown that

(3.6) holds for p-values that satisfy MTP2 (multivariate totally positive of order two)

condition and have common marginal distribution (Proposition 3.1 in [34]).

iii) Fisher’s combination test (Fisher). P-values of individual test p1, p2, . . . , ps are

combined into one statistic T = −
∑s

i=1 2 log(pi). If under the null p-values are

uniformly distributed and independent, then T ∼ χ2
2s. The global null is rejected

when T > χ2
2s(1− α), where χ2

2s(α) denotes an α-quantile of χ2
2s distribution.

Note that the individual tests in the procedures discussed above have assumed level of

significance only approximately, as we do not know the exact distribution of the test

statistic for finite sample and we use asymptotic distribution instead.

In simulations below we repeat each experiment N = 5000 times.

3.2.3. Simulations

We considered models M2 and M1 to study the actual type I error and power, re-

spectively. In model M1 the null hypothesis is not satisfied as X is not independent

of Y given Zi, where i ∈ {2, . . . , s}. Only X ⊥⊥ Y |Z1 holds, thus in the global null

s − 1 individual hypotheses are violated. The situation is different in model M2, where

X ⊥⊥ (Y, Z1, Z2, . . . , Zs), thus in this case all individual conditional independence hy-

potheses hold.

The eigenvalues of the estimated matrix M̂ approximate very closely the eigenvalues

of the theoretical matrix M . In Figure 3.24 true values of eigenvalues for M are marked
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Figure 3.25: Actual test sizes and power of testing procedures for varying parameters in
testing global null hypothesis.

by horizontal lines (their number is given on the right side of the plot) and their sorted

sample counterparts by boxplots. The middle part of the plot (between λ15 and λ122) is

truncated, as the values in the middle are close to 0. Note that as s = 5, the number

of the unique values of triples (x, y, zS) equals 27 = 128, thus the number of eigenvalues

also equals 128. On the left panel of Figure 3.24 the plots of the averaged CDFs based

on eigenvalues λi(M̂) (with 90% confidence interval), CDF using eigenvalues λi(M) and

empirical CDF of ĴMI are shown for quantiles of orders larger than 0.95. They almost

overlap for n = 500, hence such sample size in that case is sufficient to ensure the adequate

approximation of the distribution of ĴMI by its approximate asymptotic counterpart.

In Figure 3.25 both estimated test sizes (top plots) and power (bottom plots) are

shown. In the top row the results for the model M2 are shown, as in that model the

global null holds, whereas in the bottom row there are results in model M1 in which the

alternative to the null is true. The results in columns are presented for the same sets of

parameters. All procedures except for Fisher do not exceed significance level significantly.

The size of Fisher test is around 3 times assumed level, which might be caused by the

fact, that the individual tests and their p-values are not independent. Similar effects are

discussed in [2] (see Theorem 1 there). Considering the power, the procedure based on
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Figure 3.26: ROC-type curves for three chosen scenarios and AUC for varying parameters
in testing global null hypothesis.

ĴMI works the best, when Fisher test is omitted due to lack of control of significance

level. The tests are analysed more objectively in Figure 3.26 using ROC-type curves. In

the top row there are ROC-type curves for all the procedures. ROC-type curves are based

on two models: the one for which H0 holds (model M2) and the second for which H1 is

true (model M1), and they report the actual type I error and the power approximated

by means of simulations for varying α. For each hypothesis the equal number of samples

(N = 5000) are generated and for each sample p-values is calculated. Then all the p-values

are sorted and the number of I type errors and valid rejections are computed. Thus in

fact in this way we compare the ability of the procedures to distinguish between the null

hypothesis and the alternative in a given two models scenario.

As the ROC-type curves can be plotted only for all parameters fixed for both consid-

ered models, in the bottom row the results for AUC (Area Under the Curve) are presented

for parameter values corresponding to Figure 3.25. In most cases the test based on ĴMI

outperforms other methods even after significance level adjustment. Fisher test is better

only in the case in which conditioning variables are highly correlated.

Bonferroni and Simes methods are known to perform well when there is strong evidence

against a few individual null hypotheses, whereas Fisher test is designed to detect weak
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violations of multiple null hypotheses. As the proposed method based on ĴMI similarly

to Fisher test averages evidence against the null, we expect it to perform the best in the

same cases as the Fisher method. In examples presented in Figure 3.25 in the bottom

panel where the power is shown, all the individual hypotheses are violated except for one,

as for all i ∈ {2, 3, . . . , s} X is not independent of Y given Zi. More examples including

models, in which there are a few strong signals (and thus in these cases Bonferroni and

Simes procedure should work better) are presented in [24].

3.3. Summary of experiments

In this chapter we applied the results obtained in the previous chapters for testing

hypotheses. We considered two types of null hypotheses: conditional independence hy-

pothesis

H0 : X ⊥⊥ Y |ZS

and globall null hypothesis

H0 : ∩s
i=1H0,i, where H0,i : X ⊥⊥ Y |Zi.

First we summarize results concerning conditional independence testing. In Section 3.1

resampling scenarios, criteria and conditional mutual information, and testing procedures

were analysed. Testing based on the considered criteria differs from CMI-based testing.

Test exact for CMI is asymptotically justified for all resampling scenarios and justified for

finite samples for CR and permutation scenario. As for bootstrap CI and bootstrap X the

justification for CMI-based test is only asymptotic, the problems with controlling type I

error arise when the number of observations per cell is small and thus the precise estima-

tion of p̂(x|zS)p̂(y|zS)p̂(zS) or p̂(x|zS) is difficult to achieve. The issue related to small n/s

ratio (or, more exactly, ratio of n to the number of values of (X, Y, Z)) affects the estima-

tion of CMI based on sample and resampled samples for all resampling scenarios and all

testing procedures as they all require an estimator of joint probability p(x, y, zS). Thus

there is a need to consider surrogate test statistics that are more adequately estimated.

For this reason we also included the criteria in our study. The considered criteria have an

advantage over CMI that they require only estimators of p(x, y, zi) (in the case of second
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order criteria) or p(x, y, zi, zj) (in the case of third order criteria) instead of an estimator

of the joint distribution of (X, Y, ZS). On the other hand, the asymptotic justification

of the tests based on criteria fails in most cases. Firstly, if the asymptotic distribution

of the resampled-based estimator of the criterion is normal than its variance might be

different from its sample counterpart for all resampling scenarios except bootstrap CI.

Secondly, when resampled-based statistics does not converge to normal distribution, its

asymptotic law might differ significantly from the law of the statistics based on an orig-

inal sample. What is more, the asymptotic distribution of criterion based on resampled

samples may depend on resampling scheme applied, thus differences are not only between

samples and resampled samples but also between resampled samples themselves. These

issues are illustrated by the plots in Section 3.1.2. Thirdly, as the simulation study shows

(see Section 3.1.4 in which controlling significance level is investigated), the centering in

limit theorems is needed and cannot be omitted without consequences. The finite sample

justification for criteria holds for CR and permutation scenario, thus we focus on these

two approaches. The criteria usually outperform tests based on CMI for these two re-

sampling scenarios. Usually lower-order criteria work better than higher order criteria (as

predominantly, higher order interactions occur when lower order interactions are present

usually the former are weaker than the latter), but in the models with only higher-order

interactions between variables, the higher-order criteria are superior. Therefore, choosing

the appropriate test statistics for dependence structure of given data is crucial. When we

have prior knowledge about the data, the choice might be based on it, but in general it is

an open question how to choose the test statistics adaptively. For the parametric models

considered in this study ĴMI based tests has shown overall good performance.

The problem of distinguishing between situations, in which the estimator based on

criteria converges to normal or to quadratic form in normal variables, simplifies for ĴMI

when Y is a binary random variable. Also, in case when the asymptotic distribution is

the distribution of quadratic form, the centering is not needed. We used these facts to

construct a test for testing global null consisting of conditional independence tests. The

test works better than other procedures in situations, in which weak evidence against

multiple null hypotheses. We also note that in some cases the global null might be used

as a proxy for testing conditional independence of X and Y given ZS. E.g. for faithful

distributions if the global null holds, then X ⊥⊥ Y |ZS. In fact, if any of the individual
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hypotheses holds, then X ⊥⊥ Y |ZS. On the other hand, if the global null is false, then the

conditional independence given ZS still might happen, as one true individual hypothesis

is sufficient to obtain the conditional independence of X and Y given ZS.



Appendix A

Theorems

A.1. Lemma used in Chapter 1

Lemma A.1.1 below and its proof comes from [20].

Lemma A.1.1. Let Y ∈ {0, 1} be a binary random variable and X,Z ∈ N+ be discrete

variables. If for all y ∈ {0, 1} and x, z ∈ N+ we have:

P (X = x, Y = y|Z = z)

P (X = x|Z = z)P (Y = y|Z = z)
= axy, (A.1)

where axy > 0 does not depend on z, then at least one of the following possibilities holds:

1) Y and Z are independent and Y and Z are conditionally independent given X, for all

x, y:

axy =
P (X = x, Y = y)

P (X = x)P (Y = y)
,

where axy ̸= 1 for some x, y (hence X and Y are not independent).

2) X and Y are conditionally independent given Z and axy = 1 for all x, y.

Conversely, if either of the above conditions is true then (A.1) holds.

Proof. First we observe that for all x, z ∈ N+ we have

1∑
y=0

axyP (Y = y, Z = z) = P (Z = z)
1∑

y=0

axyP (Y = y|Z = z)

= P (Z = z)
1∑

y=0

P (X = x, Y = y|Z = z)

P (X = x|Z = z)
= P (Z = z). (A.2)
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This means that for all x we have

1∑
y=0

axyP (Y = y) =
∑
z∈N+

1∑
y=0

axyP (Y = y, Z = z)

=
∑
z∈N+

P (Z = z) = 1. (A.3)

Hence

ax1 =
1− ax0P (Y = 0)

P (Y = 1)
. (A.4)

From (A.2) it follows that for all x we have

P (Z = z) = P (Y = 0, Z = z)ax0 + P (Y = 1, Z = z)ax1,

P (Z = z) = P (Y = 0, Z = z) + P (Y = 1, Z = z).

(A.5)

Subtracting second equation from the first and using (A.4) yields

0 = P (Y = 0, Z = z)(ax0 − 1) + P (Y = 1, Z = z)

(
1− ax0P (Y = 0)

P (Y = 1)
− 1

)
= P (Y = 0, Z = z)(ax0 − 1) + P (Y = 1, Z = z)(1− ax0)

P (Y = 0)

P (Y = 1)
.

We have two cases:

1) If ax0 ̸= 1 for some x (note that ax0 = 1 is equivalent to ax1 = 1 in view of (A.4)),

then the above equation reduces to:

P (Y = 0, Z = z) = P (Y = 1, Z = z)
P (Y = 0)

P (Y = 1)
. (A.6)

This yields

P (Z = z) = P (Y = 0, Z = z) + P (Y = 1, Z = z)

= P (Y = 1, Z = z)

(
1 +

P (Y = 0)

P (Y = 1)

)
=

P (Y = 1, Z = z)

P (Y = 1)
.

Analogously, we obtain

P (Z = z) =
P (Y = 0, Z = z)

P (Y = 0)
. (A.7)
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Thus Y and Z are independent. This means that P (Y = y, Z = z) = P (Y = y)P (Z = z).

Inserting this equation into (A.1) yields

axy =
P (X = x, Y = y, Z = z)

P (X = x, Z = z)P (Y = y)
. (A.8)

Equivalently,

axyP (X = x, Z = z) =
P (X = x, Y = y, Z = z)

P (Y = y)
.

Hence

axyP (X = x) =
∑
z

axyP (X = x, Z = z) =
∑
z

P (X = x, Y = y, Z = z)

P (Y = y)

=
P (X = x, Y = y)

P (Y = y)
.

It follows that

axy =
P (X = x, Y = y)

P (X = x)P (Y = y)
.

Thus, inserting this into (A.8), we obtain

P (X = x, Y = y, Z = z)

P (X = x, Z = z)P (Y = y)
=

P (X = x, Y = y)

P (X = x)P (Y = y)
,

what is equivalent to conditional independence of Y and Z given X.

2) If ax0 = 1 for all x, then in view of (A.4) we obtain ax1 = 1 for all x. This implies

conditional independence of (X, Y ) given Z. To see the converse note that axy in (A.1)

equals 1 when 2) is true and axy = p(x, y)/(p(x)p(y)) when 1) holds.

A.2. Theorems used in Chapter 2

Theorem A.2.1 (Multivariate Berry-Esseen theorem [4]). Let Q1, Q2, . . . , Qn ∈ Rd be

random independent vectors having zero mean. Let W =
∑n

i=1Qi, Cov(W ) = I and

Z ∼ N (0, I). Then for all convex A there exist a positive constant Kd (which depends on

the dimension d) such that

|P (W ∈ A)− P (Z ∈ A)| ≤ Kd

n∑
i=1

E||Qi||3
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and Kd = cd1/4 (c is an absolute positive constant not depending on dimension).

Theorem A.2.2 (Normal approximation to the hypergeometric distribution [21]). Let Xr

be a random variable having the hypergeometric distribution with parameters (nr,Mr, Nr),

namely

P (Xr = x) =

(
Mr

x

)(
Nr−Mr

nr−x

)(
Nr

nr

)
and r ∈ N . We denote the sampling fractions by pr = Mr

Nr
and fr = nr

Nr
. We assume

1 ≤ Mr < Nr and 1 ≤ nr < Nr and N−1
r = o(1) as r → ∞. Let σ2

r = Nrpr(1−pr)fr(1−fr).

Then there exits a normal random variable W ∼ N (µ, σ2) such that

sup
x∈R

∣∣∣∣P (Xr − nrpr
σr

≤ x

)
− P (W ≤ x)

∣∣∣∣→ 0 as r → ∞

if and only if

σ2
r → ∞ as r → ∞ (A.9)

When (A.9) holds, one must have µ = 0 and σ = 1.
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List of Symbols

X, Y , Z discrete random variables

X , Y , Z supports of random variables X, Y and Z, respectively

ZS vector of random variables such that their indices are in the set S
(when S = {1, 2, . . . , |S|}, then ZS = (Z1, Z2, . . . , Z|S|))

p(x, y, z) joint distribution of the triple of random variables (X, Y, Z);
also P (X = x, Y = y, Z = z)

pci(x, y, z) joint distribution of the triple of random variables (X, Y, Z) fac-
torised in the following way: p(x|z)p(y|z)p(z) (ci stands for condi-
tional independence)

p̂(x, y, z) estimator of the joint distribution of (X, Y, Z) based on fractions

p̂∗(x, y, z) estimator of the joint distribution of (X, Y, Z) computed for resam-
pled sample based on fractions

n(x, y, z) number of observed triples (x, y, z) in a sample,
i.e. n(x, y, z) =

∑n
i=1 I(Xi = x, Yi = y, Zi = z)

n∗(x, y, z) number of observed triples (x, y, z) in a resampled sample,
i.e. n∗(x, y, z) =

∑n
i=1 I(X∗

i = x, Y ∗
i = y, Z∗

i = z)

(p(x, y, z))x,y,z vector of probabilities for all the triples (x, y, z) such that
(x, y, z) ∈ X × Y × Z

PK Kirkwood superposition approximation of the distribution P (Def-
inition 1.2.3)

d−→ convergence in distribution

op(zn) random variable of smaller order than zn: P (|op(zn)/zn| ≤ ε) → 0
as n → +∞

Σ covariance matrix

Σx′,y′,z′
x,y,z element of a matrix Σ with row index (x, y, z) and column index

(x′, y′, z′), where (x, y, z), (x′, y′, z′) ∈ X × Y × Z
x′, Σ′ transpose of a vector x and a matrix Σ, respectively
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Df (x) gradient of a function f at x

Hf (x) Hessian of a function f at x

H0, H1 null and alternative hypotheses, respectively

B.1. Information-theoretic measures

H(X) entropy of random variable X (Definition 1.1.1)

H(X|Y ) conditional entropy of random variable X given Y (Defini-
tion 1.1.2)

I(X, Y ), MI mutual information of random variables X an Y (Defini-
tion 1.1.4)

I(X, Y |Z), CMI conditional mutual information of random variables X and Y
given Z (Definition 1.1.5)

II(X, Y, Z) 3-way interaction information of random variables X, Y and Z
(Definition 1.2.1)

II(Z1, Z2, . . . , Zk) k-way interaction information of random variables
Z1, Z2, . . . , Zk (Definition 1.2.2)

DKL(p||q) Kullback-Leibler divergence (Definition 1.1.3)

Iβ,γ(X, Y |Z) generalized feature selection criterion, where β and γ are vec-
tors of parameters (Definition 1.3.1)

Jβ,γ(X, Y |Z) generalized feature selection criterion, where β and γ are scalar
parameters (definition in (1.19))

JMI, JMI2 Joint Mutual Information criterion (of order 2; definition
in (1.22))

JMI3 Joint Mutual Information criterion (of order 3; definition
in (1.24))

CIFE, SECMI,
SECMI2

Conditional Infomax Feature Extraction/Short Expansion
of Conditional Mutual Information criterion (of order 2; defi-
nition in (1.25))

SECMI3 Short Expansion of Conditional Mutual Information criterion
(of order 3; definition in (1.26))
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